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Abstract

Diagnostics for testing model goodness-of-fit and badness-of-fit for time series data are formu-

lated by considering a convenient metrization of a spectral density’s departure from constancy.

The method is illustrated through numerical experiments and several case studies.
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1 Introduction

This paper presents diagnostics for testing model goodness-of-fit (gof) and badness-of-fit (bof)

for time series data, by considering a convenient metrization of a spectral density’s departure from

constancy. In the model-based approach to time series analysis, estimated residuals are computed

once a fitted model has been obtained from the data, and these are then tested for “whiteness”

i.e., it is determined whether they behave like white noise (Brockwell and Davis, 1996). Tests for

residual whiteness include Portmanteau tests, such as Ljung and Box (1978), Li(2004), and Peña

and Rodŕıguez (2002), and frequency domain tests – Beran (1994), Paparoditis (2000), Chen and

Deo (2004), McElroy and Holan (2006), and Drouiche (2007); these procedures generally postulate

whiteness of the residuals as the Null Hypothesis, so that significant rejections indicate model

inadequacy. Since the classical statistical paradigm dictates that the practitioner seeks to reject
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Null Hypotheses by obtaining low p-values, we have the paradoxical situation that gof tests are

actually designed to identify bad models. Nevertheless, what is wanted is an indication that the

fitted model is good, or at least adequate. In order to obtain a statistically significant indication of

model adequacy, one must reject a Null Hypothesis of non-whiteness; in other words, a badness-of-fit

(bof) diagnostic is needed in order to find good models.

Here we present a convenient metrization of whiteness of a time series, which is quite similar

to the approach of Drouiche (2007) and was developed independently. We demonstrate that our

metrization intuitively captures gof/bof for time series, and can be used to test for model inad-

equacy/adequacy in a flexible and rigorous fashion. The work of Drouiche (2007), while similar

in spirit, does not consider the bof applications. Section 2 defines our spectral measure – our

metrization of whiteness – and motivates this choice by making connections to the work of Peña

and Rodŕıguez (2003, 2006). We also derive some basic properties of our measure, which include

those of Drouiche (2007), but with an additional facet that is arguably advantageous in the gof/bof

context. Our formulation is at first very general, allowing for the application of the spectral mea-

sure in local frequency bands to nonstationary time series. Some examples are provided on familiar

time series models in Section 3. Section 4 considers the statistical estimate of the spectral measure

and its distributional properties. The asymptotics involve known techniques, but the computation

of asymptotic variances is delicate and is included in an appendix, along with all proofs. Section 5

provides an explicit discussion of gof/bof testing using our diagnostics, and Section 6 demonstrates

their empirical properties through some simulation experiments and case studies. We compare the

gof test to the Ljung-Box diagnostic and also provide some power results for the bof procedure.

2 Metrization of Whiteness

We make use of some basic notations in this paper. Suppose that, after suitable transformations

and differencing if necessary, we have a mean zero stationary time series X1, X2, · · · , Xn, which

will sometimes be denoted by the vector X = (X1, X2, · · · , Xn)
′
. At the end of this subsection, we

consider the case of nonstationary time series in detail. When the autocovariance function γf (h) is

absolutely summable, the spectral density f can be defined by

f(λ) =
∞∑

h=−∞
γf (h)e−ihλ (1)

with i =
√
−1 and λ ∈ [−π, π]. For a general function g that is integrable on [−π, π], we define its

inverse Fourier transform via

γg(h) =
1
2π

∫ π

−π
g(λ)eihλ dλ,
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a relation that we will use repeatedly in the sequel. That is, γg and g are Fourier transform pairs.

Furthermore, denote the n× n Toeplitz matrix associated with g by Σ(g), which is defined by

Σjk(g) =
1
2π

∫ π

−π
g(λ)ei(j−k)λdλ.

So if f is the spectral density of a stationary process, Σ(f) is the associated n× n autocovariance

matrix. Finally, let f̂(λ) denote the periodogram defined on a continuum of frequencies:

f̂(λ) =
1
n

∣∣∣∣∣
n∑

t=1

Xte
−itλ

∣∣∣∣∣
2

=
n−1∑

h=1−n

R(h)e−ihλ λ ∈ [−π, π],

with R(h) equal to the sample (uncentered) autocovariance function. We adopt the notation

θA(g) =
1
2π

∫ π

−π
A(λ)g(λ) dλ. (2)

Here the function A is a fixed-bandwidth kernel that centers attention on a range of frequencies,

which roughly speaking are given by the support region of A. The main gof measure that we

consider in this paper is a local spectral variance of the logged spectral density, given by

ψA(f) = θA(log2 f)− θ2
A(log f), (3)

where f is a spectral density for an invertible model (f nonzero everywhere). The empirical version

of this measure is obtained by replacing f by the periodogram f̂ , and replacing the integrals by a

Riemann sum over grid points located at the Fourier frequencies. This is discussed more in Section

3; here we discuss some of the properties of (3) and its motivation.

In Peña and Rodŕıguez (2006) a gof measure for time series data is introduced and developed,

which is based on the logarithm of the determinant of the (empirical) autocorrelation matrix. The

use of this quantity for gof tests is justified in several ways in Peña and Rodŕıguez (2006); for one,

this quantity appears in the logarithm of the Gaussian likelihood function. Note that the above

authors apply this statistic to the residual autocorrelations obtained from fitting a time series model

to the data, and thus their method is similar in spirit to the use of Ljung-Box statistics (Ljung and

Box, 1978). Essentially, the statistic of Peña and Rodŕıguez (2006) can be written as

D̂ =
1
n

log det Σ(f̂).

