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Abstract

This paper sets out the theoretical foundations for continuous-time signal extraction in econo-

metrics. Continuous-time modeling gives an effective strategy for treating stock and flow data,

irregularly spaced data, and changing frequency of observation. We rigorously derive the op-

timal continuous-lag filter when the signal component is nonstationary, and provide several

illustrations, including a new class of continuous-lag Butterworth filters for trend and cycle

estimation.
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1 Introduction

The use of continuous-time models in econometrics has an extensive history; Bergstrom (1988)

gives a comprehensive review of the subject. A continuous-time approach gives flexibility in a

number of directions: in the treatment of stock and flow variables in economics, in working with

missing data and with irregularly spaced data, and in handling a general frequency of observation.

This last point is immediately practical; even when considering just a single economic variable,

with different sampling frequencies (for instance, quarterly and annual), to preserve consistency

in discrete trend estimates requires a unified basis for filter design. A continuous-time analysis

also allows us to investigate more subtle models of irregular spacing and interval dependence in

economic activity, as in Stock (1987, 1988). Overall, it gives a natural framework for exploring

theoretical links with macroeconomic dynamics and for addressing a number of real-life issues that
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emerge in the analysis of economic data. These and other advantages are discussed in Bergstrom

(1990).

Among recent developments, an approach to model estimation for discrete datasets is developed

in Jones (1981), Harvey and Stock (1985), and Harvey (1989). The statistical treatment, based on

the discrete state space form and the state space smoother, gives an efficient and general algorithm.

Bergstrom (1988, p. 378-9) notes that the approach is readily adapted to handle missing values,

changing intervals, and other data irregularities. Harvey and Stock (1993) build on this work

by setting out methods for optimal interpolation and smoothing. Since this framework includes

both stock and flow series and allows for an arbitrary sampling interval, the flexibility afforded by

continuous-time can be brought to bear on the signal extraction problem. Note that these methods

rely on the discretization of the underlying continuous-time model, so that the analysis is done in

discrete-time.

In this paper, in contrast, we consider the signal extraction problem purely in continuous-time;

in this way the frequency and time domain analysis is done independently of sampling type and

interval. By investigating the properties of the optimal continuous-lag filters, we are able to make

links with results from the engineering literature. For our purposes, however, interest centers on

formulations appropriate for continuous-time econometrics.

A key result of the paper is a proof of the signal extraction formula for nonstationary models; this

is crucial for many applications in economics. In discrete-time, methods for optimal smoothing and

interpolation of nonstationary series rely on theoretical foundations, as set out in Bell (1984). In

continuous-time, Whittle (1983) sketches an argument for stationary models; a satisfactory proof

of the signal extraction formula in this case is provided by Kailath, Sayed, and Hassibi (2000).

In this paper, we extend the proof to the case of a trend nonstationary signal – i.e., a process

that is integrated of order d > 0 – which entails a careful discussion of assumptions on initial

values. Similar considerations are needed in the discrete-time signal extraction theory as well, as

demonstrated in Bell (1984). We also treat the case that the noise process is continuous-time white

noise (e.g., the derivative of Brownian Motion); this is of interest, since such white noise processes

arise in some of the more popular continuous-time econometric models.

A second result is the development of a class of continuous-lag Butterworth filters for economic

data. In particular, we introduce low-pass and band-pass filters in continuous-time that are analo-

gous to the filters derived by Harvey and Trimbur (2003) for the corresponding discrete-time models,

and their properties are illustrated through plots of the continuous-time gain functions. One special

case of interest is the derivation of a continuous-lag filter from the smooth trend model; this gives
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a continuous-time extension of the popular Hodrick-Prescott (HP) filter (Hodrick and Prescott,

1997). At the root of the model-based band-pass is a class of higher order cycles in continuous-

time. This class generalizes the stochastic differential equation (SDE) model for a stochastic cycle

developed in Harvey (1989) and Harvey and Stock (1993).

