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Abstract

For heavy-tailed econometric data it is of interest to estimate the tail index, a

parameter that measures the thickness of the tails of the marginal distribution.

Common models for such distributions include Pareto and t distributions, and

in other applications (such as hydrology) stable distributions are popular as well.

This paper constructs square root n consistent estimators of the tail index that are

independent of the scale of the data, which are based on an assumed knowledge

of the parametric family for the marginal distribution. Given the popularity of

parametric modeling for economic time series, this method gives an appealing

alternative to nonparametric tail index estimators – such as the Hill and Pickands

estimators – that are appropriate when the modeler believes that the data belongs

to a certain known parametric family of distributions. The method works fairly

well for stationary time series with intermediate memory and infinite variance, and

since it is parametric does not depend upon blocking or tuning parameters. Small

sample results and full asymptotics are provided in this paper, and simulation

studies on various heavy-tailed time series models are given as well.

Keywords. Extreme Value Theory, Heavy Tails, Stable Distributions.

Disclaimer This report is released to inform interested parties of research and to

encourage discussion. The views expressed on statistical issues are those of the author

and not necessarily those of the U.S. Census Bureau.

1 Introduction

The last several decades have seen a multiplication of papers that address the pres-

ence of heavy tails in economic time series – see Embrechts, Klüppelberg, and Mikosch
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(1997) for an overview. In econometics the Student t and Pareto distributions are

especially popular, as they are felt to give a reasonable fit (in terms of shape) to a

variety of economic data; the wide range of the tail index for these distributions grants

a flexibility in modeling that is advantageous. From a more theoretical standpoint,

the stable distributions are preferable due to their elegant mathematical properties;

see Davis and Resnick (1986). Each of these distributions depends on one key param-

eter – the tail index – which describes each family of distributions. Clearly, any such

heavy-tailed time series model must have a consistent and reliable estimate of the tail

index.

Of course, use of the Pareto, Student t, and stable distributions for modeling reflects

a parametric approach to time series analysis. Alternatively, one may consider a non-

parametric approach, where the marginal distribution is never specified. Starting with

the Hill estimator (Hill, 1975) – but including the DEdH, Pickands, and others, see

Embrechts et al. (1997) – the literature is saturated with efforts to improve bandwidth

selection and optimize these nonparametric estimators for each particular data set. It

is natural that improved results can be obtained by using a parametric approach; of

course these results are only improved if one truly believes that the data follows the

specified parametric distribution. This is the common trade-off between nonparamet-

ric and parametric methods – robustness versus accuracy. For this paper, we will focus

on deriving tail index estimators in the parametric situation.

In particular, we consider that the data X1, X2, · · · , Xn is an observed stretch of a

strictly stationary time series, which may or may not be square integrable. Since we

are interested in a scale-free tail index estimate, we develop a target parameter that

is a simple invertible function of the unknown tail index α, which is defined in (1)

below. The target parameter is the variance of log |X|, where X denotes a common

version. Taking the logarithm serves a two-fold purpose: firstly, this separates out the

scale parameter; secondly, taking the log ensures that all moments (in particular the

second) will exist. It follows from the first point that the variance of log |X| will not

depend on the scale parameter. The method depends upon V ar log |X| being an easily

computable function that can be inverted as a function of α.
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Section 2 of the paper develops the general method discussed above for iid data,

and we apply this to the particular case of the stable, Student t, and log-Gamma

distributions. In Section 3 we extend the method to long-range dependent time series

data, and introduce the class of Noah-Joseph models for simultaneously modeling heavy

tails and serial dependence. The method is extended to this general class of processes,

and we provide additional illustration through a Pareto-like distribution. In Section 4

we test the method in simulation studies, and we make our conclusions in Section 5.

Proofs are contained in a separate Appendix.

2 Basic Theory

In this section we lay out the basic estimator of the tail index, and indicate conditions

under which the large sample asymptotics can be known. Section 2.1 discusses the

general theory, and the estimator’s properties for iid data are given in Theorem 1. In

Section 2.2 several applications are further developed that are applicable for iid data;

in particular, we discuss the stable, student t, and log-gamma distributions. For the

Pareto distribution, the requisite moment function is difficult to compute; in section 3

we discuss the case of a “Pareto-like” distribution.

2.1 Asymptotic Theory

We suppose that the observed data X1, X2, · · · , Xn is strictly stationary, and is

heavy-tailed with tail index α. The notion of tail index is defined in many different

ways in the literature, but perhaps the most common (Embrechts et al., 1997) is

P[|X| > x] ∼ CL(x)x−α (1)

for some constant C > 0, a slowly-varying function L, and x large (the notation

f(x) ∼ g(x) denotes that f(x)/g(x) → 1 as x → ∞). The above definition can be

generalized to allow for separate left and right tail behavior, but we will assume that

the tail index α is the same for each. Below we describe a few examples.

Pareto. Since P[|X| > x] = ( κ
κ+x)α by definition (Embrechts et al., 1997), the tail

index is obviously α. Here κ plays the role of a scale parameter.
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Stable. The stable distribution depends in general on four parameters: the loca-

tion µ, the scale σ, the skewness β, and the characteristic exponent α ∈ (0, 2] (see

Samorodnitsky and Taqqu, 1994). By Proposition 1.2.15 of that work,

P[|X| > x] ∼ 1− α

Γ(2− α) cos(πα/2)
σαx−α

where Γ denotes the gamma function. Hence the characteristic exponent equals the

tail index α.