The above authors consider the case that Σ is m-dimensional, where m is a fixed integer (i.e., it does

not expand with sample size in their asymptotics). Also they consider the autocovariance matrix

associated with estimated residuals normalized to have unit sample variance, and thus f̂ would be

the periodogram of such residuals. Now following the treatment in Taniguchi and Kakizawa (2000),

under some conditions there exist approximations for the Toeplitz matrices Σ(g) of the form

Σ(g) .= QD(g)Q∗ (4)
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with Qjk = n−1/2 exp{i2πjk/n}, and ∗ denoting the conjugate transpose. Here D(g) is a diagonal

matrix with entries given by g(2πk/n) for k = 1, · · · , n. Substituting f̂ for g in (4), we obtain

1
n

n∑
k=1

log f̂(2πk/n),

which is the Riemann-sum approximation to the integral of the log periodogram. Generalizing this

measure by introducing a local spectral weighting kernel A, we obtain

1
2π

∫ π

−π
A(λ) log f̂(λ) dλ. (5)

Although such a measure looks quite a bit different from the D̂ of Peña and Rodŕıguez (2006), the

above heuristics show that it is similar in spirit to their statistic.

Now, the theoretical measure associated with (5) is θA(log f) as in (2), a weighted log moment

of the spectrum. This is similar to the spectral moment approach of Miller and Rochwarger (1970),

although that work considers integrals of polynomials multiplying the spectrum. The idea is that

moments of the spectrum (or log spectrum in our case) can reveal important properties of the

frequency domain representation of a time series, and thus a statistic based on this measure will

be useful for assessing the gof of a particular time series model.

In Miller and Rochwarger (1970) some of the interest focuses on a spectral variance, which can

be used to assess the spread (or entropy, loosely defined) in a spectrum. In a similar fashion, we

will focus on the spectral variation measure ψA(f) rather than θA(log f). It is easy to see that

ψA(f) =
1
2π

∫ π

−π
(log f(λ)− θA(log f))2A(λ) dλ (6)

so long as γA(0) = 1, i.e., the kernel A integrates to unity. In contrast, the spectral measure of

Drouiche (2007) is D(f) = log θ1[−π,π]
(f) − θ1[−π,π]

(log f). Now so long as A is non-negative, we

have from (6) the following properties of ψA(f):

1. ψA is non-negative.

2. ψA(c f) = ψA(f) for any c > 0.

3. ψA(f) = 0 iff f(λ) ∝ 1 for all λ ∈ supp(A).

4. ψA(f) = ψA(1/f).

So ψA generalizes D to local frequency bands given by supp(A), the support of the kernel A; D

possesses (1), (2), and (3), but not (4) in general. This latter property has the following benefit. If

f is the spectrum of theoretical model residuals and A = 1[−π,π], we may consider that peaks and

troughs in f are equally persuasive in indicating departures from whiteness; in particular, ψ1[−π,π]

gives equal measure to both f and its reciprocal, so that peaks and troughs contribute equally to

the assessment of non-whiteness.
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Finally, we note that the natural domain of ψA extends beyond the continuous functions on

[−π, π], since f is allowed to have a singularity or zero at frequencies outside the support of A.

Thus we can extend our discussion to nonstationary time series. We say the data is homogeneously

nonstationary when Yt is nonstationary and there exists some differencing operator δ(B) such that

δ(B)Yt = Xt is stationary, where Yt now denotes the observed data. It may be of interest to

consider the spectral variation measure on an estimate of the pseudo-spectrum of Yt rather than of

the spectrum of Xt. The pseudo-spectrum is given by

fδ(λ) =
f(λ)

|δ(e−iλ)|2
,

and we define the spectral variation measure by

ψA(fδ) = θA(log2 fδ)− θ2
A(log fδ),

when the poles and zeroes of fδ lie outside supp(A).

3 Examples - ψA(f) for Some Familiar Models

Recall that the basic EXP model (Bloomfield, 1973) can be defined by a Fourier expansion of

the log spectrum:

log f(λ) =
∑

j

ξje
−iλj .

By the evenness of the spectrum, ξj = ξ−j . An EXP(m) model has ξj = 0 for j > m; we will

also consider EXP(∞) models in this section, where ξj 6= 0 for all j.m. Now for such models the

spectral variation measure is given by

ψA(f) =
∑
j,l

ξjξl [γA(j − l)− γA(j)γA(l)] .

In the special case that A = 1[−π,π], we have

ψA(f) =
∑
j 6=0

ξ2j .

Since the ξ0 parameter essentially corresponds to the scale of the spectral density, it makes sense

(given the comments above) that ξ0 is omitted from the summation. Below we give some simple

examples of this formula.

Example 1: EXP (1) Let log f(λ) = ξ0 + ξ1(e−iλ + eiλ). Then assuming γA(0) = 1 we obtain

ψA(f) = 2ξ21
(
1 + γA(2)− 2γ2

A(1)
)
.
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Example 2: MA(1) Let f(λ) = |1− θe−iλ|2σ2, so that

log f(λ) = log σ2 −
∑
j≥1

θj

j
(eiλj + e−iλj).

Hence ξj = −θ|j|/|j| and

ψ1[−π,π]
(f) =

∑
j 6=0

θ2|j|

j2
= 2

∫ θ2

0
− log(1− u)

u
du.

It is clear that the overall spread of f increases with |θ|, and ψ1[−π,π]
(f) picks this up in a fairly direct

fashion, giving a measure bounded between zero and π2/3; Figure 2 plots θ against ψ1[−π,π]
(f). Let

h(x) = 2
∫ x
0 −

log(1−u)
u du (when x < 0, we have h(x) = 2

∫ 0
x

log(1−u)
u du). Now by property (4) of

Section 2, the preceding analysis also holds for AR(1) models.

Example 3: MA(2) First considering the case that the MA polynomial has two real roots, we

can write

f(λ) = |1− θ1e
−iλ|2|1− θ2e

−iλ|2σ2

log f(λ) = log σ2 −
∑
j≥1

θj
1 + θj

2

j
(eiλj + e−iλj).

This defines ξj , and we obtain

ψ1[−π,π]
(f) =

∑
j 6=0

(θ|j|1 + θ
|j|
2 )

2

j2
= h(θ2

1) + 2h(θ1θ2) + h(θ2
2).

If there are complex conjugate roots, we can write

f(λ) = |1− ρe−i(λ−ω)|2|1− ρe−i(λ+ω)|2σ2.