The study of business cycles has remained of interest to researchers and policymakers for some

time. Some of the early work in continuous-time econometrics was geared toward this application;

Kalecki (1935) and James and Belz (1936) used a model in the form of a differential-difference

equation (DDE) to describe business cycle movements. The DDE form gives an alternative to the

SDE form that is of some theoretical interest; see Chambers and McGarry (2002). Its usefulness

for methodology seems, however, limited since the DDE admits no convenient representation in

either the time or frequency domain. The SDE form, in contrast, has an intuitive structure. In

introducing the class of higher order models, analytical expressions are derived for the spectral

density and are plotted to illustrate the cyclical properties of the model.

Our formulation remains general so that, for instance, it includes the Continuous-Time Au-

toregressive Integrated Moving Average (CARIMA) processes of Brockwell and Marquardt (2005).

These follow the SDE form and so can be handled analytically. Throughout the paper, examples

are given to help explain the methodology.

Note that, in what follows, we omit any discussion of financial derivatives and pricing theory for

contingent claims. This area has, of course, motivated a considerable amount of work involving

continuous-time mathematics. In this paper, attention is devoted to macroeconomic series and to

relevant financial indicators such as energy prices and interest rates. The valuation of derivative

contracts, standard or idiosyncratic, whose return is determined by the evolution of such indicators,

is a separate topic that does not concern us here. Our interest does, however, extend to the

stochastic processes used to describe the dynamics of the indicators themselves, and to the signal

extraction problem that emerges in this case.

This work is theoretical and does not consider real data examples. An accompanying study

(McElroy and Trimbur, 2006) examines how the optimal continuous-lag filter may be discretized

to yield a simple analytical formula for the discrete time weights, such that irregularly sampled

data may be easily handled in a quasi-optimal fashion. For the sake of brevity and cohesion of

the subject matter, we will not discuss discretization or discretely observed data any further in

this paper. Section 2 discusses some basic concepts in continuous-time filtering, which may be new

to some readers. We review some definitions in Priestley (1981), Hannan (1970), and Koopmans

(1974), and cast the material in a notational framework that will facilitate a fluid exposition of the
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main results. The class of CARMA and CARIMA models of Brockwell and Marquardt (2005)

is included, though our results are not contingent upon the data following this class. Section 3

gives the mathematical results for the signal extraction problem. Section 4 presents illustrations

with well-known econometric models, and extends the methodology for estimating the growth rates

and other dynamical properties of underlying components. Section 5 concludes, and the proofs are

given in the Appendix.

2 Continuous-Time Processes and Filters

This section sets out the theoretical framework for the analysis of continuous-time signal pro-

cessing and filtering. Much of the treatment follows Hannan (1970); also see Priestley (1981) and

Koopmans (1974). Let y(t) for t ∈ R, the set of real numbers, denote a real-valued time series that

is measurable and square-integrable at each time. The process is weakly stationary by definition if

it has constant mean – set to zero for simplicity – and autocovariance function Ry given by

Ry(h) = E[y(t)y(t + h)] h ∈ R. (1)

Note that the autocovariances are defined for the continuous range of lags h. Thus if y(t) is a

Gaussian process, Ry completely describes the dynamics of the stochastic process. A convenient

model for stationary continuous-time processes that is analogous to moving averages in discrete

time series is given by

y(t) = (ψ ∗ ε)(t) =
∫ ∞

−∞
ψ(x)ε(t− x) dx (2)

where ψ(·) is square integrable on R, and ε(t) is continuous-time white noise (WN). In this

case, Ry(h) = (ψ ∗ ψ−)(h), where ψ−(x) = ψ(−x). If y(t) is Gaussian, then ε(t) = dW (t)/dt, the

derivative of a standard Wiener process. Though W (t) is nowhere differentiable, ε(t) can be defined

using the theory of Generalized Random Processes, as in Hannan (1970, p. 23). It is convenient to

work with models expressed in terms of the disturbance ε(t), because this makes it easy to see the

connection with discrete models based on white noise disturbances.

