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Abstract

Two important problems in the X-11 seasonal adjustment methodology are the construction

of standard errors and the handling of the boundaries. We adapt the “implied model approach”

of Kaiser and Maravall to achieve both objectives in a nonparametric fashion. The frequency

response function of an X-11 linear filter is used, together with the periodogram of the differenced

data, to define spectral density estimates for signal and noise. These spectra are then used

to define a matrix smoother, which in turn generates the mean squared error optimal linear

estimate of the signal given the data. Estimates of the signal are provided at all time points

in the sample, and the associated time-varying signal extraction mean squared errors are a by-

product of the matrix smoother theory. After explaining our method, it is applied to popular

nonparametric filters such as the Hodrick-Prescott (HP), the Henderson Trend, and Ideal Low-

Pass and Band-Pass filters, as well as X-11 seasonal adjustment, trend, and irregular filters.

Finally, we illustrate the method on a single time series and provide comparisons with X-11-

ARIMA seasonal adjustments.
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1 Introduction

A long-standing problem in the seasonal adjustment community is the determination of signal

extraction error estimates for the X-11 filters for seasonal, nonseasonal, trend, and irregular; see

President’s Committee to Appraise Employment and Unemployment Statistics (1962) and the
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discussion in Bell and Kramer (1996). This uncertainty is sometimes assessed through revision

error (Pierce, 1980), but more properly signal extraction mean squared error (MSE) is the correct

quantity to measure (Bell and Hillmer, 1984). Secondly, there is the so-called boundary problem

– the question of how to asymmetrically extend the X-11 filters to the boundaries of the sample.

For model-based approaches (MBA) to seasonal adjustment, both the signal extraction MSEs and

asymmetric filter extensions are automatic byproducts of the filter calculations (Bell, 1984). This

paper sets forth a non-MBA method for addressing these two problems; our methodology uses the

“recast” concept of Kaiser and Maravall (2005) – which is based on the “implied models” concept

of Bell and Hillmer (1984) – adapted to a non-MBA context.

Several approaches to determining X-11 MSEs have been proposed, including Wolter and Mon-

sour (1981), Pfeffermann (1994), and Bell and Kramer (1996). These methods explicitly recognize

the contribution of sampling error. There are also a number of papers on matching X-11 to MBA

filters – Cleveland and Tiao (1976), Burridge and Wallis (1985), and Depoutot and Planas (1998)

attempt to find a closest MBA filter by matching filter weights. As pointed out in Bell and Hillmer

(1984), filters do not fully determine a model, and the full model is still needed to calculate MSEs.

Bell (2005) suggests that one could compute the X-11 MSEs given a model and component decom-

position; Chu, Tiao, and Bell (2007) carry out this idea by finding the Box-Jenkins Airline model

with seasonal adjustment filter that is closest to that of the X-11 filter, where the metric used

considers the frequency response functions of the filters. The boundary problem can he solved via

forecast and backcast extension of the data; this is the method of X-11-ARIMA (Dagum, 1980)

using a fitted ARIMA model to do the forecasts. Before the idea of forecast extension, asymmetric

X-11 filters were generated in an ad hoc fashion. The forecast extension approach is more defensible,

but typically the forecasts are generated from a fitted model.

The above methods are model-based. In contrast, our approach here relies on a nonparametric

spectrum estimate and certain properties of the X-11 filters. This spectrum estimate, together with

the X-11 frequency response function, will define the target signal spectrum and a corresponding

matrix smoother (by “matrix smoother” we mean a suite of time-varying signal extraction filters).

The matrix smoother consists of all the various asymmetric filters, so that the boundary problem is

addressed. From the theory of matrix smoothers discussed below, we can also obtain X-11 MSEs at

each time point in the sample. The matrix smoother is derived according to either of two paradigms

(output-matching and Wiener-Kolmogorov, or WK) discussed below. Thus the method addresses

both of the problems outlined above without using model-based forecast extension, and thus avoids

implicit problems in forecasting due to misspecified models.

Our method follows the basic strategy outlined in Kaiser and Maravall (2005). Section 2 dis-

cusses this theory, with details on the output-matching and WK recasting paradigms. We also

discuss how a matrix smoother and error covariance matrix can be generated from the spectra

for signal and noise. In Section 3 we discuss several illustrations of our methodology on popular
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nonparametric filters such as the Hodrick-Prescott (HP), the Henderson Trend, and the ideal low-

pass. A technical difficulty stems from the fact that X-11 filters do not have frequency response

function bounded between 0 and 1, which is a requirement of the method; in Section 4 we discuss an

approximation to the X-11 filter that resolves these difficulties. The output-matching X-11 matrix

smoother is then constructed and illustrated on a seasonal time series. Some technical results on

the estimation of autocovariance functions is left in the Appendix.

2 Recasting Paradigms

We here introduce our basic notation for the paper. Consider a nonstationary time series Yt that

can be written as the sum of two possibly nonstationary components St and Nt, the signal and the

noise:

Yt = St + Nt (1)

Following Bell (1984), we let Yt be an integrated process such that Wt = δ(B)Yt is weakly stationary.

Here B is the backshift operator and δ(z) is a polynomial with all roots located on the unit circle

of the complex plane (also, δ(0) = 1 by convention). This δ(z) is referred to as the differencing

operator of the series, and we assume it can be factored into relatively prime polynomials δS(z)

and δN (z) (i.e., polynomials with no common zeroes), such that the series

Ut = δS(B)St Vt = δN (B)Nt (2)

are mean zero weakly stationary time series, which are uncorrelated with one another. Note that

δS = 1 and/or δN = 1 are included as special cases. (In these cases either the signal or the noise

or both are stationary.) We let d be the order of δ, and dS and dN are the orders of δS and δN ;

since the latter operators are relatively prime, δ = δS · δN and d = dS + dN .

We have the following relationship between a spectral density f and its associated autocovari-

ance function γ:

γ(h) =
1
2π

∫ π

−π
f(λ)eiλh dλ.

The autocovariances can be arranged into a symmetric Toeplitz matrix Σ via Σjk = γ(j − k). If

the Fourier Transform of the autocovariance sequence is f , then we refer to the Toeplitz matrix by

Σ(f). Also, if X is a random vector we will sometimes write ΣX to denote its covariance matrix

(when the components of X represent observations on a sample drawn from a stationary process

with spectrum f , then ΣX = Σ(f)).
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2.1 The Output-Matching Paradigm

Let Ψ(B) denote our generic filter, which we suppose to be symmetric such that the frequency

response function Ψ(e−iλ) is real-valued, where λ ∈ [−π, π]. Below we will require that

0 ≤ Ψ2(e−iλ) ≤ 1. (3)

This condition actually precludes most of the X-11 filters, but there are many other examples of

filters that satisfy this condition (e.g., HP, Henderson, ideal Low-Pass and Band-Pass). Let the

filter output be

S̃t = Ψ(B)Yt,

with t any integer. Of course, the true signal St is an unknown stochastic component, and a

component of Yt. The output-matching paradigm operates on the assumption that the dynamics

of S̃t and St are identical, i.e., their pseudo-spectra are equal. This is stated in the equation

fS(λ) = fS̃(λ) = Ψ2(e−iλ)fY (λ), (4)

where the first equality is the defining property of the paradigm, and the second equality is known

to be true for stationary processes. The following discussion indicates that (4) can be extended to

nonstationary data, so long as it is interpreted correctly. Since Ψ(B) is a signal extraction filter,

at a minimum it must annihilate deterministic noise components and reduce Nt to stationarity, so

we may write

Ψ(B) = Γ(B)δN (B)

for some function Γ(B) with bounded frequency response (i.e., no poles on the unit circle). Now

in analogy with Ut = δS(B)St, we define

Ũt = δS(B)S̃t = Γ(B)Wt,

where the second equality trivially follows from the commutativity of polynomial operators. Hence

fŨ (λ) =
∣∣∣Γ(e−iλ)

∣∣∣
2
fW (λ),

where all of these functions are bounded in λ. Now dividing this through by |δS(e−iλ)|2, we

obtain (4) as an equality of pseudo-spectra (although these pseudo-spectra have poles at the signal

frequencies, the interpretation at these frequencies is given by the above expression in terms of

spectra of differenced signal).