By the same Taylor series techniques, we find that

ξj = −ρ
|j|

|j|
2 cosωj.

Hence the spectral variance measure is

ψ1[−π,π]
(f) =

∑
j 6=0

ρ2|j|

j2
4 cos2 ωj.

It is interesting that the spectral peak/trough location parameter ω affects the variation. Since the

integral is computed over all frequencies in [−π, π], there is more variability when the peak/trough

is in the center (ω = 0) or at the end (ω = ±π). Also, the variation increases with ρ, which

parametrizes the strength of the peak/trough.
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Example 4: ARMA More generally, when f is the spectral density of an ARMA(p, q) process

we have

f(λ) =
Πq

j=1|1− θje
−iλ|2

Πp
j=1|1− φje−iλ|2

σ2

for (possibly complex) roots 1/θj and 1/φj . Then the log spectrum is

log f(λ) = log σ2 +
q∑

j=1

log |1− θje
−iλ|2 −

p∑
j=1

log |1− φje
−iλ|2.

At this point, we refer to the previous examples to expand the case of real roots or pairs of complex

conjugate roots.

4 Statistical Properties

Although ψA(f̂) is our statistic of interest, there is some question of how to compute it, given

that it involves an integral of the periodogram. The most straightforward approach – following

Chiu (1988) and Taniguchi and Kakizawa (2000) – is to use a Riemann sum approximation with

mesh points given by the Fourier frequencies. A delicate (and non-obvious) issue is that the

asymptotic variance of any integral approximation to ψA(f̂) depends on the mesh size – see Deo

and Chen (2000) for a related discussion. For coherency of treatment with the literature, we use

the approximation described Section 6.4 of Taniguchi and Kakizawa (2000):

θA(f̂) ≈ 1
n

n/2∑
j=−n/2

A(λj)f̂(λj).

Here we suppose that n is even (else replace n/2 by its greatest integer), and λj = 2πj/n (the

Fourier frequencies). The generalizations to θA(log f̂), etc. are obvious. We denote these Riemann

sum approximation to θA and ψA via θ̃A and ψ̃A (although these approximations depend on n, this

will be suppressed in the notation).

We now present the asymptotic theory for the measure ψ̃A(f̂), which is an estimate of ψA(f̃).

Here f̃ is the true spectral density of the data, and may differ from a specified model f . Let

b(λ) = |δ(e−iλ)|2, so that our measure is ψ̃A(f̂/b); when the data is stationary, b = 1. So f̃

denotes the true spectral density for the (stationary) differenced data Xt = δ(B)Yt. Theorem 1

gives the joint asymptotic normality result for the first and second log moments, i.e., θ̃A(log f̂/b)

and θ̃A(log2 f̂/b). The basic assumption that we use is that the data are Gaussian. Let Γ denote

the gamma function, and let Γ̇(x) denote the first derivative of the gamma function at x (and so

on for higher derivatives).

Theorem 1 Suppose that {Xt} is a stationary zero mean Gaussian time series with
∑

k |kγX(k)| <
∞ and spectral density bounded away from zero. Also suppose that the kernel A is bounded and
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Lipschitz continuous such that A log b is also bounded and Lipschitz. Then √
n

(
θ̃A(log f̂/b)− θA(log f̃/b)− Γ̇(1)γA(0)

)
√
n

(
θ̃A(log2 f̂/b)− θA(log2 f̃/b)− 2Γ̇(1)θA(log f̃/b)− Γ̈(1)γA(0)

) 
is asymptotically bivariate normal with zero mean vector and variance matrix V . The entries of V

are given by:

V11 =
(
Γ̈(1)− Γ̇2(1)

)
γA2+AA−(0)

V12 = 2
(
Γ̈(1)− Γ̇2(1)

)
θA2+AA−(log f̃/b) +

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
γA2+AA−(0)

V22 = 4
(
Γ̈(1)− Γ̇2(1)

)
θA2+AA−(log2 f̃/b) + 4

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
θA2+AA−(log f̃/b)

+
(....

Γ (1)− Γ̈2(1)
)
γA2+AA−(0),

where A−(λ) = A(−λ).

Corollary 1 Under the same assumptions and notation of Theorem 1 and with γA(0) = 1,

√
n

(
ψ̃A(f̂/b)− ψA(f̃/b)− Γ̈(1) + Γ̇2(1)

)
L=⇒ N (0,W )

W = V22 − 4
(
Γ̇(1) + θA(log f̃/b)

)
V12 + 4

(
Γ̇(1) + θA(log f̃/b)

)2
V11,

with V11, V12, V22 as stated in Theorem 1.

5 Goodness-of-Fit and Badness-of-Fit Testing

We now focus on testing model residuals for whiteness; these residuals will be assumed to be

stationary, so that b = 1. Also A = 1[−π,π], and we view f as the spectrum of the model residuals.

We write ψ1 for ψ1[−π,π]
throughout. In this case, Corollary 1 simplifies to the following:

Corollary 2 Under the same assumptions and notation of Theorem 1 and with A = 1[−π,π],

√
n

(
ψ̃1(f̂)− ψ1(f̃)− Γ̈(1) + Γ̇2(1)

)
L=⇒ N (0,W )

W = 8(Γ̈(1)− Γ̇2(1))(ψ1(f̃) + Γ̇2(1)) + 2(
....
Γ (1)− Γ̈2(1))− 8(Γ̇(1)

...
Γ(1)− Γ̈(1)Γ̇2(1)).

As discussed in Section 1, gof testing seeks to reject whiteness of model residuals, which is

equivalent to the Null Hypothesis that ψ1(f̃) = 0 by property (3) of Section 2. So for the gof

procedure, we have

H0 : ψ1(f̃) = 0

Ha : ψ1(f̃) > 0.
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Note that by Corollary 2, we can determine asymptotic power with only a knowledge of the value

of ψ1(f); it is not necessary to know the full spectrum f̃ , only its metrization through ψ1. For bof

testing, we instead specify a given level of non-whiteness µ0 > 0, and test the hypotheses

H0 : ψ1(f̃) = µ0

Ha : ψ1(f̃) < µ0.

