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Abstract 

 
This paper provides a mechanism for automatically 
estimating record linkage false match rates in situations 
where the subset of the true matches is reasonably well 
separated from other pairs and there is no training data.  
The method provides an alternative to the method of 
Belin and Rubin (JASA 1995) and is applicable in more 
situations.  We provide examples demonstrating why 
the general problem of error rate estimation (both false 
match and false nonmatch rates) is likely impossible in 
situations without training data and exceptionally 
difficult even in the extremely rare situations when 
training data are available. 
 
Keywords: EM algorithm, unsupervised and semi-
supervised learning 
 

1.  Introduction 
 
   Record linkage is the science of finding matches or 
duplicates within or across files.  Matches are typically 
delineated using name, address, and date-of-birth 
information.  Other identifiers such as income, 
education, and credit information might be used.  With a 
pair of records, identifiers might not correspond exactly.  
For instance, income in one record might be compared 
to mortgage payment size using a crude regression 
function.     
   In the model of record linkage due to Fellegi and 
Sunter (1969, hereafter FS), a product space A × B of 
records from two files A and B is partitioned into two 
sets matches M and nonmatches U.   Pairs in M 
typically agree on characteristics (quasi-identifiers) 
such as first name, last name, components of date-of-
birth, and address.  Pairs in U often have isolated 
(random) agreements of the characteristics.  We use γ = 
(γ1, γ2, …,γn ) to denote an arbitrary agreement pattern.  
For instance, γ might be agreement on first name, 
agreement on last name, and agreement on date-of-birth. 
    In the FS model, o btaining accurate estimates of the 
probabilities P(γ | M) and P(γ | U) are crucial to finding 
the best possible classification rules for separating 
matches M and nonmatches U.  The conditional 
independence assumption CI is that P(γ | C) = ∏i P(γi | 
C) where the set C can be either M or U.  Under CI, FS 
                                                 
  1 This report is released to inform interested parties of 
(ongoing) research and to encourage discussion (of 
work in progress).   

showed that it is possible to estimate P(γ | M) and P(γ | 
U) automatically without training data.  For situations in 
which identifying information among matches is 
reasonably good, Winkler (1988) showed how to 
estimate P(γ | M) and P(γ | U) using the EM algorithm.  
The EM algorithm can provide good (sometimes 
optimal) separation between M and U because its 
parameters can correspond to the form needed for the 
classification rule.  If assumption CI is not made, then a 
general EM (Winkler 1989, 1993, Larsen 1996) can 
provide parameters yielding better separation between 
M and U.   The advantage of less general EM under 
assumption CI is that it yields computational speed-ups 
of orders between 100 and 1,000 in contrast to methods 
that use dependencies between variables.   The 
disadvantage is that the CI EM yields probabilities that 
often do not correspond accurately to underlying truth at 
differing error-rate levels (Winkler 1993, Belin and 
Rubin 1995).   
   Winkler (2002, also Larsen and Rubin 2001) have 
demonstrated that, when small amounts of labeled data 
are combined with unlabeled data, parameter estimation 
and error-rate estimation can be improved.  The 
relatively small samples are chosen among pairs where 
it is difficult to make a classification (i.e., pairs are 
chosen near decision rule boundaries). 
  The real world situation is that small amounts of 
labeled data that are a representative subset of the set of 
pairs being matched are almost impossible to determine.  
This is particularly true when matching parameters 
differ significantly across geographic regions, the 
minimal sample sizes of training data must be at least 
500 pairs (less than 0.5% of pairs being matched), and 
the matching must be completed within a few days. 
   In this paper, we provide an unsupervised method for 
estimating false match rates.  We do this for situations 
in which a subset of matches can be delineated with 
relatively high accuracy by a simplistic application of 
CI record linkage.  We treat a subset of pairs above a 
certain score as ‘pseudo-true’ matches and a subset of 
pairs below another lower score as ‘pseudo-true’ 
nonmatches.  With this artificial ‘pseudo-truth’ set, we 
apply the semi-supervised learning to all pairs under 
various modeling assumptions.  In the best situation 
(i.e., most appropriate model), we obtain quite accurate 
estimates of the appropriate 30% tails of the curves of 
matches and nonmatches.  These curves can, in turn, 
yield reasonably accurate estimates of false match rates 
in several situations and accurate estimates of false 
nonmatch rates. 