Student t. We consider the Student t on α degrees of freedom, where α is allowed

to be any positive real number. The probability density function (pdf) for X is given

by
Γ((α + 1)/2)√

παΓ(α/2)
(1 + x2/α)−(α+1)/2

. (2)

From this form it can be deduced that the degrees of freedom equals the tail index.

Log-Gamma. From Embrechts et al. (1997) we have the pdf for x ≥ 1 given by

αβ

Γ(β)
(log x)βx−(α+1).

Here β is the shape parameter, and α is the rate. Essentially the log term functions

as a slowly-varying function, and so the tail index equals the rate α.

Now we will assume that the data is mean zero (or if the mean does not exist because

α ≤ 1, then we assume that the location parameter is zero). Hence we can write

Xt = σZt, where σ is a scale parameter, and Zt is a member of the same parametric

family (in the Student t and log-gamma examples above, the density was stated for

σ = 1). Then log |Xt| = log σ + log |Zt| and

V ar log |Xt| = V ar log |Zt|.

The above equation allows us to remove scale considerations from our tail index es-

timate, which is very convenient. Now a convenient way of computing V ar log |Zt| is

needed, and the following method is helpful in the case of the stable and Student t

distributions. Let φ(r) = E[|Z|r], so that

φ̇(0) = E[log |Z|] φ̈(0) = E[log2 |Z|].
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We use the ḟ notation to denote the derivative of the function f . From this it follows

that

V ar log |X| = φ̈(0)− (φ̇(0))
2

=
d2

dr2
log φ(r)|r=0,

where the last equality follows from φ(0) = 1. Note that the existence of the derivatives

of φ at the origin depend on a suitably small probability content there; it is sufficient

that the pdf is bounded in a neighborhood of zero.

Now the method relies on V ar log |X| being a fairly simple function of α – say g(α)

– where g is invertible. The following heuristic justifies this procedure: supposing that

Z is supported on [1,∞) as in the log-gamma case, we have

E[log |Z|] =
∫ ∞

0
P[log |Z| > x] dx =

∫ ∞

0
P[|Z| > ex] dx

and this tail probability behaves asymptotically like

P[|Z| > ex] ∼ CL(ex)e−αx

by (1). Hence the expected log moment looks roughly like the Laplace transform –

evaluated at α – of L(ex), which may very well be a simple function of α. Section

2.2 illustrates that this is indeed the case for the stable, Student t, and log-gamma

distributions. Assuming that g−1 exists (or at least that it has only one fiber on the

acceptable range of tail indexes (0,∞)), we use the statistic

g−1
(
V̂ ar log |X|

)
= α̂ (3)

as our estimator. Here V̂ ar denotes the sample variance statistic; let Wt = log |Xt| −
E log |Xt|. The following theorem summarizes the statistical properties of α̂:

Theorem 1 Suppose that Xt is an iid sequence of random variables with location zero,

such that the first two derivatives of φ(r) exist at the origin. Then

√
n

(
V̂ ar log |X| − V ar log |X|

) L=⇒ N (0, V )

as n →∞. The limiting variance V = V arW 2
t . If the derivative of g−1 exists at g(α),

then √
n (α̂− α) L=⇒ N (

0, V/ġ2(α)
)
.
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The proof of the theorem is in the appendix. It is possible to obtain some finite

sample properties as well, such as the mean and variance of the estimate; these results

will be discussed case by case in the examples below. The general expression for V can

be worked out:

V = EW 4
t − (EW 2

t )2 =
....
φ (0)− 4

...
φ (0)φ̇(0) + 8φ̈(0)φ̇2(0)− φ̈2(0)− 4φ̇4(0). (4)

It can be shown that this is equal to

V =
d4

dr4
log φ(r)|r=0 + 2

(
d2

dr2
log φ(r)|r=0

)2

, (5)

which may be easier to compute. In general this variance quantity will depend on α,

and thus could be estimated by substituting α̂.

2.2 Applications to iid Models

We first consider the case that the sample consists of iid observations from either

a stable, Student t, or log-Gamma distribution. In each case, we compute g(α) and

determine its inverse so that α̂ can be constructed. We also compute the asymptotic

variance of α̂ explicitly. In the case of the log-Gamma, a nuisance parameter β is dealt

with by computing the kurtosis of the logged data.