Here we note that the alternative is lower one-sided, in contrast to the upper one-sided gof pro-

cedure. Since by Corollary 2 the asymptotic distribution of ψ̃1(f̂) only depends on f̃ through the

metrization ψ1(f̃), we can compute the mean and variance under H0. It is not clear how to adapt

Ljung-Box statistics or D to bof testing, since the asymptotic distribution of these statistics under

non-whiteness of the underlying process is either unknown, or is a complex function of the entire

spectral density.

What is the advantage of bof over gof? As mentioned in Section 1, gof tests are used to find

bad models, whereas bof tests can be used to find good models. For a gof test, we seek to reject

the Null Hypothesis (that the model fit is perfect) with significant p-values. Failing to reject this

Null Hypothesis corresponds to having a good model, but how high should the p-values be? 20% ?

50%? 75%? This part of the analysis becomes vague. The bof test starts with a certain assumed

level of badness of model fit in the Null Hypothesis, and seeks to reject this with significance – in

the direction of better model fit. Thus one can say – with an associated significant p-value – that

a given model is adequate. Of course such a procedure requires that the asymptotic distribution

of the test statistic only depends on f through the chosen metrization of whiteness. Moreover, the

power of the procedure will understandably depend on the choice of µ0; in fact, the power will be

an increasing function of µ0. Figure 4 gives an indication of these relationships, using the formula

for bof asymptotic power given below. Let c1 = Γ̈(1)− Γ̇2(1) and

c2 = 8
(
c1Γ̇2(1)− Γ̇(1)

...
Γ(1) + Γ̈(1)Γ̇2(1)

)
+ 2(

....
Γ (1)− Γ̈2(1)).

Note that c1 = π2/6 and c2 ≈ 23.811. The bof asymptotic power for a δ-level test is given by

Φ
(√

n(µ0 − µa) + zδ
√

8c1µ0 + c2√
8c1µa + c2

)
, (7)

where Φ is the standard normal cdf and zα = Φ−1(α). Here µ0 and µa are Null and Alternative

specifications of ψ1(f) (and µa is truth).

There is an exact relationship between the gof and bof test statistics. For a specified µ0 (which

equals zero in the gof context), we define ψ̂(µ0) to be the corresponding test statistic, which is

given by

ψ̂(µ0) =
√
n
ψ̃1(f̂)− µ0 − c1√

8c1µ0 + c2
.
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Now the bof test statistic is given by the above formula when µ0 > 0, but the gof test statistic

corresponds to ψ̂(0). These test statistics are related by the formula

ψ̂(µ0) =
√
c2ψ̂(0)− µ0

√
n√

8c1µ0 + c2
. (8)

Thus, there is an equivalence between gof and bof, and the link is µ0. We see from (8) that small

values of ψ̂(0) – associated with failure to reject gof – result in negative values of ψ̂(µ0), so long as

µ0

√
n/c2 is larger than the gof test statistic. Thus, ψ̂(µ0) is significant if µ0 is large enough, or if

the sample size is large enough. In general, small gof p-values result in large bof p-values, and vice

versa, so long as a µ0 is suitably large with respect to the sample size. In fact, (8) can be used to

determine the choice of the threshold µ0 in bof testing. Letting α and δ be the significance levels

of the gof and bof procedures respectively, we obtain the relation

zδ =
√
c2z1−α − µ0

√
n√

8c1µ0 + c2
. (9)

If the bof procedure were significant at the 5% level (i.e., δ = .05), then we would like the gof

procedure to fail to reject with at least α probability, where now α is larger than .05 and can be

selected by the user. For example, one might choose α = .50 or α = .20. One can easily show

via (7), that for µ0 satisfying (9), the bof power is approximately 1 − α when the alternative is

white noise (i.e., µa = 0). In other words, given a δ-level bof test, we can choose µ0 according to

(9) to ensure approximate 1− α power against a white noise alternative, where α is chosen by the

user. Solving (9) for µ0 when δ = .05, we obtain two roots by the quadratic formula. So long as

.05 < α < .95, the smaller root is negative, and so we let µ0 be given by the larger root:

µ0 =
√
c2z1−α√
n

+
4c1z2

.05

n
+

√
16c21z

4
.05

n2
+

8c1
√
c2z1−αz2

.05

n3/2
+
c2z2

.05

n
. (10)

We denote this choice of µ0 by µ0(n) (since it depends on sample size), when we use (10) to

determine the parameter. To re-iterate the property of this choice of µ0: when the bof test statistic

has p-value less than .05, the gof will have p-value greater than α percent, and the bof will have

approximate power 1−α against the white noise alternative. Since this represents a fairly intuitive

relationship between bof and gof testing, we recommend using (10) for determining µ0. An example

of this relation is depicted in Figure 2 for α = .2 and δ = .05.

6 Empirical Studies

In this section we evaluate both the gof and bof measures using Monte Carlo simulation and

real time series data. Although our measure is similar to the diagnostics of Peña and Rodŕıguez

(2006), we do not make direct comparisons here. Instead we make comparisons to the Ljung-Box

statistic. The reason we do not make a direct comparison to Peña and Rodŕıguez (2006) is four-fold.

10



First, we were unable to duplicate the results presented in their simulation studies. Second, even

assuming the results of the simulation study they conduct for their gof diagnostic are correct, they

claim to beat the performance of the Ljung-Box statistic. We acknowledge that the Ljung-Box

gof diagnostic out-performs our gof diagnostic, and we present the results of a simulation study

that quantifies to what extent its performance is superior. Thirdly, our diagnostic is capable of bof

testing, which neither the Peña-Rodŕıguez nor the Ljung-Box procedures can accomplish. Finally,

in Peña and Rodŕıguez (2006) the simulation is conducted without postulating a specific model

under the Null Hypothesis, but rather their hypothesis is that the true model belongs to a certain

class of models (i.e., an ARMA(p, q) with fixed p and q). This formulation is incompatible with

the testing paradigm that we establish.