Some comments on the output-matching paradigm are in order. Some authors have thought it

desirable that UC estimates have similar dynamics to the target; Wecker (1979) – also see Ansley

and Wecker (1984) – actually developed filters with this criterion in mind, called square-root WK

filters. It is well-known that WK filters do not have this property (Bell and Hillmer, 1984).
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Hence we have a defining equation for fS and fU , in terms of fY . Since we assume that the

components are orthogonal, it follows that

fN (λ) =
(

1−
(
Ψ(e−iλ)

)2
)

fY (λ).

We note that this is implied by the relation fY = fS + fN ; the above is not the pseudo-spectra

of Ñt = Yt − S̃t, which would be (1−Ψ(e−iλ))2fY (λ). Now to generate a matrix smoother (see

Section 2.3) we require a knowledge of fU and fV , since δS and δN are already presumed to be

known. These should be bounded functions. It follows from the above discussion that

fU (λ) = fS(λ)
∣∣∣δS(e−iλ)

∣∣∣
2

=
∣∣∣Γ(e−iλ)

∣∣∣
2
fW (λ) (5)

fV (λ) = fN (λ)
∣∣∣δN (e−iλ)

∣∣∣
2

=

(
1− (

Ψ(e−iλ)
)2

)

|δS(e−iλ)|2
fW (λ).

We see that in order for fV to be bounded, it is necessary that the signal differencing operator

cancel out with 1−Ψ2(B), which factors into 1−Ψ(B) times 1+Ψ(B). Noting that the former term

is the noise extraction filter, it should accomplish signal differencing. Of course, it is unrealistic to

assume in practice that 1 + Ψ(B) would accomplish any signal differencing. However, note that we

are dividing by δS(B) as well as δS(F ); therefore we need the following assumption to proceed:

1−Ψ(B) = Φ(B)δS(B)δS(F ) (6)

for some function Φ(B) with no poles on the unit circle. Then under the assumption (6), we have

fV (λ) = Φ(e−iλ)
(
1 + Ψ(e−iλ)

)
fW (λ). (7)

Now in both (5) and (7) we have our target spectra as the product of known (or computable)

bounded functions multiplying fW . Hence, our estimates are obtained by plugging in an estimate

of fW , which can be model-based or nonparametric, as desired. Ultimately, we need to compute the

autocovariance matrices ΣU and ΣV , whose (j, k)th entries are given by γU (j − k) and γV (j − k).

These are estimated as follows:

γ̂U (h) =
1
2π

∫ π

−π

∣∣∣Γ(e−iλ)
∣∣∣
2
f̂W (λ)eiλh dλ

γ̂V (h) =
1
2π

∫ π

−π
Φ(e−iλ)

(
1 + Ψ(e−iλ)

)
f̂W (λ)eiλh dλ,

where f̂W is an estimate of fW . If f̂W is the periodogram (with a continuous argument), then

the above autocovariance estimates will be consistent and asymptotically normal under very mild

conditions on the data. Note that no smoothing of the periodogram is needed in this case, because

the integration essentially performs this automatically. If f̂W is a model-based estimate, then

consistency will follow from having consistent parameter estimates, assuming that the true spectral
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density fW belongs to the model class that is selected. Since the periodogram method gives

consistency regardless of model-class assumptions, we focus our treatment on this case (though

those who prefer model-based methods may easily adapt our method to their favorite model).

With regard to efficient computation of the autocovariance estimates, it is not necessary to do

any Riemann integration when the periodogram is used. It is easily derived that (see McElroy and

Holan, 2005)

γ̂U (h) =
1

n− d
W

′
Σ

(
|Γ(e−i·)|2eih·

)
W

γ̂V (h) =
1

n− d
W

′
Σ

(
Φ(e−i·)

(
1 + Ψ(e−i·)

)
eih·

)
W,

where W = (W1,W2, · · · ,Wn−d)
′
. Now if g(e−iλ) is a polynomial in e±iλ, then the corresponding

Toeplitz matrix is easy to compute. In particular, suppose g(e−iλ) =
∑q

k=−r gke
−iλk for some

positive integers r and q. Then

Σjk

(
g(e−i·)eih·

)
= gj−k+h.

Thus the autocovariance estimates are very easy to calculate in practice. Now these autocovariance

estimates fill out the entries of Σ̂U and Σ̂V , which in turn can be plugged into the WK matrix

smoother discussed in Section 2.3 below.

2.2 The WK Paradigm

This discussion is very similar to the approach of the previous subsection, but there are a few subtle

differences. Again we let Ψ(B) be our generic filter, and we still require (3). Our main assumption

is that the dynamics of the output match those of a WK estimate, i.e.,

fS̃(λ) =
f2

S(λ)
fY (λ)

.

See Bell (1984) for a demonstration of this result (assuming Assumption A on the initial values),

when S̃t is the WK estimate of St. Since fS̃(λ) = Ψ2(e−iλ)fY (λ) as well, after taking square roots

we obtain

fS(λ) = |Ψ(e−iλ)|fY (λ).

Note that this is a little more general than what we would obtain assuming that Ψ(B) is a WK

filter – that would require that Ψ(e−iλ) be non-negative. But in our formulation, the frequency

response can be negative so long as it is real and satisfies (3). The noise pseudo-spectrum is

fN (λ) =
(
1− |Ψ(e−iλ)|

)
fY (λ),

since fS + fN = fY . It is required to determine fU and fV .

fU (λ) = fS(λ)|δS(e−iλ)|2 =

(
Ψ(e−iλ)Ψ(eiλ)

δN (e−iλ)2δN (eiλ)2

)1/2

fW (λ),
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from which we see the requirement that δN (B)δN (F ) divides Ψ(B). Hence we write

Ψ(B) = Γ(B)δN (B)δN (F ).

Note that this implies a different definition of Γ(B) from that implied in the output-matching

paradigm. Thus we obtain

fU (λ) = |Γ(e−iλ)|fW (λ). (8)

Secondly we have

fV (λ) = fN (λ)|δN (e−iλ)|2 =
1−Ψ2(e−iλ)

(1 + |Ψ(e−iλ)|) |δS(e−iλ)|2
fW (λ),

which is obtained by multiplying the top and bottom of fN (λ) by 1 + |Ψ(e−iλ)|. Now 1−Ψ2(B) =

(1−Ψ(B))(1 + Ψ(B)), so we require that δS(B)δS(F ) divides 1−Ψ(B), i.e., (6). In that case, we

have

fV (λ) =
1 + Ψ(e−iλ)
1 + |Ψ(e−iλ)| Φ(e−iλ)fW (λ). (9)

So the autocovariance functions can be estimated by

γ̂U (h) =
1

n− d
W

′
Σ

(
|Γ(e−i·)|eih·

)
W

γ̂V (h) =
1

n− d
W

′
Σ

(
1 + Ψ(e−i·)
1 + |Ψ(e−i·)| Φ(e−i·) eih·

)
W,

taking the nonparametric approach. One practical difficulty lies in the determination of |Γ(e−iλ)|
and 1 + |Ψ(e−iλ)|. Even if Γ(B) and Ψ(B) are polynomials in B and F , their absolute values need

not be. Hence the determination of the Toeplitz matrices will require numerical integration in

general, and the simple method outlined in Section 2.1 for getting ACF estimates will not apply.