As an example, Brockwell’s (2001) Continuous-time Autoregressive Moving Average (CARMA)

models can be written as

a(D)y(t) = b(D)ε(t)

where a(z) is a polynomial of order p, and b(z) is a polynomial of order q < p, and D is the derivative

operator. The condition for stationarity is analogous to the one for a discrete AR polynomial: the

roots of the equation a(z) = 0 must all have strictly negative real part. It can be shown (Brockwell

and Marquardt, 2005) that y(t) following such a stationary CARMA model can be re-expressed in

the form (2), for an appropriate ψ.
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Next, we define the continuous-time lag operator L via the equation

Lxy(t) = y(t− x) (3)

for any x ∈ R and for all times t ∈ R. We denote the identity element L0 by 1, just as in discrete

time. Then a Continuous-Lag Filter is an operator Ψ(L) with associated weighting kernel ψ

(an integrable function) such that

Ψ(L) =
∫ ∞

−∞
ψ(x) Lx dx. (4)

The effect of the filter on a process y(t) is

Ψ(L)y(t) =
∫ ∞

−∞
ψ(x) y(t− x) dx = (ψ ∗ y)(t). (5)

The requirement of integrability for the function ψ(x) is a mild condition that is sufficient for many

problems. However, when the input process is nonintegrable over t, an integrable ψ(x) may become

inadmissible as a kernel, i.e., it may fail to give a well-defined process as output. In such a case, we

may need to assume that ψ is differentiable to a specified order, with integrable or square integrable

derivatives; this naturally leads to consideration of weighting kernels in suitably regular Sobolev

spaces (Folland, 1995).

This development parallels the discussion in Priestley (1981), where the filter is written as

L[ψ](D) =
∫ ∞

−∞
ψ(x)e−Dx dx,

with L[ψ] denoting the Laplace transform of ψ. As will be discussed below, we can make the

identification D = − log L, which effectively maps Priestley’s formulation into (4).

2.1 Continuous-lag filters in the Frequency Domain

In analogy with the discrete-time case, the frequency response function is obtained by replacing

L by the argument e−iλ:

Ψ(e−iλ) =
∫ ∞

−∞
ψ(x) e−iλx dx, λ ∈ R (6)

Denoting the continuous-time Fourier Transform by F [·], equation (6) can be written as Ψ(e−iλ) =

F [ψ].

Example 1 Consider a Gaussian kernel ψ(x) = 1√
2π

e−
x2

2 . In this example, the inclusion of the

normalizing constant means that the function integrates to one; since applying the filter tends to

preserve the level of the process, it could be used as a simple trend estimator. The frequency

response has the same form as the weighting kernel and is given by F [ψ](λ) = e−
λ2

2 .
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The power spectrum of a continuous time process y(t) is the Fourier Transform of its autocovari-

ance function Ry:

fy(λ) = F [Ry](λ), λ ∈ R (7)

The gain function of a filter Ψ(L) is the magnitude of the frequency response, namely

Gc(λ) = |F [ψ](λ)|, λ ∈ R. (8)

As in discrete time series signal processing, passing an input process through the filter Ψ(L) results

in an output process with spectrum multiplied by the squared gain; so the gain function gives

information about how various frequencies in the data are attenuated or accentuated by the filter.

Note that in contrast to the discrete case where the domain is restricted to the interval [−π, π], the

functions in (7) and (8) are defined over the entire real line. Given a candidate gain function g(λ),

taking the inverse Fourier Transform in continuous-time yields the associated weighting kernel:

F−1[g](x) =
1
2π

∫ ∞

−∞
g(λ)eiλx dx, x ∈ R (9)

This expression is well-defined for any integrable g(λ). Integrability is a mild condition satisfied by

nearly all filters of practical interest; it corresponds in discrete-time to the condition that the filter

weights be absolutely summable.

Example 2 Weighting kernels that decay exponentially on either side of the observation point

have often been applied in smoothing trends; this pattern arises frequently in discrete model-based

frameworks, e.g., Harvey and Trimbur (2003). Similarly, in the continuous time setting, a simple

example of a trend estimator is the double exponential weighting pattern ψ(x) = 1
2 e−|x|, x ∈ R.

In this case, it is easy to show using integral calculus that Ψ(L) = 1/(1 − (log L)2). The Fourier

transform has the same form as a Cauchy probability density function, namely F [ψ](λ) = 1/(1+λ2).