   The outline for this paper is as follows.  In the second 
section, we cover background on the Fellegi-Sunter 
model, EM Algorithms and use of training data in semi-
supervised learning situations.  String comparators 
(Yancey 2005, Winkler 1990) break agreements of 
strings into five ranges corresponding to strong 
agreement, moderately strong agreement, weak 
agreement, missing (i.e., blank), and disagreement.  The 
breakout of partial agreement into five subgroups 
contrasts to the agree/disagree or agree/disagree/blank 
groups of the earlier work.  In the third section, we 
describe variants of the EM algorithm and the empirical 
data files on which we evaluate various models.  The 
fourth section provides results.  We give some 
discussion in the fifth section.  The final section is 
concluding remarks. 

 
2.  Background 

 
   Fellegi and Sunter (1969) provided a formal 
mathematical model for ideas that had been introduced 
by Newcombe et al. (1959, 1962, see also 1988).  They 
provided many ways of estimating key parameters.  To 
begin, notation is needed.  Two files A and B are 
matched.  The idea is to classify pairs in a product space 
A × B from two files A and B into M, the set of true 
matches, and U, the set of true nonmatches.  Fellegi and 
Sunter, making rigorous concepts introduced by 
Newcombe et al. (1959), considered ratios of 
probabilities of the form: 
 
      R =  P( γ∈ Γ | M) / P( γ ∈ Γ | U)                   (1)   
 
where γ is an arbitrary agreement pattern in a 
comparison space Γ.  For instance, Γ might consist of 
eight patterns representing simple agreement or not on 
the largest name component, street name, and street 
number.  Alternatively, each γ ∈ Γ might additionally 
account for the relative frequency with which specific 
values of name components such as "Smith", 
"Zabrinsky", "AAA", and "Capitol" occur.  The ratio R 
or any monotonely increasing function of it such as the 
natural log is referred to as a matching weight (or 
score). 
   The decision rule is given by: 
 
   If R  > Tμ, then designate pair as a match.         (2a) 
 
   If Tλ ≤ R ≤ Tμ, then designate pair as a possible match 
and hold for clerical review.                                 (2b) 
 
   If  R < Tλ, then designate pair as a nonmatch.   (2c) 
 
The cutoff thresholds Tμ and Tλ  are determined by a 
priori error bounds on false matches and false 

nonmatches.  Rule (2) agrees with intuition.  If γ∈ Γ 
consists primarily of agreements, then it is intuitive that 
γ∈ Γ would be more likely to occur among matches than 
nonmatches and ratio (1) would be large.  On the other 
hand, if γ∈ Γ consists primarily of disagreements, then 
ratio (1) would be small.  Rule (2) partitions the set γ ∈ 
Γ into three disjoint subregions.  The region Tλ ≤ R ≤ Tμ 
is referred to as the no-decision region or clerical 
review region.  In some situations, resources are 
available to review pairs clerically.  Figure 1 provides 
an illustration of the curves of log frequency versus log 
weight for matches and nonmatches, respectively.  The 
vertical lines in Figure 1 show hypothetical cutoff 
thresholds.  The clerical review region (based on 1990 
Decennial Census truth data) consists primarily of 
individuals in the same households that have missing 
values or severe errors in first name and age.   Even 
small amounts of keypunch and transcription error can 
significantly affect typographical error and missing 
data.    
   Accurate estimation of error rates at different cutoff 
levels often depends on information that is not 
available.  The most difficult part of the estimation is in 
the clerical review region that may have significantly 
varying characteristics in different geographic regions 
(such as between a suburban region and an adjacent 
urban region).  These typographical error rates differ 
significantly depending on the type of region and how 
the computer files were pre-processed prior to computer 
matching.  As an example, 0.01 percent of pairs in a 
suburban region with missing first name and age may be 
matches and 0.1 percent of pairs in an urban region with 
missing first name and age may be matches.  Although 
these percentages of the clerical review region are quite 
small, the percentage of matches in these regions may 
be in the range 1-3% and substantially affect estimates 
of error rates.  
   A false match is a pair that is designated as a match 
and is truly a nonmatch.  A false nonmatch is pair 
designated as a nonmatch and is a truly a match.  If M̂  
are the pairs designated as matches by decision rule 
(2a), then the false match rate is given by )ˆ|( MUP .  

If Û  are the pairs designated as nonmatches by 

decision rule (2b), then )ˆ|(1 UMP−  is the false 
nonmatch rate.  
 

3.   Methods and Data 
 
   Our main theoretical method is to use the EM 
algorithm and maximum likelihood to obtain parameters 
and associated classifiers for separating A × B into 
matches M and nonmatches U.  The data files are 
Decennial Census files for which the truth of 



classification is known.  The truth is obtained through 
several levels of clerical review, adjudication and field 
follow-up.  The key difference with the earlier work 
(Winkler 2002) is that we ‘artificially’ designate a 
subset of pairs as ‘pseudo-true’ matches and ‘pseudo-
true’ nonmatches.  The earlier work needed to have 
small and moderate amounts of labeled data for which 
true matching status is known.   
   