Thus, the implementation for the output-matching paradigm is potentially much easier.

2.3 Matrix Smoothers

A matrix smoother is a matrix F that is applied to a vector of observed data Y = (Y1, Y2, · · · , Yn)
′
,

producing a vector estimate Ŝ = FY. Whereas a filter denotes a collection of coefficients used to

form linear combinations with the data, the term “matrix smoother” refers to a collection of such

filters that produce estimates at every time point. Hence a single row of F is a filter, whereas

all the rows taken together is a matrix smoother. (This terminology derives from the State Space

literature – see Durbin and Koopman, 2001.) Since Ŝ is intended as an estimate of S, the error

associated with the matrix smoother is

ε = Ŝ − S = (F − 1)S + FN,
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where 1 denotes the identity matrix. If 1−F and F do not remove the nonstationarity in signal and

noise respectively, the error will grow unboundedly with sample size; hence the matrix smoother is

generally assumed to satisfy

1− F = G∆S F = H∆N ,

for some matrices G and H, with ∆S and ∆N as defined in McElroy (2005). These latter matrices

accomplish the differencing of the polynomials δS and δN row-by-row. In general, let Λ(g) be given

by Λjk(g) = gj−k+p, where g is a polynomial of degree p with coefficients gl (with the convention

that gl = 0 if l < 0 or l > p). This matrix has dimension (n − p) × n by definition. Then define

∆N = Λ(δN ), ∆S = Λ(δS), and ∆ = Λ(δ). Hence we can write

W = ∆Y U = ∆SS V = ∆NN

where W , U , V , S, and N are column vectors for Wt, Ut, Vt, St, and Nt. We also define further

differencing matrices ∆N and ∆S with row entries δN
i−j+dN

and δS
i−j+dS

given by the coefficients of

δN (z) and δS(z) respectively, which are (n− d)× (n− dS) and (n− d)× (n− dN ) dimensional. It

follows from Lemma 1 of McElroy and Sutcliffe (2006) that

∆ = ∆N∆S = ∆S∆N . (10)

Thus the error process is

ε = HV −GU

for a general matrix smoother. We are generally interested in the error covariance matrix Σε, whose

diagonal entries are the signal extraction MSEs (i.e., they are E(Ŝt − St)
2
):

Σε = HΣ(fV )H
′
+ GΣ(fU )G

′
.

Now G and H are given to us by the definition of the matrix smoother, whereas fV and fU are

determined either by model estimation or by the recasting methods described above.

The WK matrix smoother, defined below, has the property that FY is the minimum MSE linear

estimate of S under some assumptions (McElroy, 2005), and is identical to the Kalman smoother

or State Space smoother (Durbin and Koopman, 2001). Its formula is

F = Σε∆
′
NΣ−1

V ∆N

Σ−1
ε = ∆

′
SΣ−1

U ∆S + ∆
′
NΣ−1

V ∆N .

Clearly, given the estimates of ΣU and ΣV from the recast method, one can easily calculate these

matrices. The error covariance matrix is just Σε. Other matrix smoothers can be found in Pollock

(2000, 2002).

8



3 Illustrations

This section contains several extended examples that are of popular interest: the HP filter, the

Henderson filter, Ideal Low-Pass and Band-Pass filters, and some X-11 seasonal filters.

3.1 HP filtering

The HP filter is popular in econometrics, both as a low-pass trend filter and as a cycle filter – to

produce estimates of cycles, the complement of the HP filter is used. The filter is defined by

HP (B) =
q

q + (1−B)2(1− F )2
,

where q is a smoothness parameter, which can be interpreted as a signal-noise ratio (SNR). For

either of the output-matching or WK paradigms, it will be appropriate to take δN (B) = 1 and

δS(B) = (1−B)2, so that the noise corresponds to a stationary component and the signal is an I(2)

trend. (Of course, one can also let the signal be an I(1) trend, or even be a stationary component;

the resulting spectral calculations for these cases are left to the reader.) So Ψ(B) = HP (B), and

1−Ψ(B) =
(1−B)2(1− F )2

q + (1−B)2(1− F )2

Φ(B) =
1

q + (1−B)2(1− F )2
,

which holds for both paradigms. Hence for the output-matching paradigm we have

fU (λ) =

(
q

q + |1− e−iλ|4
)2

fW (λ)

fV (λ) =
2q + |1− e−iλ|4(
q + |1− e−iλ|4

)2 fW (λ).

For the WK paradigm we have

fU (λ) =
q

q + |1− e−iλ|4
fW (λ)

fV (λ) =
1

q + |1− e−iλ|4
fW (λ).

3.2 Henderson Trend

The analysis for the Henderson trend filter H(B) is extremely similar to that of the HP, since

1−H(B) contains a factor of (1−B)4. This is always true, no matter the length of the Henderson,

since all of these filters pass cubic polynomials. Hence the signal is an I(2) trend with δS(B) =

(1−B)2, while the noise is stationary with δN (B) = 1. Letting

Φ(B) =
1−H(B)

(1−B)2(1− F )2
,
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we can produce Φ(B) for any length of Henderson. Below, we consider Φp(B) for the lengths

p = 5, 7, 9, 13, 15, 17, 23. Only p = 9, 17, 23 are used in X-12-ARIMA, but p = 15, 17 have been

used by the Australian Bureau of Statistics (see Findley et al. (1998) for a discussion).

Φ5(B) = .07343

Φ7(B) = .05874(B + F ) + .17622

Φ9(B) = .04072(B2 + F 2) + .17277(B + F ) + .32826

Φ13(B) = .01935(B4 + F 4) + .10526(B3 + F 3) + .30495(B2 + F 2) + .60014(B + F ) + .82520

Φ15(B) = .01373(B5 + F 5) + .07942(B4 + F 4) + .24943(B3 + F 3)

+ .55209(B2 + F 2) + .93283(B + F ) + 1.19115

Φ17(B) = .00996(B6 + F 6) + .06021(B5 + F 5) + .19972(B4 + F 4)

+ .47500(B3 + F 3) + .89046(B2 + F 2) + 1.35820(B + F ) + 1.64924

Φ23(B) = .00428(B9 + F 9) + .02803(B8 + F 8) + .10214(B7 + F 7) + .27202(B6 + F 6) + .58803(B5 + F 5)

+ 1.08709(B4 + F 4) + 1.76721(B3 + F 3) + 2.55807(B2 + F 2) + 3.29197(B + F ) + 3.67926

Thus for the output-matching paradigm, the signal and noise spectra are

fU (λ) = H2(e−iλ)fW (λ)

fV (λ) = Φp(e−iλ)
(
1 + H(e−iλ)

)
fW (λ).

For the WK paradigm (noting that the frequency response of H(B) is always non-negative), the

spectra are

fU (λ) = H(e−iλ)fW (λ)

fV (λ) = Φp(e−iλ)fW (λ).