6.1 Simulations

We determine the size and power of both our gof/bof diagnostics under several different depar-

tures from white noise residuals. First we consider the size of our gof diagnostic under the null

hypothesis of white noise. Additionally, we evaluate the distribution of our test statistic in finite

samples. In order to do this we performed 10,000 Gaussian simulations of various samples sizes

(n = 150, 250, 350, 500) and calculated the mean, standard deviation and α-level of our diagnostic

under a nominal α-level of α = .05. Further, we investigated the size of the Ljung-Box under identi-

cal conditions using m = 5, 10, and 20 autocorrelations in the calculation of the statistic (see Table

1). Although the size of the Ljung-Box statistic is moderately better than ours, both diagnostics

are fairly close to the nominal level and approach .05 as the sample size increases, as expected.

Similarly the mean and standard deviation of our test statistic under the null hypothesis approach

the correct mean and standard deviation as the sample size increases (see Table 1). Although it is

crucial that the mean and standard deviation approach 0 and 1 respectively, it is equally important

that the distribution be normal. As can be seen from Figure 1, the distribution of the gof statistic

is well-approximated by the normal for sample size 500.

Next, we compare the power of our gof diagnostic with the power of the Ljung-Box statistic

(at m = 5, 10, 20) and the turning point diagnostic for independence (see Brockwell and Davis,

1991, Pages 312-313), defined by the asymptotic distribution of the number of turning points in

the series of model residuals. To assess the the performance we simulated from an MA(1) data

generating process with θ = .9. We then computed model residuals obtained from an MA(1) with

θ ranging between .1 and .8. The residuals were then tested for whiteness, as discussed in Section

5. In our simulation as θ decreases from .9, the departure from whiteness in the estimated residuals

increases, and it should be easier to reject the H0. This simulation was conducted at the nominal

α-level of .05 with 1000 simulations of various sample sizes (see Table 2). In general our power

does not perform as well as the Ljung-Box or turning point statistics. However, one advantage of
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our gof diagnostic (incidentally, shared by Drouiche (2007)) over Ljung-Box is that only one test

statistic is formed and only one p-value is produced. So the practitioner is freed from having to

choose m when testing for model adequacy.

We now turn our attention to the bof diagnostic. For this diagnostic we evaluated the power

under several formulations. In the first simulation we chose the threshold value, µ0(n), adaptively

based on the sample size using (10) with α = .2 and δ = .05. This method of choosing µ0 induces

a Null hypothesis ψ1(f) = µ0 with an Alternative hypothesis ψ1(f) < µ0, while simultaneously

controlling the power. Further in this first power study we suppose that the model residual process

follows an MA(1) with parameter θ between 0 and approximately .42. We simulated Gaussian

MA(1) processes with θ = .4, .3, .2, .1, 0 for various sample sizes between n = 100 and n = 500

and determined power using 10,000 Monte Carlo replications and nominal level equal to .05; see

Table 3. As a result of choosing µ0 via (10) we find that the power is rather good even for sample

sizes as small as n = 100. In fact, we see that the power of our test remains fairly constant across

sample size and is approximately equal to .8 for a white noise alternative. Here it is µ0(n) that

changes with sample size. Specifically, µ0(n) is a decreasing function of n, and as such when the

sample size increases so does our assurance that rejecting the Null hypothesis of a “bad” model in

the direction of a better fitting model actually results “good” model and not just a model superior

to that postulated under the Null. Additionally, our simulations confirm that the power under a

white noise alternative turns out to be approximately 1 − α. Simulations for several other values

of α confirm this result.

In our second power study we mapped the different values of µ0 into equivalentMA(1) processes;

if θ is the MA parameter, then µ0 = 2
∑∞

j=1 θ
2j/j2 as shown in Example 2 of Section 3. For a graph

of this mapping see Figure 2. Thus here we are keeping µ0 fixed across different sample sizes. In the

first power study, under µ0 “fixed”, we suppose that the model residual process follows an MA(1)

with parameter θ between 0 and .66, which corresponds to ψ1(f) values between 0 and 1. Our

Null Hypothesis states that ψ1(f) = 1, and the Alternative Hypothesis states that ψ1(f) < 1, or

equivalently that θ < .66. Again, we simulated Gaussian MA(1) processes with θ = .4, .3, .2, .1, 0,

with three different sample sizes, and determined the power using 10, 000 Monte Carlo replications

and an α level of .05. In the second study, for “fixed” µ0, we now let µ0 = .5, which for an MA(1)

corresponds to θ = .48. So we simulated Gaussian MA(1) processes with θ = .4, .3, .2, .1, 0 with

three different sample sizes, and determined the power. The results are reported in Table 4. Even

though, in this case, the power depends on what size departures one is willing to accept under

the Null Hypothesis, this is still a very sensible way to test for model inadequacy. This flexibility

allows the practitioner the control of deciding what degree of “badness” is acceptable for a given

application. If µ0 is chosen equal to .5 a priori, large samples are needed for high power if one only

wishes to consider slight departures from whiteness. On the other hand, for µ0 = 1 a priori fair

power is achieved for relatively moderate sample sizes.
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6.2 Case Studies

Next, we consider the diagnostics on several time series: m00110, m00100, France, and Shoe.

The first two time series are from the Foreign Trade Division of the U.S. Census Bureau; the first

series is Imports of Meat Products, and the second series is Imports of Dairy Products and Eggs.

Both of these series are for the time period from January 1989 to December 2003. The France

series refers to the sales volume for Grands Magasins produced by the Chamber of Commerce and

of Industry of Paris (CCIP), from January 1990 through March 2004. The Shoe series is U.S. Retail

Sales of Shoe Stores data from the monthly Retail Trade Survey of the Census Bureau, from 1984

to 1998.