Stable. The first step is to use the representation

Z =
√

ε ·G

for independent random variables ε and G, where ε is distributed as a positively skewed

α/2 stable with unit scale (denoted Sα/2(1, 1, 0)) and G is a standard normal. This

representation is found in Samorodnistky and Taqqu (1994). Then Z2 = ε · Y , where

Y is a χ2 random variable with one degree of freedom. Thus

φ(r) = E[(Z2)r/2] = E[εr/2]E[Y r/2]

follows from independence. Now E[Y r/2] = 2r/2Γ((r + 1)/2)π−1/2, and from a result

due to Hardin (1984) we have

E[εr/2] =
2r/2−1Γ(1− r/α)∫∞

0
r
2x−(r/2+1) sin2 x dx

(sec(απ/4))r/α cos(rπ/4).
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Some elementary real analysis of the term
∫ ∞

0
tx−(t+1) sin2 x dx

shows that it is integrable; using integration by parts and a change of variable, it can

be expressed as
2t

2

∫ ∞

0
x−t sinx dx = 2t−1 Γ(2− t) cos(tπ/2)

1− t

Substituting this and taking logs, we obtain

log φ(r) = log Γ(1− r/α)− log Γ(2− r/2) + log(1− r/2) +
r

α
log sec(απ/4) (6)

+
r

2
log 2− 1

2
log π + log Γ((r + 1)/2).

The second derivative at zero yields a simple formula for g(α):

g(α) = Ψ2(1)(1/α2)−Ψ2(2)(1/4)− 1/4 + Ψ2(1/2)(1/4),

where Ψk denotes the kth derivative of the log-gamma function. Now since Γ(x+1) =

xΓ(x), we have

Ψ0(x + 1) = log x + Ψ0(x)

Ψ1(x + 1) = 1/x + Ψ1(x)

Ψ2(x + 1) = −1/x2 + Ψ2(x)

so that Ψ2(2) = Ψ2(1)− 1. This yields

g(α) =
1
4

(
Ψ2(1)(4/α2 − 1) + Ψ2(1/2)

)

g−1(x) =
2√

1 + 4x−Ψ2(1/2)
Ψ2(1)

,

where the inverse is guaranteed to exist because ġ(α) = −2α−3Ψ2(1) is always nonzero.

Now using (5) to compute V , we have

V =
1
16

(
Ψ4(1)(16/α4)−Ψ4(2)− 6 + Ψ4(1/2)

)

+
1
8
(
Ψ2(1)(4/α2 − 1) + Ψ2(1/2)

)2
.

Since Ψk(x + 1) = (−1)k−1(k − 1)!x−k + Ψk(x), we have Ψ4(2) = −6 + Ψ4(1), and

hence the asymptotic variance is

V

ġ2(α)
=

α6

4Ψ2
2(1)

{
1
16

(
Ψ4(1)(16α−4 − 1) + Ψ4(.5)

)
+

1
8
(
Ψ2(1)(4α−2 − 1) + Ψ2(.5)

)2
}

.

Thus the variance clearly decreases as α gets closer to zero.
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Student t. From the pdf in (2), we can obtain the moment function φ. The square of

a Student t on α degrees of freedom is an F distribution on (1, α) degrees of freedom

(Bickel and Doksum, 1977). This provides a formula for φ(2r), from which we can

deduce the following formulas for log φ(r):

log φ(r) =
r

2
log α + log Γ((r + 1)/2) + log Γ((α− r)/2)− log Γ(1/2)− log Γ(α/2).

The second derivative at zero gives the formula for g(α):

g(α) =
1
4

(
Γ̈(α/2)
Γ(α/2)

− Γ̇2(α/2)
Γ2(α/2)

+
Γ̈(1/2)
Γ(1/2)

− Γ̇2(1/2)
Γ2(1/2)

)
=

1
4
(Ψ2(α/2) + Ψ2(1/2)).

Now the derivative of the inverse of g evaluated at g(α) is equal to 1/ġ(α) – as discussed

in the proof of Theorem 1 – which is equal to−8/Ψ3(α/2). Since ġ(α) is nonzero for any

α, the inverse of g exists at α by the Inverse Function Theorem. Analytical expressions

for Ψk are not available, but g−1 can be determined by using a look-up table. So α̂

can be calculated in practice, and is asymptotically normal. In order to compute its

asymptotic variance, note that in general for k > 1,

dk

drk
log φ(r)|r=0 = 2−k (Ψk(α/2) + Ψk(1/2)) .

Thus using (5) the asymptotic variance is

V

ġ2(α)
= 4

(
Ψ4(α/2) + Ψ4(1/2) + 2(Ψ2(α/2) + Ψ2(1/2))2

)

Ψ2
3(α/2)

.

Log-gamma. In the case of the Log-Gamma distribution, the log moments are just

the moments of a Gamma distribution, and thus are computed quite easily. In general,

E[logk |Z|] =
1
αk

Γ(β + k)
Γ(β)

so that g(α) = βα−2. Since this depends on the unknown shape parameter β, we

propose calculating a separate quantity that just depends on β. The kurtosis of log |X|
is scale-independent and is defined by

Kur log |X| = E[(log |X| − E log |X|)4]
V ar2 log |X| − 3.
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Now the centered fourth log moment is

E[(log |X| − E log |X|)4]
= E log4 |Z| − 4E log3 |Z|E log |Z|+ 6E log2 |Z|E2 log |Z| − 3E4 log |Z|

=
1
α4

(
(β + 3)(β + 2)(β + 1)β − 4(β + 2)(β + 1)β2 + 6(β + 1)β3 − 3β4

)

=
3(β + 2)β

α4
.

Thus the kurtosis is equal to 6/β. So one way to proceed is to first estimate the sample

kurtosis and obtain an estimate of β:

β̂ = 6/K̂ur log |X|

This will be consistent for β, since all the log moments exist. Now g−1(x) =
√

β/x,

and we can substitute β̂ in for β. So our modified estimate for α is

α̂ =
√

β̂/V̂ ar log |X| =
√

6√
K̂ur log |X|V̂ ar log |X|

.