3.3 Ideal Low-Pass and Band-Pass

Next we discuss the ideal low-pass filter given by

Ψ(e−iλ) = 1[−ω,ω](λ),

with ω ∈ (0, π). Note that we are no longer in the class of ARIMA-type filters, which are rational

functions in B and F . Now the signal is obviously a trend, and we can let δS(B) = (1−B)d for

any desired d, since

Φ(e−iλ) =
1−Ψ(e−iλ)

|1− e−iλ|2d
= 1[−ω,ω]c(λ)|1− e−iλ|−2d

,

which is a bounded function of λ since the pole of the differencing operator is multiplied by the

value zero. Moreover, the noise differencing operator can consist of practically anything whose
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zeroes all lie on the unit circle at angles between ω and π. Letting δN (B) denote such an operator,

we have

Γ(e−iλ) =
Ψ(e−iλ)

|δNe−iλ|2
= 1[−ω,ω](λ)|δN (e−iλ)|−2

,

which again is a bounded function. Now we can compute the needed spectra, which turn out to be

identical for both paradigms.

fU (λ) = 1[−ω,ω](λ)|δN (e−iλ)|−2
fW (λ)

fV (λ) = 1[−ω,ω]c(λ)|1− e−iλ|−2d
fW (λ),

noting that Ψ2(e−iλ) = Ψ(e−iλ), etc. The autocovariances are found by numerical integration as

follows:

γU (h) =
1
2π

∫ ω

−ω
|δN (e−iλ)|−2

fW (λ)eiλh dλ

γV (h) =
1
2π

∫

[−ω,ω]c
|1− e−iλ|−2d

fW (λ)eiλh dλ

A simple adjustment of these ideas allows us to handle the band-pass filter as well. So now

Ψ(e−iλ) = 1A∪−A(λ), where A ⊂ (0, π]. The signal can be nonstationary, with operator δS(B) with

zeroes on the unit circle with angles lying only in A ∪ −A; similarly δN (B) can be any operator

with zeroes on the unit circle with angles only in Ac∩ (−A)c. The formulas for the autocovariances

are then

γU (h) =
1
2π

∫

A∪−A
|δN (e−iλ)|−2

fW (λ)eiλh dλ

γV (h) =
1
2π

∫

Ac∩(−A)c
|δS(e−iλ)|−2

fW (λ)eiλh dλ.

3.4 Seasonal Adjustment

We consider the scenario of seasonal adjustment, where the nonstationary operators are U(B) =

1 + B + · · ·+ B11 for the seasonal (for monthly data) and (1−B)m for the trend, where m = 1, 2

for I(1) or I(2) trends. We use the output-matching paradigm, although the WK paradigm could

be used for the second filter below.

SA for I(1) trend First suppose that our given generic seasonal adjustment filter is

µ(B) =
1
24

U(B)(1 + B)F 6,

which is known in the X-11 literature as the 2 × 12 trend filter, or “crude trend” filter. Letting

Ψ(B) = µ(B), we immediately see that Ψ(e−iλ) ≤ 1, but the function is actually negative (though

greater than negative one) at some frequencies. In any case Ψ2(e−iλ) ≤ 1, so that (3) is satisfied.
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So U(B) is the obvious candidate for noise differencing operator δN (B); we could include the 1+B

factor in δN (B) as well, since it has unit roots, but that would imply that the frequency π seasonal

unit root occurs twice in the pseudo-spectrum, whereas the other seasonal unit roots only occur

once. This would seem to be a strange scenario, so it is more natural to let δN (B) = U(B). Thus

Γ(B) = (1 + B)/24. Now we have

1−µ(B) =
1
24

(1−B)(1−F )
(
F 5 + 4F 4 + 9F 3 + 16F 2 + 25F + 36 + 25B + 16B2 + 9B3 + 4B4 + B5

)

so that the natural signal differencing operator is δS(B) = 1−B, which is associated with an I(1)

trend. Thus we have

Φ(B) =
(
F 5 + 4F 4 + 9F 3 + 16F 2 + 25F + 36 + 25B + 16B2 + 9B3 + 4B4 + B5

)
/24,

which allows us to define fU and fV :

fU (λ) =
|1 + e−iλ|2

576
fW (λ)

fV (λ) = Φ(e−iλ)
(

1 +
U(e−iλ)(1 + e−iλ)

24

)
fW (λ).

From here any desired matrix smoothers can be generated.

SA for I(2) trend Alternatively, consider the seasonal adjustment filter

ν(B) =
1

144
U(B)U(F ).

So that we can encompass an I(2) trend, we set Ψ(B) equal to 1 − ν(B), so that the signal is

the seasonal and the noise is the trend. Since (1−B)2 divides Ψ(B) (shown below), we have

δN (B) = (1−B)2. Likewise,

1−Ψ(B) = ν(B) = δS(B)δS(F )/144

with δS(B) = U(B). In this case, Φ(B) = 1/144. In addition,

Ψ(B)
(1−B)(1− F )

=
a(B)a(F )− c(B)c(F )

144

a(z) = z9 + 3z8 + 6z7 + 10z6 + 15z5 + 21z4 + 28z3 + 36z2 + 45z + 55

c(z) = z10 + 2z9 + 3z8 + 4z7 + 5z6 + 6z5 + 7z4 + 8z3 + 9z2 + 10z + 11.

Since 1− F = −F (1−B), this clearly implies that (1−B)2 divides 1− ν(B), as claimed. Hence

Γ(B) = − B

144
(a(B)a(F )− c(B)c(F )) ,

which has no poles on the unit circle (interpreting F as 1/B). Then the implied spectra are

fU (λ) =

(
|a(e−iλ)|2 − |c(e−iλ)|2

)2

124 fW (λ)

fV (λ) =
1

122

(
2− |U(e−iλ)|2

122

)
fW (λ).

12



3.5 Seasonal Estimation

Here we consider the various seasonal moving averages of X-11, i.e., the 3 × p filters where p =

3, 5, 7, 9. Let νj(B) = 1
j

B12j−1
B12−1

B−12(j+1)/2, so that

λp(B) = ν3(B)νp(B)

is the 3× p seasonal filter, by definition. Note that p is always an odd integer. We use the notation

λp for the filter, following the treatment of Bell and Monsell (1992); this should not be confused

with the frequency argument λ. Now νj(B) has all of its many roots on the unit circle; indeed,

letting Z = B12, we know that Zj − 1 has all 12j roots located at the 12jth roots of unity, i.e.,

eiπk/(12j) for k = 1, · · · , 12j, so that (Zj − 1)/(Z − 1) has roots of the form eiπk/(12j) for k’s that

are not a multiple of j. Letting gk denote the kth cyclotomic polynomial (the monic polynomial

with zeroes given by the distinct k roots of unity), we have the following by Proposition 8.2 of

Hungerford (1974):

Z3 − 1
Z − 1

= g9(B) g18(B) g36(B)

Z5 − 1
Z − 1

= g5(B) g10(B) g15(B) g20(B) g30(B) g60(B)

Z7 − 1
Z − 1

= g7(B) g14(B) g21(B) g28(B) g42(B) g84(B)

Z9 − 1
Z − 1

= g9(B) g18(B) g27(B) g36(B) g54(B) g108(B).

The first few cyclotomic polynomials are given by g1(x) = x− 1, g2(x) = x + 1, g3(x) = x2 + x + 1,

and g4(x) = x2 + 1; the others can be determined recursively if desired. So these seasonal filters

λp suppress various frequencies of the type eiπk/36 and eiπk/(12p), with k such that the seasonal

frequencies eiπj/12 (with j = 1, · · · , 6) are not suppressed. Since there is no natural nonstationary

noise process to associate to these unit roots, we will generally suppose that the noise (i.e., the

nonseasonal) is stationary.

Set Ψ(B) = λp(B). We first consider the output-matching paradigm, noting that νj(e−iλ) is

always bounded above by one, but may be negative (but never less than negative one). We must

determine the signal differencing operator by examining 1−Ψ(B). Now

1− λp(B) = (1− ν3(B)) + ν3(B)(1− νp(B))

1− ν2q+1(B) = −(1− Z)2
Z−q

2q + 1

(
Z2q−2 + 3Z2q−3 + 6Z2q−4 + · · ·+

(
q + 1

2

)
Zq−1 + · · ·+ 3Z + 1

)
,

from which it is seen that (1− Z)2 divides 1 − λp(B). Hence δS(B) = (1 − B12), which implies

that the signal is not just seasonal, but can have an I(1) trend as well (if we are only interested in

situations where the seasonal filter is applied to nontrending data, then we can let δS(B) = U(B)).
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Then we can compute Φ(B) as follows:

Φ(B) =
1
3

+ ν3(B)

∑q+1
j=2

(
j
2

)
Zq+1−j +

∑q
j=2

(
j
2

)
Z−q+j−1

2q + 1
.