In order to illustrate our diagnostics usefulness in practice we fit models to the data using the

“automodl” command of the 2007 update (version 0.3) of X-12-ARIMA, which follows closely the

automatic modeling procedure of Gómez and Maravall (2001). We adjusted for regression effects

(such as outliers and trading day) when applicable. Next we obtained the estimated residuals

from the fitted model and calculated our gof and bof diagnostic tests using µ0(n) with α = .2

and δ = .05. Below, n is the effective number of observations (the sample size of the differenced

series). For comparison we constructed a time series plot and acf plot of the residuals along with

the p-values through lag 20 for the Ljung-Box statistic. This was done using the “tsdiag” command

in R (R Development Core Team, 2005).

The first series we consider is the Shoe series (n = 157). The automodl procedure of X-12-

ARIMA provided the following model:

(1−B)(1−B12)Xt = (1− .572B)(1− .336B12)εt.

The p-value from our gof diagnostic was .489, while the p-values for our bof diagnostic with µ0(n) =

1.146 was .011. This can be contrasted with various other measures constructed from the residuals

(see Figure 5). It appears that the acf plot of the residuals and Ljung-Box statistics seem to indicate

an adequate fit. In this case our results agree with this assessment.

The next series we consider is the France series (n = 158). The automodl procedure of X-12-

ARIMA obtained the following model for the log transformed data:

(1−B)(1−B12)Xt = (1− 1.0382B + .3381B2)εt.

The p-value from our goodness-of-fit diagnostic was .927, while the p-values for bof with µ0(n) =

1.142 was < .001. Next we compared our analysis with the acf plot of the residuals and the Ljung-

Box statistic out to lag 20 (see Figure 6). In this case our results corroborate the results of the acf

plot and the Ljung-Box test, namely that the model is very good.

We next focus our attention on the m00100 series (n = 167). The automodl feature of X-12-

ARIMA fitted the following model to the log transformed data:

(1−B)(1−B12)Xt = (1− .8390B12)εt.

13



The p-value from our gof diagnostic was .134, while the p-values for bof with µ0(n) = 1.106 was

.075. We can compare this with the time series plot and acf of the residuals along with the Ljung-

Box out to lag 20 (see Figure 7). This example illustrates an instance when using Ljung-Box and

acf plots is somewhat ambiguous. When looking at the Ljung-Box p-values, the decision rule is

dependent on which lag is being considered. Moreover, it requires the practitioner to make a choice

as to what constitutes a high p-value.

Finally, we examine the m00110 series (n = 167). The automodl procedure of X-12-ARIMA

obtained the following model for the log transformed data:

(1− .5907B)(1−B)(1−B12)Xt = (1− .9380B)(1− .9377B12)εt.

The p-value from our gof diagnostic was .541, while the p-values for our bof diagnostics with µ0(n) =

1.106 was .008. This series illustrates an instance where the determination of model adequacy is less

definitive. Specifically, the decision to accept a model is markedly different, depending on whether

the number of correlations used in the Ljung-Box test are less than or greater then 14 (see Figure

8). However, our bof statistic avoids this complication. The practitioner can use these diagnostics

to assess what type of departure from whiteness is deemed acceptable, and take action accordingly.

6.3 Discussion

This paper introduces the concept of badness-of-fit testing for time series modeling, using a

convenient metrization of whiteness. We explicitly demonstrate how gof and bof testing can be

implemented, and the relationship between them; we also describe how the crucial µ0 parameter

can be chosen in an intuitive fashion. Our method is illustrated on four economic time series, and

the results are compatible with the information from acf and pacf plots.

A potential criticism of bof testing raises the question of the choice of µ0. Given a significant

rejection of H0 in the bof test, can we be assured that the residuals are truly white? How close to

white are they then, and are they “close enough”? However, similar questions could be leveled at

gof testing: given that whiteness is rejected with significance, can it be that model residuals are

still close enough to being white noise, such that the model fit might be deemed decent – perhaps

through some other assessment such as out-of-sample forecasting performance? We have attempted

to resolve the issue of the choice of µ0 as follows: one chooses an α such that the asymptotic power

of the bof test is 1 − α for a white noise alternative, so long as µ0 is chosen according to (10). In

our simulations and case studies we have taken α = .2, since this gives high power (about 80%)

against the white noise alternative. Clearly, other choices are available.

Graphs such as Figure 3 give an indication of the relationship between ψ1(f) and flatness of

the spectrum for MA(1) models. Furthermore, the four case studies presented illustrate that low

p-values (the France series) indeed correspond to white residuals, whereas moderate p-values (the

Shoe and m00110 series) still indicate residuals that are close to being uncorrelated – witness the
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plots of standardized residuals in Figures 5 and 8. The high p-value for the m00100 series seems

to indicate that the residuals are too far from whiteness; now one should flip things around, and

do gof testing to reject the given model (this is a borderline case, because the gof p-value is .134

and only one Ljung-Box statistic is significant at the 5% level).

In practice, plots of residual ACFs and standardized residuals will be helpful in determining

model adequacy; our bof testing procedure allows for quantization of this concept via an appropriate

metrization of whiteness, allowing one to “accept” fitted models with statistical significance.

Appendix

Proof of Theorem 1. We use the notation for Riemann sums introduced in the beginning of

Section 2.3. We wish to consider the convergence, for any real numbers a and c, of

1
n

n/2∑
j=−n/2

A(λj)
(
a log f̂(λj)/b(λj) + c log2 f̂(λj)/b(λj)

)
(A.1)

=
1
n

n/2∑
j=−n/2

A(λj)
(
(a− 2c log b(λj)) log f̂(λj) + c log2 f̂(λj)

)

− 1
n

n/2∑
j=−n/2

A(λj)
(
a log b(λj)− c log2 b(λj)

)
.

The second term is deterministic, and thus contributes to the mean; it is asymptotic to

1
2π

∫ π

−π
A(λ)

(
a log b(λ)− c log2 b(λ)

)
dλ.