This means that the gain of the low-pass filter Ψ(L) decays slowly as λ −→∞.

2.2 The Derivative Filter and Nonstationary Processes

In (3), the extension of the lag operator L to the continuous-time framework is made explicit. In

building models, we can treat L as an algebraic quantity as in the discrete-time framework. The

extension of the differencing operator, ∆ = 1−L, used to define nonstationary models, is discussed

in Hannan (1970, p. 55) and Koopmans (1974).

To define the differentiation operator D, consider the limit of measuring the displacement of a

continuous-time process, per unit of time, over an arbitrarily small interval δ:

d

dt
y(t) = lim

δ→0

y(t)− y(t− δ)
δ

= lim
δ→0

1− Lδ

δ
y(t) = (− log L)y(t).
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Thus, we see that taking the derivative d/dt has the same effect as applying the continuous lag filter

− log L. This holds for all differentiable processes y(t), implying D = − log L; note that Priestley

(1981) derives the equivalent L = exp{−D} via Taylor series arguments. This operator D will

be our main building block for nonstationary continuous-time processes. It will also be useful in

thinking about rates of growth and rates of rates of growth – the velocity and acceleration of a

process, respectively. We refer to − log L as the derivative filter; taking powers yields higher order

derivative filters. For instance, (log L)2 gives a measure of acceleration with respect to time. We

note that the frequency response of Dd is (−iλ)d.

Standard discrete-time ARIMA processes are written as difference equations, built on white

noise disturbances. In analogy, continuous time processes can be written as differential equations,

built on an extension of white noise to continuous-time. Thus a natural class of models is the

Integrated Filtered Noise processes, which are given by

Ddy(t) = Ψ(L)ε(t) (10)

for some integrable ψ, and order of differential d ≥ 0. This class will be denoted y(t) ∼ IFN(d);

it encompasses a wide variety of linear continuous-time models. As an example, Brockwell and

Marquardt (2005) define the class of Continuous-time Autoregressive Integrated Moving Average

(CARIMA) models as the solution to

a(D)Ddy(t) = b(D)ε(t). (11)

Thus, applying the derivative filter d times transforms y(t) into a stationary CARMA(p, q) process.

The autoregressive order p is the degree of the polynomial a(D), and the moving average order q is

the degree of the polynomial b(z). The constraint q < p is necessary to ensure the process is well-

defined; this ensures that the spectral density of Ddy(t) is an integrable function. This gives the

CARIMA(p, d, q) process. The original process y(t) is nonstationary and is said to be integrated

of order d in the continuous-time sense. Now this can be put into an IFN(d) form: starting from

(11), we can write

Ddy(t) = [b(D)/a(D)] ε(t) (12)

Using the definition of D, it follows that y(t) ∼ IFN(d) with Ψ(L) = b(− log L)/a(− log L).

Deriving the kernel ψ(x) requires an expression for the rational function in terms of an integral over

powers of L, namely b(− log L)/a(− log L) =
∫∞
−∞ ψ(x)Lx dx. Using the formulation of Priestley

(1981), we see that CARIMA models can be equivalently expressed as IFN models where the

kernel ψ’s Laplace transform is a rational function.

7



Example 3 We consider a simple CARMA(2, 0) model that can be used to model periodic

phenomena ψ(t), such as a cycle or seasonal effect, with some stochastic frequency λc ∈ R. Let

a(z) = (z + ρ− iλc)(z + ρ + iλc) b(z) = 1

and suppose ε(t) is WN with variance σ2, in (11). Here ρ is a non-negative real number called the

damping factor. Note that the roots of a(z) are ±iλc − ρ, with real part −ρ ≤ 0. If ρ is strictly

positive, we have a stationary process, but if ρ = 0 there is nonstationarity corresponding to an

infinite peak in the spectrum. The spectral density is

fψ(λ) =
σ2

(ρ2 + (λ− λc)
2)(ρ2 + (λ + λc)

2)
.