Hence the implied spectra are

fU (λ) = |λp(e−iλ)|2fW (λ)

fV (λ) = Φ(e−iλ)
(
1 + λp(e−iλ)

)
fW (λ).

Now considering the WK paradigm, we still have δN (B) = 1 and δS(B) = 1− Z. In this case the

implied spectra are

fU (λ) = |λp(e−iλ)|fW (λ)

fV (λ) =
1 + λp(e−iλ)
1 + |λp(e−iλ)|Φ(e−iλ)fW (λ).

4 Recasting X-11

Recasting the X-11 filters for seasonal adjustment, trend, and irregular components is an important

application of this work. However, a direct approach fails because none of these X-11 filters have

frequency response function bounded between −1 and 1. Nevertheless it is possible to proceed, as

the various component filters (i.e., the Henderson trend, the 2× 12, and the seasonal moving aver-

ages) do satisfy the necessary properties, as demonstrated in subsections 3.2, 3.4, and 3.5. We begin

with the basic definition of the X-11 filters in 4.1, and how they arise from a sequential or iterative

approach to signal extraction. In 4.2 we derive the recasted filters, using this iterative approach.

We then obtain implied spectral densities for the seasonal, trend, and irregular components, using

the output-matching paradigm. Then in 4.3 we apply the method to a seasonal time series (with

regression effects removed), and explicitly construct the matrix smoothers for its components.

4.1 X-11 as an Iterative Filtration

The general philosophy behind X-11 is that we first obtain a crude trend estimate, subtract this

from the data; what is left consists of seasonal and irregular, and whatever is left of the trend

(since we have crudely detrended). Then the next step is to apply a seasonal filter, which however

assumes that only seasonal and irregular dynamics are present, effectively ignoring residual trend

behavior. This in turn (after some renormalization) is subtracted from the data, resulting in a

first estimate of the deseasonalized data. There is some seasonality leftover, since the first round

of seasonal adjustment will not be perfect; therefore the whole process can be repeated. This

iteration scheme could be carried on indefinitely, but in X-11 it is only repeated once, and in the

second iteration different filters can be used to do the trend and seasonal estimation parts of the
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algorithm. Detailed references on this procedure include: Shiskin, Young, and Musgrave (1967),

Shiskin (1978), and Ladiray and Quenneville (2001); also see Bell and Hillmer (1984) for a historical

discussion. Following the notation of Bell and Monsell (1992), we let µ denote the 2 × 12 “crude

trend” filter, λp the 3× p seasonal filter, and Hq will be the Henderson trend of order q. Then the

seasonal filter ωS is defined via

ωS = (1− µ)λp2 [1−Hq (1− (1− µ)λp1(1− µ))] ,

where the juxtaposition of filters is interpreted as polynomial multiplication, since each filter is a

polynomial in B. The seasonal adjustment filter ωN , or nonseasonal filter, is

ωN = 1− ωS .

The trend and irregular filters are then given by

HqωN (1−Hq)ωN

respectively, by definition. The notation for the four components is Seasonal (S), Nonseasonal (N),

Trend (T), and Irregular (I). So the estimate of S is given by ωSY , and the estimate of N is given

by ωNY .

By the output-matching approach to recasting, we should define the components by multiplying

fY by the squared gain of ωN , ωS , etc. As mentioned previously, this direct approach fails because

the squared gains of these X-11 filters are not bounded between zero and one. Instead, we replace

the frequency response function of each constituent filter, i.e., µ, λp, and Hq, by its squared gain

function. A heuristic justification for this procedure is given in the Appendix. Hence the implied

pseudo-spectra for S, N , T , and I are obtained by replacing each constituent filter in the frequency

response functions of the composite filters ωS , ωN , HqωN , and (1−Hq)ωN by their squared mag-

nitudes. That is – suppressing the frequency argument of the functions for clarity of presentation

–

fS = (1− µ2)λ2
p2

[
1−H2

q

(
1− (1− µ2)λ2

p1

(
1− µ2

))]
fY (11)

fN =
{
1− (1− µ2)λ2

p2

[
1−H2

q

(
1− (1− µ2)λ2

p1

(
1− µ2

))]}
fY

fT = H2
q

{
1− (1− µ2)λ2

p2

[
1−H2

q

(
1− (1− µ2)λ2

p1

(
1− µ2

))]}
fY

fI = (1−H2
q )

{
1− (1− µ2)λ2

p2

[
1−H2

q

(
1− (1− µ2)λ2

p1

(
1− µ2

))]}
fY .

Finally, we note that all of the constituent filters µ, λp, and Hq have squared magnitude bounded

between 0 and 1, and hence the same property is true of one minus the squared gain function. So by

using recursion, we see that each of the four pseudo-spectra given above is equal to fY multiplied

by a function bounded between zero and one. We next determine the Γ(B) and Φ(B) filters for

each component, as defined in 2.1.
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The seasonal component should have all trend nonstationarity removed. Now 1− e−iλ can be

factored out of 1−H2
q (e−iλ) four times and out of 1− µ2(e−iλ) twice. Since we can write

fS = (1− µ2)λ2
p2

[
(1−H2

q ) + H2
q (1− µ2)2λ2

p1

]
fY ,

we see that a total of six factors of 1−e−iλ can be pulled out. Therefore we can set δT (B) = (1−B)d

with d = 0, 1, 2, 3 as the noise differencing operator; then

Γ2
S(e−iλ) =

{
(1− µ2)λ2

p2

[
(1−H2

q ) + H2
q (1− µ2)2λ2

p1

]}
(e−iλ)

|1− e−iλ|2d
,

where this is a bounded function. We can determine Φ(B) by examining the nonseasonal compo-

nent; it should have U(B) as a noise differencing operator. By manipulation we obtain

fN = (1− λ2
p2

) + µ2λ2
p2

(1−H2
q ) + λ2

p2
H2

q (1− λ2
p1

) + µ2(3− 3µ2 + µ4)λ2
p1

λ2
p2

H2
q .

The first and third terms each admit two factors of 1− e−i12λ (see 3.5); the second term has two

factors of U(e−iλ) and four factors of 1 − e−iλ, which come from the µ2 and 1 −H2
q respectively.

The fourth term has two factors of U(e−iλ), but no factors of 1− e−iλ. Hence the noise differencing

operator is δS(B) = U(B)D with D = 0, 1. Thus

Γ2
N (e−iλ) =

{(1− λ2
p2

) + µ2λ2
p2

(1−H2
q ) + λ2

p2
H2

q (1− λ2
p1

) + µ2(3− 3µ2 + µ4)λ2
p1

λ2
p2

H2
q }(e−iλ)

|U(e−iλ)|2D
,

which is a bounded function. The trend component’s pseudo-spectrum is just H2
q times that of

the nonseasonal. For the irregular, the differencing operator must combine U(B)D and (1−B)d.

However, since the irregular pseudo-spectrum is 1−H2
q times the nonseasonal’s pseudo-spectrum,

we see that d ≤ 2 must hold. That is, the implied model for the nonseasonal is consistent with I(3)

data, but then the irregular will not be stationary; we must restrict to at most an I(2) process.

Letting

Γ2
I(e

−iλ) =
1−H2

q (e−iλ)

|1− e−iλ|2d
,

we can explicitly write down the spectra for the differenced components US , UN , UT , and I:

fUS (λ) = Γ2
S(e−iλ)fW (λ) (12)

fUN (λ) = Γ2
N (e−iλ)fW (λ)

fUT (λ) = H2
q (e−iλ)Γ2

N (e−iλ)fW (λ)

fI(λ) = Γ2
I(e

−iλ)Γ2
N (e−iλ)fW (λ).