For the asymptotic normality result, we have

α̂− α =

√
Kur log |X|
K̂ur log |X|

(
g−1(V̂ ar log |X|)− α

)
,

and the stochastic term Kur log |X|/K̂ur log |X| tends to one in probability. Therefore
√

n(α̂ − α) is asymptotically normal with variance V/ġ2(α) as in Theorem 1. Now

ġ(α) = −2βα−3, which is always nonzero, guaranteeing the existence of g−1. As for

V , it is easier to work with (4):

V =
1
α4

(
(β + 3)(β + 2)(β + 1)β − 4(β + 2)(β + 1)β2 + 8(β + 1)β3 − (β + 1)2β2 − 4β4

)

= α−42β(β + 3)

Thus the asymptotic variance of α̂ is V
ġ2(α)

= α2

2 (1+3/β). This could be easily estimated

using β̂ and α̂.

3 Extended Theory

Since it is of interest to examine the method on serially correlated time series data,

Section 3.1 introduces a general Noah-Joseph Model that allows for both heavy tails

9



and long range dependence. In Section 3.2 Theorem 2 gives the tail index estimator’s

properties for data from these types of models. We discuss particular applications to

Noah-Joseph models for stable, Student t, and Pareto-like distributed time series.

3.1 Noah-Joseph Models

We now turn to models that are heavy-tailed and serially correlated. Perhaps one of

the first models of this kind was the MA(∞) stable process of Davis and Resnick (1986).

Also see Samorodnitsky and Taqqu (1994) for the stable integral moving average model,

and Kokoszka and Taqqu (1999) for linear heavy-tail, long memory models. In McElroy

and Politis (2006), a new non-linear model that incorporates both heavy-tails and long

memory was introduced. This model, once appropriately generalized, is particularly

convenient for defining serially dependent stable and Student t models; other heavy-

tailed distributions can also be handled. We let each Xt be given as the product of a

“volatility” series and a serially correlated Gaussian time series:

Xt = σt ·Gt.

The volatility time series {σt} is independent of {Gt}, which can be a short, interme-

diate, or long memory Gaussian process. The volatility process is typically taken to be

iid, since the Gaussian process is designed to incorporate all of the serial dependence

structure. In general, the volatility series should be some positive time series that

makes the data heavy-tailed. We discuss three cases:

• The volatility series is deterministic but time-varying. This results in a het-

eroscedastic, serially correlated Gaussian process.

• We have σt =
√

εt, where ε ∼ iidSα/2(1, 1, 0) for α ∈ (0, 2), i.e., it is a positively

skewed α/2-stable random variable with unit scale and location zero. Then (see

McElroy and Politis, 2006) Xt is symmetric α-stable with infinite variance; the

autocorrelations at nonzero lags exist and are the same as the autocorrelations

of {Gt}.

• We have σt =
√

α/Yt for α > 0, where Yt is iid χ2 on α degrees of freedom.

Then Xt has a Student t distribution on α degrees of freedom, and has infinite

variance if α ≤ 2. At nonzero lags, the autocorrelations exist and are the same

as the Gaussian autocorrelations.
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The second and third cases give general serially dependent stable and Student t models.

The latter case is particularly appealing, since a simple moving average model with

Student t inputs will not yield a Student t distribution (though this is true of stable

random variables). In general, letting εt = σ2
t be iid, we have the characteristic function

of Xt given by – for any real θ –

E exp{iθσtGt} = E[exp{−θ2εt/2}]

using conditional expectations. This latter expression is the Laplace transform of the

distribution of εt evaluated at θ2/2. By setting this expression equal to the charac-

teristic function of a desired heavy-tailed distribution – such as a symmetric Pareto,

Burr, log-Normal, or Weibull – one can in theory work out the requisite distribution

of ε. The general technique is as follows:
∫ ∞

−∞
eiθxfX(x) dx =

∫ ∞

0
e−θ2x/2fε(x) dx

fX(x) =
1√
2π

∫ ∞

0
e−x2/(2z)fε(z) z−1/2 dz

The second equation follows from the first by applying the Fourier Inversion Theorem

(Billingsley, 1995) and taking the inverse Fourier Transform of the function e−·θ2/2

after interchanging the order of integration. It can be interpreted as integrating the

Gaussian pdf with respect to its variance z, weighted by fε(z). Now this second

equation cannot in the general case be solved for fε in terms of fX , but some special

cases may be worked out. For example, Pareto-like tail behavior can be generated by

appropriate selection of fε, which we describe below. If we know the volatility pdf fσ,

we can write

fX(x) =
1√
2π

∫ ∞

0
e−y2/2y−1fσ(x/y) dy.

Now consider the following pdf, which is compactly supported on z ≥ 1:

fσ(z) = αz−(α+1).