Note that one can construct higher-order cycles by considering CARMA(2n, 0) models; the spec-

trum in this case is obtained by taking the nth power of the denominator of fψ above. Also note

that when ρ = 0, the formula for fψ reduces to

fψ(λ) =
σ2

(λ2 − λ2
c)

2 ,

which is minimized at λ = ±λc, the spectral peaks. Of course, when λc = 0, this infinite spectral

peak is associated with the trend frequency (and a(z) = z2). Figure 1 illustrates the spectral

density with the parameter values ρ = .2, λc = π/3, and σ2 = 1. The maximum does not occur

exactly at λ = λc, however, except as ρ tends to zero.

3 Signal Extraction in Continuous Time

This section sets out the signal extraction problem in continuous time. A new result with proof

is given for the problem of extracting a nonstationary continuous-time signal from stationary noise.

Whittle (1983) shows a similar result for continuous-time nonstationary processes, but omits the

proof and does not discuss the importance of initial value assumptions. In fact, the filters that

Whittle (1983) presents are not mean square error optimal unless Assumption A (see below) on the

initial values holds true. Kailath, Sayed, and Hassibi (2000, p. 221 – 227) prove the formula for the

special case of a stationary signal. We extend the treatment of Whittle (1983) by providing proofs,

at the same time illustrating the importance of Assumption A to the result. We also handle the

case that the differentiated signal and/or the noise process are WN . Suppose the following model

for an underlying continuous time process y(t):

y(t) = s(t) + n(t), t ∈ R (13)

where the signal s(t) is integrated of order d, and the noise process n(t) is stationary. In general,

d is any non-negative integer; for d = 0, s(t) is stationary. For d > 0, s(t) is nonstationary, but
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the dth derivative of s(t), denoted by u(t), is stationary. It is assumed that the differentiated

signal u(t) and the noise n(t) are mean zero and uncorrelated with one another. For the basic case

they have integrable autocovariance functions Ru and Rn, respectively. As an extension, we may

also consider that one or both of Ru and Rn correspond to multiples of the Dirac delta function,

and are viewed as tempered distributions with constant spectral densities (Folland, 1995). (In

this case, the corresponding process is a WN with appropriate variance.) The underlying process

y(t) = s(t) + n(t) satisfies the differential equation

w(t) = Ddy(t) = Dds(t) + Ddn(t) = u(t) + Ddn(t). (14)

It follows from Section 2.2 that the spectral density of w(t) satisfies

fw(λ) = fu(λ) + |λ|2dfn(λ). (15)

Note that the nonstationary process y(t) can be written in terms of some initial values plus a d-fold

integral of the stationary w(t) – see Hannan (1970, p. 81). For example, when d = 1 we can write

y(t) = y(0) +
∫ t

0
w(z) dz

for some initial value random variable y(0); note that this is valid when t > 0 or when t < 0 as

well. When d = 2 we can write

y(t) = y(0) + tẏ(0) +
∫ t

0

∫ z

0
w(x) dx dz

for initial position and velocity y(0) and ẏ(0) = dy
dt (0). In general, we can write

y(t) =
d−1∑

j=0

tj

j!
y(j)(0) + [Idw](t) (16)

with the I operator defined by [Iw](t) =
∫ t
0 w(z) dz. Note that (16) holds for the signal s(t) as well.

In analogy with the decomposition assumptions of Bell (1984), we suppose that u(t) and n(t) are

uncorrelated with all d initial values y(0), ẏ(0), · · · , y(d−1)(0) (this set will be abbreviated by the

vector y∗). This supposition will be referred to as Assumption A. (Since in our case nonstationarity

results from integration, it is essentially a “trend” – or frequency zero – form of nonstationarity.

Thus the analogous differencing operator in Bell (1984) would be (1− L)d where L is the backshift

operator.)

In analogy with discrete-time results (Bell, 1984), we seek the minimum mean square error linear

estimate of the signal s(t) given a bi-infinite sample of data, i.e., we seek to minimize E[(ŝ(t)− s(t))2]

among all ŝ(t) that are a linear function of the data y(h) with h ∈ R. Since the solution is a linear

9



estimate, we can write it as a convolution of some weighting kernel ψ and the underlying process

y(t):

ŝ(t) = Ψ(L)y(t) = (ψ ∗ y)(t)

Note that if the underlying process y(t) is Gaussian, then the best estimate is the linear estimate

given above. The signal extraction problem is to determine the weighting kernel ψ; the following

theorem provides the solution.