We note that these Γ functions are all polynomials in B and F , which facilitates calculating es-

timates of the autocovariance functions. They depend crucially on the choices of d = 0, 1, 2 and
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D = 0, 1 (though in practice D = 1 and d = 1, 2 are the most common possibilities). Note that our

notation for d and D differs from that used for SARIMA models. For an illustration consider Figure

1, which depicts the form of the implied spectra for seasonal, nonseasonal, trend, and irregular.

The plotted functions can be multiplied by the data’s true pseudo-spectrum to obtain the spectra

for the components; these are the Ψ2(e−iλ) functions found implicitly in (11). Alternatively, one

obtains these functions by dividing each Γ2 in (12) by the appropriate differencing operator, but

the first view-point is more informative. Note that the functions are bounded between zero and

one as planned, and have the “right” spectral shapes. It is interesting that “non-seasonality” in

the nonseasonal and irregular components is indicated by spectral troughs at seasonal frequencies,

rather than just monotonic behavior. Figure 1 considers p1 = 3, p2 = 5, and q = 17; figure 2

considers the case p1 = 3, p2 = 9, and q = 9.

4.2 X-11 Matrix Smoothers

We now describe the details of implementing X-11 matrix smoothers. The key is to determine the

functions Γ2
S(B), Γ2

N (B), and Γ2
I(B), which are polynomials in B and F . Based on the calculations

in 4.2, we have the following formulas:

Γ2
S(B) = |1−B|6−2d(1 + µ(B))Φµ(B)λ2

p2
(B)

[
(1 + Hq(B))Φq(B) + H2

q (B)(1 + µ(B))2(Φµ(B))2λ2
p1

(B)
]

Γ2
N (B) = |U(B)|2−2D(|1−B|2 [

(1 + λp2(B))Φp2(B) + (1 + λp1(B))Φp1(B)λ2
p2

(B)H2
q (B)

]

+ 24−2|1 + B|2λ2
p2

(B)
[
1−H2

q (B) +
(
3− 3µ2(B) + µ4(B)

)
λ2

p1
(B)H2

q (B)
]
)

Γ2
I(B) = |1−B|4−2dΦq(B)(1 + Hq(B)).

The following notations are used in the above formulas:

Φµ(B) =
(
F 5 + 4F 4 + 9F 3 + 16F 2 + 25F + 36 + 25B + 16B2 + 9B3 + 4B4 + B5

)
/24

Φq(B) =
1−Hq(B)
|1−B|2

Φp(B) =
1
3

+ ν3(B)

∑(p+1)/2
j=2

(
j
2

)
B12([p+1]/2−j) +

∑(p−1)/2
j=2

(
j
2

)
F 12([p+1]/2−j)

p
.

The explicit formulas for Φq(B) for various q are given in 3.2. In order to compute the autocovari-

ance matrices needed for the matrix smoothers (see Section 2.3 for formulas), we must determine

Σ(f eih·) for various h, and for f equal to fUS , fUN , fUT , and fI . In implementation, it is easiest to

create a large-dimension Σ(f) matrix, recognizing that various submatrices will then correspond to

Σ(feih·). In this way all the quadratic form estimates of the autocovariances are easily obtained,

and the matrix smoothers (as well as the MSE matrices) are obtained via plugging into the formu-

las. As an illustration of the techniques, we examine U.S. Retail Sales of Shoe Stores data from

the monthly Retail Trade Survey of the Census Bureau (with regression effects such as trading
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day removed), from 1984 to 1998, which will be referred to as the Shoe series. The auto-model

procedure of X-12-ARIMA indicates that d = 2, D = 1 for this series (which is quite common

for seasonal data at the U.S. Census Bureau; see Findley, Monsell, Bell, Otto, and Chen (1998)),

whereas ACF and PACF plots indicate d = 1, D = 1 instead. Of course, both d = 1 and d = 2

are accommodated by the X-11 filters, in the sense that the seasonal and irregular filters contain

four nonseasonal differencings (see the discussion in Section 4.2).

So in this manner we can obtain estimates of Σ(fUS ), Σ(fUN ), Σ(fUT ), and Σ(fI). More

properly speaking, we have estimates of their autocovariance functions, which are consistent for

the true values under the assumptions of our approach. It is then a simple matter to produce

the corresponding matrix smoothers, and apply these to the data. Focusing on the WK matrix

smoother, we present the estimated components with MSEs in Figures 3, 4, 5, and 6 for Nonseasonal,

Trend, Seasonal, and Irregular respectively. There is little visible difference between taking d = 1

or d = 2, which is reassuring. There are some differences between the first and second component

estimates; “first” refers to the choice considers p1 = 3, p2 = 5, and q = 17, and “second” refers to

p1 = 3, p2 = 9, and q = 9. As expected, the first trend is smoother (since a longer Henderson is

used) than the second. For the other components, it is difficult to detect any visible discrepancies.

The MSEs are of course time-varying, and characteristically rise at the boundaries of the sample.

These plots are provided for Nonseasonal and Trend, recognizing that the MSE matrix is the same

for Nonseasonal and Seasonal (the Irregular MSEs are not shown, but are easily computed like the

others). The procedure was implemented in R (R Development Core Team, 2005), and runs took

about a second for the shoe series.

4.3 Comparisons to X-11 Filters

Given that we can construct the above X-11 matrix smoother, how close is the approximation?

The X-11 filter is a single symmetric filter, whereas our method constructs a bank of time-varying

filters; thus some careful thought is needed in order to make apt comparisons. We propose two:

(1) compare the frequency response functions, and (2) compare estimated components on several

series.

For the first comparison, we note that the implied spectra for the components can be used

to construct a WK filter, simply by taking the ratio of signal to data. In a rough sense, this is

the frequency response function of the X-11 matrix smoother – though a more exact frequency

response function could be determined for each time point, and would depend on the estimated

spectrum of the data. In order to have a single graphical comparison, we choose this WK approach

to determining a frequency response function. For Nonseasonal, Seasonal, Trend, and Irregular we
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have

fN (λ)
fY (λ)

= Γ2
N (e−iλ) |U(e−iλ)|2D

fS(λ)
fY (λ)

= Γ2
S(e−iλ) |1− e−iλ|2d

fT (λ)
fY (λ)

= H2
q (e−iλ)Γ2

N (e−iλ) |U(e−iλ)|2D

fI(λ)
fY (λ)

=
(
1−H2

q (e−iλ)
)

Γ2
N (e−iλ) |U(e−iλ)|2D

.

From Figures 7 and 8, we see that the match for seasonal and nonseasonal components is remark-

ably close for values between zero and one. For the trend and irregular there are some salient

discrepancies, and it is apparent that the X-11 matrix smoother does more smoothing. This effect

could be lessened by using Hq instead of H2
q in the formulas defining the components; since we are

mainly interested in the seasonal adjustments, we will not be concerned with the discrepancy for

the trend and irregular.

For the second comparison we consider the following seven time series: m00110, m00100, Shoe,

Emp, Hours, Order, and Starts. The first two time series are from the Foreign Trade Division of the

U.S. Census Bureau; the first series is Imports of Meat Products, and the second series is Imports

of Dairy Products and Eggs. Both of these series are for the time period from January 1989 to

December 2003. The Shoe series is described above. The fourth series refers to Employed Males,

aged 16 to 19, covering the period January 1976 through October 2006. The Hours series title is

“Total private: Average Weekly Hours of Production Workers, NSA, Bureau of Labor Statistics”;

the Order series title is “Manufacturing: Nondefense Capital Goods: New Orders: Millions of

Dollars: NSA, Census Bureau”; and the Starts series title is “US Total New Privately Owned

Housing Units Started; Thousands; NSA, Census Bureau.”