Then it follows that

fX(x) = α|x|−(α+1) 1√
2π

∫ |x|

0
e−y2/2yα dy,

which can be rewritten as
α

1 + |x|α+1 L(|x|)
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for a slowly-varying function L that tends to

C = (2π)−1/2
∫ ∞

0
e−y2/2yα dy = 2α/2−1Γ((α + 1)/2)π−1/2

as |x| → ∞ and tends to 1/(α + 1) as x → 0. Clearly X has Pareto-like tails. In

this way, a general time series model with serially dependent variables and general tail

index α can be constructed. Such models will be referred to as Noah-Joseph Models,

after the terminology of Mandelbrot and Wallis (1968) for heavy tails and long range

dependence. This type of model seems useful because it is flexible, encompassing a

wide-class of heavy-tailed dependent time series. Moreover one can specify an exact

marginal distribution for any desired auto-correlation structure; this is in contrast to

MA(∞)-type models, where there is in general no relationship between the distribution

of input and output variables (the exception being the stable family). In addition, the

tail index estimator of this paper works very nicely on these types of models (when α

is small and there is only intermediate memory), assuming that one has a knowledge

of the parametric family of the volatility series.

3.2 Tail Index Estimation for Noah-Joseph Models

We now assume that the time series {Xt} follows a Noah-Joseph model, such that

the Gaussian process {Gt} has absolutely summable autocovariance function (ACF),

and the tail index is any α > 0. We define the sequence Wt = log |Xt| − E log |Xt|,
which is used in the statement of Theorem 2 below.

Theorem 2 Suppose that the process {Xt} follows a Noah-Joseph model with abso-

lutely summable Gaussian ACF. Suppose that the marginal distribution has location

zero, such that the first two derivatives of φ(r) exist at the origin. Then

√
n

(
V̂ ar log |X| − V ar log |Z|

) L=⇒ N (0, V )

as n → ∞. The limiting variance V =
∑∞

h=−∞ γW 2(h), the sum of the ACF of W 2
t .

If the derivative of g−1 exists at g(α), then

√
n (α̂− α) L=⇒ N (

0, V/ġ2(α)
)
.

This theorem is proved in the appendix; an expression for V can be found in the

proof. The method is easily applied to Noah-Joseph models for the stable, Student t,

12



and Pareto-like distribution. For the stable class α < 2 implies that the variance is

infinite, but since the volatility series is iid, the autocovariances at nonzero lags exist

so long as α > 1. (α = 2 corresponds to the Gaussian case, and the volatility series is

just a deterministic constant.) So we assume α ∈ (0, 2]; for the Student t and Pareto-

like, we will just assume that α > 0. Note that if α ≤ 1, the autocovariances are not

defined at any lags, but this will not be a problem for the tail index estimator; we only

need assume that the ACF for the Gaussian series {Gt} is absolutely summable. Then

the asymptotic variance V will be finite; however, it is impracticable to compute. We

suggest that either a subsampling estimate of the variance (Politis, Romano, and Wolf,

1999) or a block bootstrap estimate (Kunsch, 1989) be used in practical applications.

Pareto-like Distribution. We work out some additional details for the case of the

Pareto-like distribution. Now V ar log |Z| = 1
4V ar log ε + V ar log |G|, and the second

term equals Ψ2(1/2)/4 by the material on the case of the stable distribution in Section

2.2. We can easily compute (for r small)

φε(r) = α

∫ ∞

1
z2r−α−1 dz =

α

α− 2r
.

Thus it follows that

log φ(r) = log α− log(α− r) +
r

2
log 2 + log Γ((r + 1)/2)− log π

2
.

Hence we have g(α) = α−2 + Ψ2(1/2)/4, which can be inverted for α. In particular,

g−1(x) =
√

1/(x−Ψ2(1/2)/4). In the iid case, the variance V is given by

V = 8α−4 + α−2Ψ2(1/2) +
1
8
Ψ2

2(1/2) +
1
16

Ψ4(1/2).

Also ġ(α) = −2α−3, so the asymptotic variance of α̂ is α6V/4.

4 Simulation Studies

The theoretical results obviate the need for an extensive simulation study, but we

show some results for data of a small sample size. We do not compare our method

with nonparametric tail index estimators like the Hill estimate, since the comparison

would be unfair; the Hill is designed as a general-purpose tool, whereas our methods

are only valid when the specific marginal distribution is known. The purpose of our

simulation studies is two-fold: to examine small-sample performance of the estimator
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– and how it is affected by serial correlation – and to determine its robustness with

respect to model mis-specification.

Below we apply the method to several heavy-tailed models, in each case assuming

that the correct function g is known. There is a small probability that the estimator

in each case is undefined; this can happen (e.g., with the Stable class) when g−1(x) is

applied to a negative number. For larger values of α this problem becomes increasingly

common due to the large variance of V̂ ar log |X|. For this reason, we restrict α ≤ 1

when considering the small sample n = 100. For the case that α ≥ 1, we must increase

the sample size to n = 1000 to avoid this problem. While this is a noted weakness

of the method, the remarkable accuracy of the estimate in the acceptable range of α

compensates this. Most of the error is due to variance, the bias being negligible in all

cases.

We simulate data from the stable, Student t, and Pareto-like distribution discussed

in Sections 2 and 3 above, and consider iid, MA(1), and AR(1) time series models for

the Gaussian components of the corresponding Noah-Joseph models; thus we have a

total of nine models (with several choices of α for each model). The time series models

were selected to represent serial dependence at three levels: none, low, and moderate.