Theorem 1 Suppose that y(t) and s(t) have decompositions of the form (16) and that Assump-

tion A holds. Also suppose that u(t) and n(t) are mean zero weakly stationary processes that are

uncorrelated with one another, which are either WN processes or have integrable autocovariance

functions. Let

g(λ) =
fu(λ)
fw(λ)

.

If g is integrable with d− 1 continuous derivatives (if d = 0, we only require that g be continuous),

then the linear minimum mean square error signal extraction weighting kernel exists and is given

by

ψ(x) = F−1[g](x). (17)

The spectral density of the error process e(t) = ŝ(t)− s(t) is

fe(λ) =
fu(λ)fn(λ)

fw(λ)
;

hence the MSE is
∫∞
−∞ fufn/fw dλ.

Remark 1 Such a filter Ψ(L) will be referred to as a continuous-time Wiener-Kolmogorov (WK)

filter. One of the important properties of these WK is that they pass polynomials, in exact analogy

with how discrete-time filters can be constructed to pass polynomials. By pass we mean that

Ψ(L)p(t) = p(t)

for a polynomial p(t) of sufficiently low degree. If we write out the action of the filter on p(t) as a

convolution against ψ, we find that the filter passes p(t) iff
∫ ∞

−∞
xjψ(x) dx = δj,0,

where δ denotes the Kronecker delta. As demonstrated in the proof of Theorem 1, a WK filter

passes polynomials of degree up to 2d− 1, so long as these moments exist.
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Example 4 Taking d = 0, let s(t) have autocovariance function Rs(h) = 1√
2π

e−
h2

2 , which will be

abbreviated by φ(h). Suppose further that n(t) has autocovariance function Rn(h) = (1−h2)φ(h).

Then y is characterized by Ry(h) = (2− h2)φ(h), and the associated spectral densities are

fs(λ) = e−λ2/2, fn(λ) = λ2e−λ2/2, fy(λ) = (1 + λ2)e−λ2/2

The signal resembles a damped trend, whereas n(t) is a pink noise process that incorporates pseudo-

cyclical and irregular fluctuations. The ratio of spectra fs(λ)/fy(λ) = 1
1+λ2 is integrable, and from

Example 2 the inverse Fourier Transform gives a simple filter with kernel ψ(x) = 1
2 e−|x|.

Example 5 Suppose that with d = 1, the spectral densities of differentiated signal and noise

have constant ratio q, with fu(λ) = qφ(λ) where φ is the standard normal density function. The

continuous-time frequency response of the signal extraction filter is then

g(λ) =
qφ(λ)

qφ(λ) + λ2φ(λ)
=

1
1 + λ2/q

,

which transforms to the double-exponential weighting kernel
√

q exp{−√q|x|}/2. Such a kernel

passes lines and constants, as mentioned in Remark 1.

4 Illustrations of Continuous-Lag Filtering

The class of CARIMA models are particularly convenient for computing WK weighting kernels.

This is because if we have a CARIMA model for the signal and a CARMA model for the noise, then

the observed process will be CARIMA as well. Then the spectral densities fu and fw will be rational

functions in λ2, and hence g(λ) will be a rational function in λ2. It is generally fairly straight-

forward to compute inverse Fourier transforms of such functions via the calculus of residues (Ahlfors,

1979). By “straight-forward,” we mean there is a well-known general procedure for calculating the

residues of such rational functions, even though the computation may be somewhat tedious and

time-consuming in particular cases. The first two illustrations below look at particulary simple

CARIMA models for the signal and noise; we have chosen these examples based on their popularity

in the economics literature for modeling trends, and because the formulas for the resultant WK

weighting kernels are particularly simple and elegant. The third illustration adds a continuous-time

cycle component to the local level and smooth trend models, which results in both a low-pass and

band-pass continuous-lag filter. This is similar in spirit to the work of Harvey and Trimbur (2003)

on discrete-lag low-pass and band-pass filters. Finally, we consider the estimation of the velocity

and acceleration of a signal, and illustrate the applications to turning point detection.