All of these seven series were first adjusted for trading day and outlier effects using the X-

12-ARIMA program (Findley, Monsell, Bell, Otto, and Chen, 1998). The adjusted series were

then run through the X-11 matrix smoother, after a log transformation if required. The output

seasonal adjustments were then compared to those generated by the X-11-ARIMA method, which

uses forecast and backcast extension (see Findley et. al., 1998). We used two specifications:

p1 = 3, p2 = 5, q = 17 and p1 = 3, p2 = 9, q = 9. For the X-11 matrix smoother we also specified

d = 1, D = 1 for all the series (some series could arguably have used d = 2, but for purposes

of comparison the differencing parameters were held to be the same). Seasonal adjustments of

the same specification were compared by taking the average of the squared difference between

the components; these values are reported in Table 1. The last column of the table compares

the X-11-ARIMA seasonal adjustments for the two specifications, which gives a rough baseline

against which the other mean squares can be contrasted. In general, discrepancies between the

X-11 matrix smoother and X-11-ARIMA were a bit larger than the baseline, though generally of
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the same order of magnitude; only for the long series Start was the baseline mean square actually

larger. The results for these seven series indicate that in practice the seasonal adjustments coming

from the X-11 matrix smoother closely approximate those of X-11-ARIMA (generally, there was

more discrepancies at the boundaries of the sample, which is to be expected).

5 Conclusions

In conclusion, we have developed a nonparametric method for both extending X-11 filters to the

boundary as well as obtaining time-varying signal extraction MSEs. It is known that one can extend

a given bi-infinite filter to finite asymmetric filters via using forecast and backcast extensions of the

data. Our method is implicitly doing this, but with the forecasts determined by the differencing

polynomial and by the spectrum estimate of the differenced series. This nonparametric approach

has the practical advantage that it does not require the correct identification of a model, which is

a time-consuming and error-prone process. Within the context of seasonal adjustment at the U.S.

Census Bureau, there is some appeal to this non-MBA method of filter extension because of the

large numbers of series that must be seasonally adjusted.
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Appendix

A.1 Asymptotic Properties of Estimated Spectra

Here we discuss the asymptotic properties of the estimates γ̂(h) discussed in Section 2. If we are

using nonparametric estimates, then γ̂(h) is given by

γ̂(h) =
1

n− d
W

′
Σ(g)W =

1
2π

∫ π

−π
g(λ)f̂W (λ) dλ.

Here g is a bounded (possibly complex) function, and f̂W denotes the continuous-argument peri-

odogram. The model-based estimate is given by

γ̂(h) =
1
2π

∫ π

−π
g(λ)fW (λ; θ̂) dλ.

We have in mind that the function fW (·; θ) belongs to a model class MΘ, where the parameters

θ belong to a parameter space Θ with compact closure. We give two consistency results for these

estimates. For the nonparametric case, some mild conditions on the data are required for the

asymptotic theory; we follow the material in Taniguchi and Kakizawa (2000, Section 3.1.1). Condi-

tion (B), due to Brillinger (1981), states that the process is strictly stationary and condition (B1)
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of Taniguchi and Kakizawa (2000, p. 55) holds. Condition (HT), due to Hosoya and Taniguchi

(1982), states that the process has a linear representation, and conditions (H1) through (H6) of

Taniguchi and Kakizawa (2000, pp. 55 – 56) hold.

Theorem 1 (Theorem 1 of McElroy (2006). ) Suppose that
∑

h |h||γg(h)| < ∞. If the third and

fourth cumulants of Wt are zero, then the mean and variance of Q(W ) = W
′
Σ(g)W/(n − d) are

given by

EQ(W ) =
1

n− d
tr(Σ(g)Σ(fW )) (A.1)

V arQ(W ) =
2

(n− d)2
tr

(
(Σ(g)Σ(fW ))2

)

where tr denotes the trace of a matrix. Moreover, the mean and variance have the following limiting

behavior as n →∞:

EQ(W ) → 1
2π

∫ π

−π
g(λ) fW (λ) dλ

nV arQ(W ) → 2
2π

∫ π

−π
g2(λ) f2

W (λ) dλ.

Also, if the process {Wt} satisfies either condition (B) or (HT), then as n →∞:

√
n

(Q(W )− EQ(W ))√
nV arQ(W )

L=⇒ N (0, 1).

Remark 1 The results for the mean EQ(W ) hold even when the cumulant condition is not satisfied.

So for non-linear non-Gaussian processes, we can still have consistency so long as (B) or (HT) are

satisfied.

For the model-based case, we suppose that θ0 is the true parameter, in the sense that the differenced

data have spectral density fW (·; θ0). Given that θ̂ is a consistent estimate of θ0, then consistency of

the autocovariance estimates follows from a simple continuity condition on the spectra: we suppose

that fW (·; θ) is uniformly continuous for all θ in a sufficiently small neighborhood of θ0, where θ0

is in the interior of Θ. This will be referred to as condition (C).

Theorem 2 Suppose that g is uniformly bounded and (C) holds. Then

γ̂(h) P−→ γ(h).

Remark 2 Asymptotic theory for parameter estimates can be found in Taniguchi and Kakizawa

(2000); various conditions on the data process sufficient to guarantee parameter consistency are

discussed therein. We impose that θ0 is in the interior of Θ so that unit roots (which create a pole

in fW ) are avoided.
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Proof of Theorem 2. We have

|γ̂(h)− γ(h)| ≤ 1
2π

∫ π

−π
|g(λ)| |fW (λ; θ̂)− fW (λ; θ0)| dλ.

We can bound g by its supremum, and supλ |fW (λ; ·)− fW (λ; θ0)| is a continuous function. So the

result follows from the consistency of θ̂. 2

A.2 Heuristic Justification for X-11 Approximation

We present an iteration scheme for X-11 that differs somewhat from the usual approach (Bell and

Kramer, 1996), since generally the order of components is T, I, S, and N. For the methodology

pursued in the next subsection, it is more convenient to adopt the order S, N, T, and I. We initialize

the algorithm with T 0 = Y .

1. S1 = (1− µ)λp0

(
Y − T 0

)
: crude seasonal

2. N1 = Y − S1: crude nonseasonal

3. T 1 = µN1: crude trend

4. I1 = (1− µ)N1: crude irregular

5. S2 = (1− µ)λp1

(
Y − T 1

)
: refined seasonal

6. N2 = Y − S2: refined nonseasonal

7. T 2 = HqN
2: refined trend

8. I2 = (1−Hq)N2: refined irregular

9. S3 = (1− µ)λp2

(
Y − T 2

)
: final seasonal

10. N3 = Y − S3: final nonseasonal

11. T 3 = HqN
3: final trend

12. I3 = (1−Hq)N3: final irregular

So there are twelve steps, involving three iterations of a 4-step loop, although the first two steps

are trivial (but are placed here for cohesion of presentation). Moreover, steps 4 and 8 are not

calculated in practice, since they are not required for subsequent computations; they are included

here in order to make the iterative pattern more clear. It is easy to see that steps 1 through 4 are

essentially updated in steps 5 through 8, and again in steps 9 through 12. Also we see that ωS

and ωN are the composite filters that result from the iteration, so that S3 = ωSY and N3 = ωNY .
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This scheme also allows us to see how the iterations could be continued, if desired. Letting θk and

νk denote the trend and seasonal filters used in the kth iteration, we have

Sk+1 = (1− µ)νk

(
Y − T k

)

Nk+1 = Y − Sk+1

T k+1 = θk Nk+1

Ik+1 = (1− θk) Nk+1.

Note that µ appears in the first step; the fact that θ0 = µ is coincidental, as it were. Since µ

involves an averaging over 13 consecutive months, 1−µ has the effect of recentering the “preliminary

seasonal” component P so that it sums to zero over any annual period. The pre-seasonal component

P is only an artifice we use in our analysis, and does not appear in the X-11 procedure explicitly.