3.1  EM Methods 
 
    Our basic model is that of semi-supervised learning in 
which we combine a small proportion of labeled (true or 
pseudo-true matching status) pairs of records with a 
very large amount of unlabeled data.  The conditional 
independence model corresponds to the naïve Bayesian 
network formulization of Nigam et al. (2000).  The 
more general formulization of Winkler (2000, 2002) 
allows interactions between agreements (but is not used 
in this paper).   
   Our development is similar theoretically to that of 
Nigam et al.  Our notation differs very slightly because 
it deals more with the representational framework of 
record linkage.  Let γi be the agreement pattern 
associated with pair pi.  Classes Cj are an arbitrary 
partition of the set of pairs D in A × B.  Later, we will 
assume that some of the Cj will be subsets of M and the 
remaining Cj are subsets of U.  Unlike general text 
classification in which every document may have a 
unique agreement pattern, in record linkage, some 
agreement patterns γi may have many pairs pi(l)  
associated with them.   Here l will run through an 
appropriate index set.   Specifically,  
 
  P(γi | Θ) = ∑i |C| P(γi | Cj; Θ) P(Cj ; Θ )                (3) 
 
where γi is a specific pair, Cj is a specific class, and the 
sum is over the set of classes.  Under the Naïve Bayes 
or conditional independence (CI), we have 
 
   P(γi | Cj ; Θ) = J k  P(γi,k | Cj ; Θ)                    (4) 
  
where the product is over the kth individual field 
agreement γik in pair agreement pattern γi.  In some 
situations, we use a Dirichlet prior 
 
  P(Θ) = Π j ( ΘCj )α-1   Π k  ( Θ γi,k | Cj ) α-1           (5) 
 
where the first product is over the classes  Cj and the 
second product is over the fields.  We use Du to denote 
unlabeled pairs and Dl to denote labeled pairs.  Given 
the set D of all labeled and unlabeled pairs, the log 
likelihood is given by 
 
  lc(Θ | D; z) =  log ( P(Θ))  + 

      (1-λ ) ∑ i∈Du  ∑ j zij log (P(γi | Cj ; Θ)  P(Cj ; Θ)) + 
    λ ∑ i∈Dl ∑ j zij log (P(γi | Cj ; Θ)  P(Cj ; Θ)).       (6) 
 
where 0 ≤ λ ≤ 1.  The first sum is over the unlabeled 
pairs and the second sum is over the labeled pairs.  We 
observe that if 8 is 1, then we only use training data and 
our methods correspond to naïve Bayes methods in 
which training data are available.  If 8 is 0, then we are 
in the unsupervised learning situations of Winkler 
(1993) and Larsen (1996).  Winkler (2002, 2000) 
provides more details of the computational algorithms. 
 
3.2   Data Files 
 
   Three pairs of files were used in the analyses.  The 
files are from 1990 Decennial Census matching data in 
which the entire set of 1-2% of the matching status 
codes that were believed to have been in error for these 
analyses have been corrected.  The corrections reflect 
clerical review and field follow-up that were not 
incorporated in computer files available to us.   
   A summary of the overall characteristics of the 
empirical data is in Table 2.  We only consider pairs that 
agree on census block id (small geographic area 
representing approximately 70 households) and on the 
first character of surname.  Less than 1-2% of the 
matches are missed using this set of blocking criteria.  
They are not considered in the analysis of this paper.   
 
Table 2.  Summary of Three Pairs of Files 
______     ___________________________________ 
          Files       Files     Files 
          A11   A22    B11  B22   C1   C22 
Size    15048 12072  4539 4851  5022 5212 
# pairs    116305      38795      37327 
# matches   10096       3490       3623__   
 
 
   The matching fields that are:  
 
Person Characteristics:  First Name, Age, Marital 
Status, Sex 
Household Characteristics:  Last Name, House 
Number, Street Name, Phone 
 
Typically, everyone in a household will agree on the 
household characteristics.  Person characteristics such 
as first name and age help distinguish individuals within 
household.  Some pairs (including true matches) have 
both missing first name and age.  
   We also consider partial levels of agreement in which 
the string comparator values are broken out as [0, 0.66], 
(0.66, 0.88], (0.88, 0.94], and (0.94, 1.0].   The first 
interval is what we refer to as disagreement.   We 
combine the disagreement with the three partial 
agreements and blank to get five value states (base 5).  