The first term can be written as

1
n

n/2∑
j=−n/2

(
A(λj)ζ(f̂(λj)) +A(λj) log b(λj)ξ(f̂(λj))

)
,

where ζ(x) = a log x+ c log2 x and ξ(x) = −2c log x. The convergence of this type of functional is

obtained by a straightforward generalization of Theorem 6.4.3 of Taniguchi and Kakizawa (2000),

under the conditions that both A and A log b are bounded and Lipschitz (the generalization involves

extending the limit theorem to functionals of type A(λ)ζ(f̂) +B(λ)ξ(f̂); Theorem 6.4.3 applies to

each summand separately). Then the asymptotic mean is

1
2π

∫ π

−π
A(λ)

(∫ ∞

0
ζ(f̃(λ)r)e−r dr + log b(λ)

∫ ∞

0
ξ(f̃(λ)r)e−r dr

)
dλ.

Applying this, we see that the asymptotic mean of (A.1) is given by

a
(
θA(log f̃/b) + γA(0)Γ̇(1)

)
+ c

(
θA(log2 f̃/b) + 2θA(log f̃/b)Γ̇(1) + γA(0)Γ̈(1)

)
.
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Taking a = 1, c = 0 and a = 0, c = 1 respectively gives the means stated in the theorem. Letting

v1(λ) =
∫ ∞

0
ζ2(f̃(λ)r)e−r dr −

(∫ ∞

0
ζ(f̃(λ)r)e−r dr

)2

v2(λ) =
∫ ∞

0
ζ(f̃(λ)r)ξ(f̃(λ)r)e−r dr −

(∫ ∞

0
ζ(f̃(λ)r)e−r dr

) (∫ ∞

0
ξ(f̃(λ)r)e−r dr

)
v3(λ) =

∫ ∞

0
ξ2(f̃(λ)r)e−r dr −

(∫ ∞

0
ξ(f̃(λ)r)e−r dr

)2

,

the asymptotic variance is given by

1
2π

∫ π

−π

[
A2(λ) +A(λ)A(−λ)

] (
v1(λ) + 2 log b(λ)v2(λ) + log2 b(λ)v3(λ)

)
dλ.

We next compute these variance functions:

v1(λ) = a2
(
Γ̈(1)− Γ̇2(1)

)
+ 2ac

(
2 log f̃(λ)Γ̈(1)− 2 log f̃(λ)Γ̇2(1) +

...
Γ(1)− Γ̇(1)Γ̈(1)

)
+ c2

(
4 log2 f̃(λ)Γ̈(1)− 4 log2 f̃(λ)Γ̇2(1) + 4 log f̃(λ)

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
+

....
Γ (1)− Γ̈2(1)

)
v2(λ) = 2ac

(
Γ̇2(1)− Γ̈(1)

)
+ 2c2

(
2 log f̃(λ)

(
Γ̇2(1)− Γ̈(1)

)
+ Γ̇(1)Γ̈(1)−

...
Γ(1)

)
v3(λ) = 4c2

(
Γ̈(1)− Γ̇2(1)

)
.

It follows that the asymptotic variance of (A.1) is

a2
(
Γ̈(1)− Γ̇2(1)

)
γA2+AA−(0)

+ 2ac
(
2θA2+AA−(log f̃)

(
Γ̈(1)− Γ̇2(1)

)
+

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
γA2+AA−(0)

)
+ c2(4θA2+AA−(log2 f̃)

(
Γ̈(1)− Γ̇2(1)

)
+ 4θA2+AA−(log f̃)

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
+

(....
Γ (1)− Γ̈2(1)

)
γA2+AA−(0))

− 4ac
(
Γ̈(1)− Γ̇2(1)

)
γ(A2+AA−) log b(0)

− 4c2
((...

Γ(1)− Γ̇(1)Γ̈(1)
)
γ(A2+AA−) log b(0) + 2θ(A2+AA−) log b(log f̃)

(
Γ̈(1)− Γ̇2(1)

))
+ 4c2

(
Γ̈(1)− Γ̇2(1)

)
γ(A2+AA−) log2 b(0).

Finally, setting a = 1 and c = 0 yields the asymptotic variance V11 of the first log moment, while

a = 0 and c = 1 yields V22, the second log moment. If we set a = 1 = c, then we should subtract

off V11 + V22 from the resulting quantity, which yields 2V12. In this way the asymptotic covariance

matrix V is obtained, and the log moments are asymptotically normal with the indicated mean

and covariance matrix V . 2
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Proof of Corollary 1. We first observe that

θ̃A(log2 f̂/b)− θ̃2
A(log f̂/b)− θA(log2 f̃/b) + θ2

A(log f̃/b)− Γ̈(1) + Γ̇2(1)

=
(
θ̃A(log2 f̂/b)− θA(log2 f̃/b)− 2Γ̇(1)θA(log f̃/b)− Γ̈(1)

)
−

(
θ̃A(log f̂/b)− θA(log f̃/b)− Γ̇(1)

) (
θ̃A(log f̂/b) + θA(log f̃/b) + Γ̇(1)

)
.

Now since θ̃A(log f̂/b) P−→ θA(log f̃/b) + Γ̇(1), we use Theorem 1 to deduce that

√
n

(
ψ̃A(log f̂/b)− ψA(log f̃/b)− Γ̈(1) + Γ̇2(1)

)
L=⇒ G2 − 2

(
θA(log f̃/b) + Γ̇(1)

)
G1,

where [G1, G2]
′
is bivariate normal with covariance matrix V from Theorem 1. Hence the limiting

variance is W , as given in the statement of the Corollary 1. 2

Proof of Corollary 2. Using the abbreviation B = A2 +AA−, we can simplify W :

W = 4
(
Γ̈(1)− Γ̇2(1)

)
θB(log2 f̃/b) + 4

(...
Γ(1)− Γ̇(1)Γ̈(1)

)
θB(log f̃/b) +

(....
Γ (1)− Γ̈2(1)

)
γB(0)

− 4
(
Γ̇(1) + θA(log f̃/b)

) (
2(Γ̈(1)− Γ̇2(1))θB(log f̃/b) + (

...
Γ(1)− Γ̇(1)Γ̈(1))γB(0)

)
+ 4

(
Γ̇(1) + θA(log f̃/b)

)2
(Γ̈(1)− Γ̇2(1))γB(0).