The MA parameter is chosen to be 1/2, and the AR parameter is .9, indicating a

fairly high degree of persistence (nevertheless the ACF will decay at geometric rate).

Hence we are not considering long memory, though see the discussion in Section 5

below. The method generally breaks down when α is large, so we restrict α to the set

.1, .2, .3, · · · , 1.9. We consider 10, 000 replications for samples of size 100 (a suitable

burn-in was used for the AR(1) model) and 1000, and report the root MSE. Table 1

gives results for sample size n = 100 and α ≤ 1, while Table 2 gives results for n = 1000

and 1 ≤ α ≤ 1.9.
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Table 1. Comparison of Root MSE for various models. Here .1 ≤ α ≤ 1 and sample

size is n = 100.

Stable Student t

α WN MA(1) AR(1) WN MA(1) AR(1)

.1 .0107 .0106 .0108 .0147 .0145 .0147

.2 .0214 .0210 .0213 .0297 .0296 .0298

.3 .0325 .0326 .0330 .0456 .0456 .0465

.4 .0451 .0448 .0453 .0654 .0653 .0659

.5 .0576 .0586 .0587 .0888 .0877 .0910

.6 .0738 .0739 .0744 .1150 .1175 .1246

.7 .0896 .0903 .0965 .1478 .1571 .1711

.8 .1129 .1122 .1226 .2188 .2041 .2398

.9 .1387 .1377 .1507 2.0393 2.0171 4.0312

1.0 .1698 .1694 .1983 5.6571 4.5008 7.2250

Table 2. Comparison of Root MSE for various models. Here 1 ≤ α ≤ 1.9 and sample

size is n = 1000.

Stable Student t

α WN MA(1) AR(1) WN MA(1) AR(1)

1.0 .0478 .0481 .0507 .0776 .0771 .0820

1.1 .0579 .0577 .0611 .0952 .1003 .1204

1.2 .0690 .0685 .0741 .1133 .1136 .1244

1.3 .0834 .0835 .0897 .1382 .1406 .1541

1.4 .0972 .0964 .1058 .1702 .1660 .1898

1.5 .1167 .1154 .1299 .2026 .1981 .2227

1.6 .1375 .1373 .1521 .2433 .2427 .2724

1.7 .1626 .1597 .1796 .2915 .2907 .3304

1.8 .1881 .1902 .2238 .3502 .3453 .4157

1.9 .2210 .2211 .2670 .4220 .4627 .5221

Using the ad hoc rule of thumb that an RMSE of .1 is tolerable, we see that α ≤ .8

yields acceptable results for the Stable models, when n = 100. For the Student t the

variance is higher, and α ≤ .5 gives the acceptable range (with some egregiously bad
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estimates for α = .9, 1.0). If we increase sample size to n = 1000, then we can take α

as high as 1.4 and 1.0 respectively. All estimates had minute bias – the majority of the

error came from the variance. It is interesting that in all cases the bias was positive.

The results were affected little by serial dependence in general, though in a few cases

the RMSE for the AR(1) was double that of the WN model. The basic pattern is that

the method has a harder time with higher values of α, and this can be compensated

by taking a larger sample. For small values of α the method is remarkably accurate.

A Note on Simulation It is clear how to simulate Noah-Joseph models for the

stable and Student t cases; one needs to generate stable subordinators Sα/2(1, 1, 0)

and χ2 variables respectively, along with the serially correlated Gaussian series. To

simulate the subordinators, see Chambers, Mallows, and Stuck (1976). For the Pareto-

like case, observe that the cumulative distribution function for σ is just

Fσ(x) = 1− x−α,

which is easily inverted yielding F−1(u) = (1− u)−1/α. Now we can simulation stan-

dard uniforms and plug into F−1(u) to get simulations of σ.

As a second exercise, we now suppose that the true distribution is Pareto-like, but

we use a stable to model the process instead. Of course we must assume that α < 2

for the exercise to be meaningful. We chose the stable-Pareto-like pair because the

g functions are extremely similar for these distributions. The asymptotic bias can be

determined exactly; our simulations indicate the small sample bias. We simulate the

three Pareto-like models mentioned above, for various values of α; but we construct

the estimate by applying g−1
stab to V̂ ar log |X|, where gstab(α) is the function suitable

for the stable class. In particular,

g−1
stab

(
V̂ ar log |X|

)
− α = g−1

stab

(
V̂ ar log |X|

)
− g−1

stab (gpar(α))

+ g−1
stab (gpar(α))− α

where gpar is the function suitable for the Pareto-like class. Now the first term above is

asymptotically normal with variance V/(nġ2
stab(α)), where V is the variance associated

with the Pareto-like class. The second term represents a deterministic asymptotic bias,

which is easy to calculate:

Bias =
α√

α2

4 + 1
Ψ2(1)

− α. (7)
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It is interesting that there is no asymptotic bias when α =
√

4− 24/π2 .= 1.25. The

bias and variance results for the simulations are shown in Table 3 below.

Table 3. Bias and Root MSE for mis-specification study. Here .1 ≤ α ≤ 1.9 and

sample size is n = 1000.