The large base analyses consider five states for all 
characteristics except sex and marital status for which 
we consider three (agree/blank/disagree).  The total 
number of agreement patterns is 140,625.  In the earlier 
work (Winkler 2002), the five levels of agreement 
worked consistently better than two levels 
(agree/disagree) or three levels (agree/blank/disagree). 
   The pairs naturally divide into three classes:  C1- 
match within household, C2 - nonmatch within 
household, C3 – nonmatch outside household.  In the 
earlier work (Winkler 2002), we considered two 
dependency models in addition to the conditional 
independence model.  In that work in which small 
amounts of labeled training data were combined with 
unlabeled data, the conditional independence model 
worked well and the dependency models worked 
slightly better.   
   Metaparameters (Table 3) are generally decided prior 
to fitting various types of models.  Generally the 
iterations of the fitting are less than 100.  The delta 
value allows probability mass in cells where the 
observed population of pairs may have a (sampling) 
zero. 
 
Table 3.  Metaparameters of the Modeling  
______________________ ____________________ 
1. Model – CI – independent  
2. lambda – how much to emphasize training data 
3. delta – 0.000001 to 0.001 – smooth out peaks 
4. how many iterations 
5. number of degrees of partial agreement 
   very close agree, moderately close agree, somewhat 
    agree, blank, disagree [large base =5]_            _    _ 
 
For comparison with and understanding of the previous 
work (Winkler 2002), we need training samples of 
labeled data for which true matching status is known.  
The samples are concentrated in the clerical review 
regions which are between the vertical bars of Figure 1.  
In clerical review regions, it is difficult to distinguish 
between matches and nonmatches (see section 2).  We 
draw relatively small and relatively large samples of 
training data.  The sample sizes are summarized in 
Table 4.   
 
  Table 4.  Training Data Counts with Proportions of 
Matches for Earlier Work (Winkler 2002) 
 
  Sample         A                    B                     C____     
 Large    7612 (0.26)     3031 (0.29)      3287 (0.27) 
 Small      588 (0.33)       516 (0.26)        540 (0.24)    
 
Under each of the scenarios, we do semi-supervised 
learning (8 = 0.9 or 0.99).  In the semi-supervised 
learning situation, we use both large and small samples 

that are concentrated in regions where it is difficult to 
make a decision between match and nonmatch.   
   We create ‘pseudo-truth’ data sets in which matches 
are those unlabeled pairs above a certain high cutoff and 
nonmatches are those unlabeled pairs below a certain 
low cutoff.  Figure 1 illustrates the situation using actual 
1990 Decennial Census data in which we plot log of the 
probability ratio (1) against the log of frequency.  With 
the datasets of this paper, we choose high and low 
cutoffs in a similar manner so that we do not included 
in-between pairs in our designated ‘pseudo-truth’ data 
sets.  We use these ‘designated’ pseudo-truth data sets 
in a semi-supervised learning procedure that is nearly 
identical to the semi-supervised procedure where we 
have actual truth data.  A key difference from the 
corresponding procedure with actual truth data is that 
the sample of labeled pairs is concentrated in the 
difficult-to-classify in-between region where, in the 
‘pseudo-truth’ situation, we have no way to designate 
comparable labeled pairs.  The sizes of the ‘pseudo-
truth’ data is given in Table 5.  The errors associated 
with the artificial ‘pseudo-truth’ are given in 
parentheses following the counts.  The Other class gives 
counts of the pairs and proportions of true matches that 
are not included in the ‘pseudo-truth’ set of pairs.  In the 
Other class, the proportions of matches vary somewhat 
and would be difficult to determine without training 
data. 
 
Table 5.  ‘Pseudo-Truth’ Data with Actual Error Rates 
___________________________________________ 
                   Matches         Nonmatches         Other____ 
A pairs       8817 (.008)     98257 (.001)       9231 (.136) 
B pairs       2674 (.010)     27744 (.0004)     8377 (.138) 
C pairs       2492 (.010)     31266 (.002)_     3569 (.369) 
 
   Our empirical results are only for the non-1-1 
matching situation.   We determine how accurately we 
can estimate the lower cumulative distributions of 
matches and the upper cumulative distribution of 
nonmatches.  This corresponds to the overlap region of 
the curves of matches and nonmatches.  If we can 
accurately estimate these two tails of distributions, then 
we can accurately estimate error rates at differing levels.  
Our comparisons consist of a set of figures in which we 
compare a plot of the cumulative distribution of 
estimates of matches versus the true cumulative 
distribution with the truth represented by the 45 degree 
line.  We also do this for nonmatches.  As the plots get 
closer to the 45 degree lines, the estimates get closer to 
the truth. 
   In the earlier work (Winkler 2002) in which small 
amounts of training data were needed and combined 
with large amounts of unlabeled data, we showed that 
base 5 results were uniformly better than base 2 results, 
that error-rate estimates were quite accurate under 



conditional independence, and slightly more accurate 
under the dependency models.  Because training data 
are typically not available and optimal parameters vary 
significantly across regions (Winkler 1989), we 
investigate the methods of this paper to determine 
whether it is possible to obtain reasonably accurate 
estimates of error rates without training data. 
 