Now letting A = 1[−π,π] yields the stated value for W after some simplifications. 2
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ψ1 Ljung-Box: α-level

n Mean Std. α-level m = 10 m = 15 m = 20

150 .081 1.091 .0775 .0541 .0605 .0646

250 .060 1.056 .0725 .0555 .0597 .0652

350 .042 1.033 .0697 .0528 .0559 .0592

500 .026 1.032 .0666 .0493 .0554 .0588

Table 1: Comparison of level for goodness-of-fit diagnostic versus Ljung-Box. Note the number
of Monte Carlo simulations was 10,000, at a nominal α-level of .05. Distributional results are
presented in the form of mean and standard deviation.



n = 150 ψ1 LB m = 5 LB m = 10 LB m = 20 Turning Point

.8 .102 .106 .112 .117 .106

.7 .193 .241 .203 .206 .235

.6 .306 .485 .417 .377 .467

.5 .470 .705 .598 .554 .662

.4 .675 .899 .793 .735 .834

.3 .820 .981 .915 .884 .940

.2 .921 .999 .987 .968 .981

.1 .961 1 .997 .990 .996

n = 250 ψ1 LB m = 5 LB m = 10 LB m = 20 Turning Point

.8 .115 .173 .169 .156 .154

.7 .228 .494 .398 .373 .391

.6 .413 .828 .731 .665 .678

.5 .607 .978 .925 .874 .913

.4 .849 .998 .993 .977 .972

.3 .948 1 .999 .996 .999

.2 .987 1 1 1 1

.1 .998 1 1 1 1

n = 350 ψ1 LB m = 5 LB m = 10 LB m = 20 Turning Point

.8 .116 .260 .236 .204 .195

.7 .275 .731 .593 .526 .518

.6 .469 .986 .944 .849 .843

.5 .779 1 1 .991 .982

.4 .935 1 1 1 .998

.3 .997 1 1 1 1

.2 .999 1 1 1 1

.1 1 1 1 1 1

Table 2: This table compares the power of our gof diagnostic (ψ1) with the Ljung-Box (LB) and
Turning Point diagnostics. Note the number of Monte Carlo simulations was 1000, at a nominal
α-level of .05.



Power with µ0 as a function of sample size - n(µ0)

Ha: θ 100 (1.495) 150 (1.177) 200 (.997) 250 (.878) 300 (.793) 350 (.728) 400 (.676) 500 (.598)

.4 .5733 .5160 .4705 .4286 .3837 .3571 .3111 .2636

.3 .6826 .6610 .6223 .6100 .5888 .5550 .5395 .5070

.2 .7496 .7283 .7332 .7192 .7160 .6980 .6971 .6854

.1 .7878 .7877 .7799 .7736 .7801 .7767 .7814 .7768

WN .8025 .8016 .7919 .7987 .7974 .7944 .7992 .7951

Table 3: This table examines the power of the bof diagnostic under several different departures
from white noise. Note the number of Monte Carlo simulations was 10,000, at a nominal α-level of
.05. Note that µ0 is determined as a function of sample size with α = .2 and δ = .05.

H0: θ ≈ .66 or µ0 = 1 H0: θ ≈ .48 or µ0 = .5

Ha: θ n = 150 n = 250 n = 350 n = 150 n = 250 n = 350

.4 .3803 .5475 .6724 .0648 .0945 .1167

.3 .5200 .7122 .8359 .1271 .2081 .2694

.2 .6231 .8119 .9025 .2066 .3178 .4090

.1 .6684 .8524 .9318 .2653 .4002 .5022

WN .7011 .8654 .9400 .2836 .4297 .5483

Table 4: This table examines the power of the bof diagnostic under several different departures
from white noise. Note the number of Monte Carlo simulations was 10,000, at a nominal α-level of
.05.
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Figure 1: This figure contains a histogram for the distribution of the gof statistic from a simulation
with 10,000 repetitions of sample size 500, under a white noise null hypothesis. Note the theoretical
Normal(0,1) pdf is superimposed for convenience.
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Figure 2: This top panel contains a graph of θ vs. ψ1(f). Using this graph one can find equivalent
MA(1) processes associated with different values of ψ1(f). The bottom panel contains a plot of µ0
as a function of sample size such that α = .2 and δ = .05.
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Figure 3: This figure contains a graph of the theoretical log spectral density for several values
of µ0. Further we display the parameters µ0, along with their associated MA(1) parameters in
parenthesis.
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Figure 4: The top panel of this figure contains a graph of the maximum theoretical power for
µ0 ∈ [0, 1.5] (i.e., µa = 0). The bottom panel displays the theoretical power for different values of
µa when µ0 is held fixed and equal to 1.
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Figure 5: This figure contains a time series plot of the residuals from the model fit to the Shoe
data using the auto-model feature in X-12-ARIMA, along with a plot of the acf of the residuals.
Finally, the p-values of the Ljung-Box statistic are plotted for lags up to 20.



Standardized Residuals

Time

0 50 100 150

−3
−2

−1
0

1
2

3

0 5 10 15 20

−0
.2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

ACF of Residuals

●

●

●

●

●

●
●

● ●

●

●

●

● ●
●

●
● ● ● ●

5 10 15 20

0.0
0.2

0.4
0.6

0.8
1.0

p values for Ljung−Box statistic

lag

p v
alu

e

Figure 6: This figure contains a time series plot of the residuals from the model fit to the France
data using the auto-model feature in X-12-ARIMA, along with a plot of the acf of the residuals.
Finally, the p-values of the Ljung-Box statistic are plotted for lags up to 20.
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Figure 7: This figure contains a time series plot of the residuals from the model fit to the m00100
data using the auto-model feature in X-12-ARIMA, along with a plot of the acf of the residuals.
Finally, the p-values of the Ljung-Box statistic are plotted for lags up to 20.
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Figure 8: This figure contains a time series plot of the residuals from the model fit to the m00110
data using the auto-model feature in X-12-ARIMA along with a plot of the acf of the residuals.
Finally, the p-values of the Ljung-Box statistic are plotted for lags up to 20.
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