WN MA(1) AR(1)

α Bias RMSE Bias RMSE Bias RMSE

.1 .0283 .0289 .0284 .0290 .0284 .0289

.2 .0552 .0564 .0553 .0564 .0555 .0566

.3 .0788 .0805 .0787 .0805 .0790 .0807

.4 .0986 .1010 .0985 .1009 .0988 .1012

.5 .1126 .1159 .1126 .1159 .1129 .1162

.6 .1202 .1247 .1203 .1249 .1210 .1255

.7 .1213 .1273 .1220 .1281 .1230 .1292

.8 .1159 .1241 .1163 .1244 .1169 .1255

.9 .1040 .1154 .1044 .1162 .1057 .1182

1.0 .0844 .1022 .0837 .1014 .0868 .1057

1.1 .0581 .0872 .0582 .0867 .0612 .0915

1.2 .0257 .0758 .0261 .0767 .0307 .0822

1.3 -.0118 .0798 -.0118 .0808 -.0065 .0854

1.4 -.0558 .1026 -.0560 .1034 -.0507 .1072

1.5 -.1041 .1405 -.1041 .1403 -.0978 .1417

1.6 -.1569 .1869 -.1581 .1885 -.1519 .1884

1.7 -.2159 .2412 -.2132 .2394 -.2050 .2376

1.8 -.2755 .2992 -.2751 .2982 -.2670 .2965

1.9 -.3494 .3602 -.3396 .3608 -.3328 .3593

The bias properties are pretty much as expected, given (7); bias is close to zero for

α = 1.2 and 1.3, and drops off for low α as well. The RMSE seems tolerable for

.9 ≤ α ≤ 1.4 and again for α ≤ .4. In any event, the RMSE in this mis-specification case

is roughly of the same magnitude (in many cases) as the RMSE in the correctly specified

situation (Table 2 above). Again, there is little sensitivity to serial dependence.
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5 Conclusion

This paper discusses a fairly general parametric procedure for tail index estimation.

The method assumes that the marginal distribution of the data is known, but the

tail index (and other parameters, such as the scale) are unknown. The approach of

using log moments allows for the elimination of the scale parameter, while at the

same time computing well-defined moments. The moment approach generates a
√

n-

consistent estimator, with asymptotically normal distribution. Because the method

is parametric, there is no issue of bandwidth selection, which commonly occurs with

nonparametric tail index estimators.

Although the asymptotic results are pleasing, there can be serious difficulties with

this method in finite sample when the tail index is too large. Simulations indicate that

for sample size n = 100 (a moderate length time series in economics), the tail index

must be less than unity in order for the method to work; for sample size n = 1000, the

tail index should be less than two. This is admittedly a drawback; not only are the

estimates poor, but in some cases can be meaningless (since one may be required to

take the square root of a negative number). Nevertheless, the excellent precision of the

estimator for an “acceptable range” of α values is remarkable. The empirical studies

indicate that this moment estimator may be more appropriate for extreme value data

found in insurance and finance, where the values of α may often be less than unity (see

Embrechts et al. (1997)). For finite variance data, this method should be avoided.

The method also seems to work well in the presence of serial correlation. In order to

investigate its properties in the context of serial dependence, we introduce the Noah-

Joseph models for heavy tails and long memory. These models allow one to utilize a

given marginal distribution, but introduce any desired auto-correlation structure. In

the asymptotic normality results for the estimator, we focus on the case of intermediate

memory, i.e., a summable Gaussian autocovariance function. It is plausible that similar

asymptotics hold for the long memory case, though the normalization in the Central

Limit Theorem must then be altered to account for this.

Future research should focus on how to extend this type of estimator to be effective

with higher values of α. One direction could be to look at higher centered log moments,

e.g., a centered fourth log moment. Another direction of research is to derive maximum
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likelihood estimates of the tail index for Noah-Joseph models, since the likelihood will

have an approximately Gaussian form that can be written down explicitly. Again, these

types of models should be useful in applied econometric work, where a practitioner may

“know” from empirical data analysis that the marginal distributions are Student t and

have an auto-correlation structure of an AR(p) (say). This cannot be written as a linear

filter of t innovations; but the Noah-Joseph model is very natural and is identifiable.

6 Appendix

Proof of Theorem 1. Since the data are iid, the first result is a standard CLT for

the sample variance statistic. The second result uses the mapping g−1(x) applied to

the first result. By standard Taylor series arguments, the variance gets modified by
[

d

dx
g−1(x)|x=g(α)

]2

= ġ(α)−2,

assuming that this quantity exists. 2

Proof of Theorem 2. The sample variance of log |Xt| is equal to

1
n− 1

n∑

t=1

(log |Zt| − E log |Zt|)2 − n

n− 1

(
E log |Z| − log |Z|

)2
,

and the second term is OP (1/n) (assuming that the sample mean of Wt is OP (1/
√

n),

which will follow from arguments made below). Hence asymptotically we may just

consider the centered sample mean of W 2
t . Below we compute the covariance function

of this process. Let K(σt) = log σt − E log σt, and H(Gt) = log |Gt| − E log |Gt|. Then

W 2
t W 2

t+h = (K(σt)K(σt+h) + H(Gt)K(σt+h) + H(Gt+h)K(σt) + H(Gt)H(Gt+h))2

= K2(σt)K2(σt+h) + 2H(Gt)K2(σt+h)K(σt) + 2H(Gt+h)K2(σt)K(σt+h)

+ 4H(Gt)H(Gt+h)K(σt)K(σt+h) + H2(Gt)K2(σt+h) + 2H2(Gt)H(Gt+h)K(σt+h)

+ H2(Gt+h)K2(σt) + 2H(Gt)H2(Gt+h)K(σt) + H2(Gt)H2(Gt+h).