It is defined by P k+1 = νk

(
Y − T k

)
, so that Sk+1 = (1 − µ)P k+1. The key principle for our

approach, is to view the iterative steps above as defining true components rather than estimates.

More precisely, for any fixed integer k we have the following relations by assumption:

Y = T k ⊕ Sk ⊕ Ik = P k ⊕ (Y − P k),

where ⊕ indicates that the summands are orthogonal, in the sense that their pseudo-spectra add

up to the pseudo-spectrum of the data process. Now we also have Nk = T k ⊕ Ik by definition. In

addition, there are certain estimating equations that tells us how the components are related:

P̂ k+1 = νk

(
Y − T k

)
(A.2)

N̂k+1 = Y − (1− µ)P k+1

T̂ k+1 = θkN
k+1.

We refer to (A.2) as a theoretical iteration scheme, since it relies at each step on a knowledge of

the true T k, P k, and Nk, in a cyclical fashion. Note that this iterative scheme does not involve

S or I; I is not needed, and it is more convenient to work with P than S. If we were to plug in

estimates for T , P , and N on the right hand side of (A.2), we obtain the real iteration scheme

described in Section 4.1. So the viewpoint is that the X-11 algorithm is obtained by plugging in

previous estimates into a recursive relation of components.

Now letting fX denote the pseudo-spectra of the process X, the third equation in (A.2) implies

that fbT k+1 = θ2
kfNk+1 . Here we are suppressing the frequency argument in the spectra – θ2

k is the

magnitude squared of the frequency response function of θk(B). This abuse of notation will be

suffered so as not to clutter the subsequent derivations. Next, N̂k+1 = (Y −P k+1)⊕µP k+1 so that

f bNk+1 = fY−P k+1 + µ2fP k+1 = fY − (1− µ2)fP k+1 .
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This follows from the assumption that Y = P k+1 ⊕ (Y − P k+1), so that fY = fP k+1 + fY−P k+1 .

Finally,

f bP k+1 = ν2
kfY−T k = ν2

k (fY − fT k) ,

which uses Y = T k ⊕ (Y − T k). We emphasize that these relations hold for the idealized iteration

scheme. Now applying the output-matching recasting method of 2.1 yields

fP k+1 = f bP k+1 = ν2
k (fY − fT k)

fNk+1 = f bNk+1 = fY − (1− µ2)fP k+1

fT k+1 = fbT k+1 = θ2
kfNk+1 ,

where the first equalities are really definitions. That is, the pseudo-spectra for the (k+1)th iterates

of P , N , and T are defined to be the same as the pseudo-spectra of the corresponding component

estimates in the theoretical iteration scheme. Now we can iteratively determine the implied pseudo-

spectra for the components, with interest focusing on k = 2. We initialize with fT 0 = fY as in the

X-11 algorithm, so we recursively obtain

fP 1 = 0

fN1 = fY

fT 1 = θ2
0fY

fP 2 = ν2
1

(
1− θ2

0

)
fY

fN2 =
[
1− (1− µ2)ν2

1

(
1− θ2

0

)]
fY

fT 2 = θ2
1

[
1− (1− µ2)ν2

1

(
1− θ2

0

)]
fY

fP 3 = ν2
2

[
1− θ2

1

(
1− (1− µ2)ν2

1

(
1− θ2

0

))]
fY

fN3 =
{
1− (1− µ2)ν2

2

[
1− θ2

1

(
1− (1− µ2)ν2

1

(
1− θ2

0

))]}
fY

fT 3 = θ2
2

{
1− (1− µ2)ν2

2

[
1− θ2

1

(
1− (1− µ2)ν2

1

(
1− θ2

0

))]}
fY .

Moreover, since Y = N3 ⊕ S3 and N3 = T 3 ⊕ I3, we obtain

fS3 = (1− µ2)ν2
2

[
1− θ2

1

(
1− (1− µ2)ν2

1

(
1− θ2

0

))]
fY

fI3 = (1− θ2
2)

{
1− (1− µ2)ν2

2

[
1− θ2

1

(
1− (1− µ2)ν2

1

(
1− θ2

0

))]}
fY .

Now in the X-11 procedure, we have ν1 = λp1 , ν2 = λp2 , θ0 = µ, θ1 = θ2 = Hq. Hence the

implied pseudo-spectra for S3, N3, T 3, and I3 are obtained by replacing each constituent filter in

the frequency response functions of the composite filters ωS , ωN , HqωN , and (1−Hq)ωN by their

squared magnitudes. Making this substitution, and writing S for S3, T for T 3, etc., we obtain

(11).
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Table 1. Comparisons of Seasonal Adjustments

MS Comparisons

Series Spec 1 Spec 2 Baseline

m00100 .000976 .001207 .000208

m00110 .000647 .000608 .000375

emp .0000637 .0000602 .0000219

hours .00434 .00391 .00047

order .000114 .000118 .000050

start 3.296 1.128 5.110

shoe .0000625 .0000779 .0000574

Table 1: Empirical mean square differences between the seasonal adjustments. Spec 1 compares
the X-11 matrix smoother with the X-11-ARIMA method, using p1 = 3, p2 = 5, and q = 17. Spec
2 compares the X-11 matrix smoother with the X-11-ARIMA method, using p1 = 3, p2 = 9, and
q = 9. Baseline compares the X-11-ARIMA method to itself with the two different specifications.
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Figure 1: Squared gain functions defining the seasonal, nonseasonal, trend, and irregular compo-
nents for the X-11 method, with p1 = 3, p2 = 5, and q = 17.
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Figure 2: Squared gain functions defining the seasonal, nonseasonal, trend, and irregular compo-
nents for the X-11 method, with p1 = 3, p2 = 9, and q = 9.
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Logged Data with Seasonal Adjustments
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Figure 3: Estimated nonseasonal (SA) components, plotted with the logged data. Left panels are
with d = 1, right panels with d = 2. Upper panels are for component estimates, bottom panels for
corresponding MSEs. First SA refers to X-11 method with p1 = 3, p2 = 5, and q = 17; second SA
refers to X-11 method with p1 = 3, p2 = 9, and q = 9.
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Logged Data with Trends
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Figure 4: Estimated trend components, plotted with the logged data. Left panels are with d = 1,
right panels with d = 2. Upper panels are for component estimates, bottom panels for corresponding
MSEs. First trend refers to X-11 method with p1 = 3, p2 = 5, and q = 17; second trend refers to
X-11 method with p1 = 3, p2 = 9, and q = 9.
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Figure 5: Estimated seasonal components. Left panels are with d = 1, right panels with d = 2.
(MSEs are the same as for the SA.) First seasonal refers to X-11 method with p1 = 3, p2 = 5, and
q = 17; second seasonal refers to X-11 method with p1 = 3, p2 = 9, and q = 9.
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Irregulars
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Figure 6: Estimated irregular components. Left panels are with d = 1, right panels with d = 2.
First irregular refers to X-11 method with p1 = 3, p2 = 5, and q = 17; second irregular refers to
X-11 method with p1 = 3, p2 = 9, and q = 9.
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Figure 7: Frequency response functions for nonseasonal, seasonal, trend, and irregular components.
In black is f.r.f for X-11 method, and in blue is f.r.f for WK approximation of X-11 matrix smoother
(see section 4.4). Used p1 = 3, p2 = 5, and q = 17.
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Figure 8: Frequency response functions for nonseasonal, seasonal, trend, and irregular components.
In black is f.r.f for X-11 method, and in blue is f.r.f for WK approximation of X-11 matrix smoother
(see section 4.4). Used p1 = 3, p2 = 9, and q = 9.
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