4.  Results 
 
   Our primary results are from using the conditional 
independence model and ‘semi-supervised’ methods of 
this paper with the conditional independence model and 
actual semi-supervised methods of Winkler (2002).  
With our ‘pseudo-truth’ data, we obtain the best sets of 
estimates of the bottom 30% tails of the curve of 
matches and the top 5% tails of nonmatches with 
conditional independence and λ=0.2.   Figure 2a-f 
illustrates the set of curves that provide quite accurate 
fits.  The 45 degree line represents the truth whereas the 
curve represents the cumulative estimates of matches 
and nonmatches for the left and right tails, respectively.  
Although we looked at results for λ=0.1, 0.5, and 0.8 
and various interactions models, the results under 
conditional independence (CI) were the best with 
λ=0.2.  We also looked at several different ways of 
constructing the ‘pseudo-truth’ data. 
   In Figure 3a-f, we provide estimates of the appropriate 
cumulative tails of the false match rates and false 
nonmatch rates, respectively.  We observe that, with the 
exception of the false match curve for file-set C, 
estimates are reasonably accurate.  We have no 
explanation for why the false match curve for file-set C 
shows substantial inaccuracy.  Figures 4a-f provide 
comparison with previous work (Winkler 2002) for the 
small sample situation with λ=0.99.   The small samples 
situation provides slightly more accurate estimates of 
error rates than the estimation procedure of this paper in 
which no labeled training data is available.  This is 
particularly true in the extreme tails of the distributions 
where the labeled data from the in-between region 
provides much better information than the situation of 
this paper where we have no comparable information to 
use during the estimation procedure. 
 

5.  Discussion 
 
   In this section, we describe the reasons for the general 
inability to estimate false nonmatch rates accurately 
with most pairs of lists.  We could estimate false non-
match rates for the pairs of files of this paper because of 
the relatively higher quality of name and other 
information in comparison with general files and 
because field follow-up, adjudication, and additional 
review was used to located virtually all matches. 

   There are many pairs of files for which the quasi-
identifying information (names, address, dates-of-birth, 
etc.) are very different or completely different for the 
true matches that we wish to match.  In these situations, 
we cannot effectively bring the pairs together and it is 
(nearly) impossible to determine how many matches we 
have missed. 
   The most straightforward situation is illustrated in 
Table 6.  The name information in the first file is out-of-
date because Susan K. Jones has changed her legal 
name to Susan K. Smith and she usually uses her middle 
name Karen (File B).  The date-of-birth in the first file 
is correct whereas the date-of-birth in the second file is 
completely wrong.   
 
Table 6.  Two Name and Date-of-Births associated with 
the Same Individual 
 
                    Name                        Date-of-birth______ 
File A          Susan K. Jones          January 16, 1964 
File B          Karen Smith               November 10, 1975   
 
   Some person lists may have substantially more of the 
difficulties of the type illustrated in Table 6 than other 
person lists.  As a particular instance, one keypuncher 
who learns how to override date-of-birth keypunch 
controls can assure that most (or all) of dates-of-birth 
are in error in the records that he/she has keyed. 
  With many business lists, the representations of the 
names (John K Smith and Company versus JKS Inc) 
and the mailing addresses (street address of physical 
location versus PO Box) may be completely different.  
Business lists always have substantially higher 
proportions of name and address representation 
difficulties than person lists.  In each type of situations, 
it is impossible to determine whether a small, moderate, 
or proportion of the pairs should have been matches and 
were not detected without auxiliary information.  
   We can also have difficulties locating matches 
automatically in situations where a modest proportion of 
records in a file fail name standardization, fail address 
standardization, or have dates-of-birth that cannot be 
effectively put in the form of dates-of-birth in a file to 
which the first file is being compared. 
 

6.  Concluding Remarks 
 
   In earlier work (Winkler 2002), we demonstrated, if 
small amounts of properly chosen training data are 
combined with large amounts of unlabeled data (i.e., 
semi-supervised learning), then we could obtain 
accurate estimates of error rates in a variety of 
situations.  Because labeled training data are often 
unavailable, we provide an unsupervised learning 
method (no training data) that works almost as well as 
the previous method.   
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