Now using the independence of the volatility series from the Gaussian series, along

with the fact that K(σt) and H(Gt) are mean zero, the expectation for nonzero h is

E[W 2
t W 2

t+h] = (E[K2(σ)])2 + 2E[K2(σ)]E[H2(G)] + E[H2(Gt)H2(Gt+h)].
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Of course E[K2(σ)] = V ar log σ and E[H2(G)] = V ar log |G|. For h = 0 we have

E[W 4
t ] = E[K4(σ)] + 6E[K2(σ)]E[H2(G)] + E[H4(G)].

Hence it follows that

γW 2(0) = V arK2(σ) + 4V ar log σ · V ar log |G|+ V arH2(G)

γW 2(h) = γH2(G)(h) h 6= 0.

Here γH2(G) denotes the ACF of the process {H2(Gt)}. Thus V , the limiting variance,

is V =
∑∞

h=−∞ γW 2(G)(h). Now for any real θ, the characteristic function of the

normalized sample mean of Wt is

E exp

{
iθ

1√
n

n∑

t=1

(
W 2

t − EW 2
)
}

= E

[
E exp

{
iθ

1√
n

n∑

t=1

(
W 2

t − EW 2
)
}
|G

]
,

where G represents the total information in the {Gt} process. Since the volatility series

is independent of G, we can focus on the interior conditional expectation. Now the W 2
t

variables are independent conditional on G, so

E exp{iθ 1√
n

n∑

t=1

(
W 2

t − EW 2
)}|G

= Πn
t=1E exp{iθ 1√

n

(
W 2

t − EW 2
)}|G

= Πn
t=1

(
1 +

iθ√
n

(
E[W 2

t |G]− EW 2
)− θ2

2n
E

[
(W 2

t − EW 2)2|G
]

+ o(1/n)
)

.

By applying the exponential of the logarithm to this product, we can see that it equals

the exponential of

n∑

t=1

iθ√
n

(
E[W 2

t |G]− EW 2
)−

n∑

t=1

θ2

2n
E

[
(W 2

t − EW 2)2|G
]

+
n∑

t=1

θ2

2n

(
E[W 2

t |G]− EW 2
)2

(8)

plus terms that are o(1/n). This comes from the expansion log(1+x) = x−x2/2+o(x2);

the first two terms in (8) come from the first term in the Taylor series expansion of

log(1+x), while the third term in (8) comes from the second term of log(1+x). Since

these expressions are conditional on random quantities, the o(1/n) can be interpreted

as oP (1/n); the Taylor series approximation is valid because all the relevant moments
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are bounded. Next,

E[W 2
t |G]− EW 2 = E

[
K2(σt) + 2K(σt)H(Gt) + H2(Gt)|G

]− E[K2(σ)]− E[H2(G)]

= H2(Gt)− E[H2(G)]

E
[
(W 2

t − EW 2)2|G
]

= E[K4(σ)] + 4E[K3(σ)]H(Gt) + 6E[K2(σ)]H2(Gt) + H4(Gt)

− 2
(
E[K2(σ)] + E[H2(G)]

) (
E[K2(σ)] + H2(Gt)

)
+

(
E[K2(σ)] + E[H2(G)]

)2
.

Now the sum of the second and third terms of (8) converges in probability to the limit

−θ2

2
(V arK2(σ) + 4E[K2(σ)]E[H2(G)])

after some simplification. This calculation assumes that H(Gt) and its powers satisfy

a Strong Law of Large Numbers, which follows from Sun, 1965 (this is where the

assumption on the summability of the ACF of {Gt} is used). Since the limit of these

terms is a constant, they don’t affect the convergence of the first term in (8). Hence

E exp

{
iθ

1√
n

n∑

t=1

(
W 2

t − EW 2
)
}

∼ E exp

{
iθ√
n

n∑

t=1

(
H2(Gt)− E[H2(G)]

)
}

exp{−θ2

2
(V arK2(σ) + 4E[K2(σ)]E[H2(G)])},

and the first term is just the characteristic function of n−1/2
∑n

t=1 H2(Gt)−E[H2(G)].

This uses the almost sure convergence of the second two terms of (8) to a negative

number together with the boundedness of the exponential function on the negative

real line, and an application of the Dominated Convergence Theorem. Again by Sun

(1965),

n−1/2
n∑

t=1

H2(Gt)− E[H2(G)] L=⇒ N (0, U)

with U =
∑∞

h=−∞ γH2(G)(h). Hence

E exp

{
iθ

1√
n

n∑

t=1

(
W 2

t − EW 2
)
}

→ exp{−θ2

2
(U + V arK2(σ) + 4E[K2(σ)]E[H2(G)])} = e−θ2V/2,

which completes the proof of the theorem. 2
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