Illustration 1: Local Level Model The trend plus noise model (see Harvey (1989, p. 485)

for terminology) is written as y(t) = µ(t) + ε(t) where µ(t) denotes the stochastic level, and ε(t)
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is continuous-time white noise with variance parameter σ2
ε , denoted by ε(t) ∼ WN(0, σ2

ε ). An

interpretation of the variance σ2
ε is that Θ(L)ε(t) has autocovariance function (θ ∗ θ−)(h)σ2

ε for

any (integrable) auxiliary weighting kernel θ. The local level model assumes Dµ(t) = η(t), where

η(t) ∼ WN(0, σ2
η). The signal-noise ratio in the continuous-time framework is defined as q = σ2

η/σ2
ε .

So the observed process y(t) requires one derivative for stationarity, and we write w(t) = Dy(t).

The spectral densities of the differentiated trend and observed process are

fη(λ) = qσ2
ε fw(λ) = fη(λ) + λ2σ2

ε = (q + λ2)σ2
ε

since F [D] = iλ. Though the constant function fη(λ) is nonintegrable over the real line, the

frequency response of the signal extraction filter is given by the ratio 1/[1+λ2/q], which is integrable.

As in the previous example, the weighting kernel has the double exponential shape:

ψ(x) =
√

q

2
exp{−√q|x|}

The rate of decay in the tails now depends on the signal-noise ratio of the underlying continuous-

time model.

Illustration 2: Smooth Trend Model The local linear trend model (Harvey 1989, p. 485) has

the following specification:

Dµ(t) = β(t) + η(t), η(t) ∼ WN(0, σ2
η)

Dβ(t) = ζ(t), ζ(t) ∼ WN(0, σ2
ζ )

where η(t) and ζ(t) are uncorrelated. Setting σ2
η = 0 gives the smooth trend model for which noisy

fluctuations in the level are minimized and the movements occur due to changes in slope. The

data generating process is y(t) = µ(t) + ε(t) where ε(t) is white noise uncorrelated with ζ(t). Now

the signal-noise ratio is q = σ2
ζ/σ2

ε . Recall that the discrete-time smooth trend model underpins

the well-known HP filter for estimating trends in discrete time series; see Hodrick and Prescott

(1997), as well as Harvey and Trimbur (2003). Here we develop an analogous HP filter for the

continuous-time smooth trend model. We may write the model as

u(t) = D2µ(t) = ζ(t)

w(t) = D2y(t) = ζ(t) + D2ε(t).

The spectral densities of the appropriately differentiated trend and series are

fu(λ) = qσ2
ε fw(λ) = fu(λ) + λ4fσ2

ε = (q + λ4)σ2
ε .

Hence the ratio 1/(1 + λ4/q) gives the frequency response function of the filter; the error spectrum

is σ2
ε /(1 + λ4/q). Taking the inverse Fourier transform of this function (see the appendix for a
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detailed derivation) yields the weighting kernel

ψ(x) =
q1/4 exp{−|x|q1/4/

√
2}

2
√

2

(
cos(|x|q1/4/

√
2) + sin(|x|q1/4/

√
2)

)

This gives the continuous-time extension of the HP filter; it follows from Remark 1 that it passes

cubics. Figure 2 graphs this weighting function, using three values of q: 10−3, 10−4, and 10−5,

representing higher, medium, and lower signal-noise ratios. The lower values of q indicate more

noise, which in turn requires more smoothing – hence the wider kernels. Note the negative side-

lobes, which allow the filter to pass quadratics.

Illustration 3: Continuous-Lag Band-Pass Consider again the class of stochastic cycles in

Example 3. A simple (nonseasonal) model for a continuous-time process in macroeconomics is given

by

y(t) = µ(t) + ψ(t) + ε(t),

where µ(t) is a trend component that accounts for long-term movements and the cyclical component

is ψ(t). The irregular ε(t) is meant to absorb any random, or nonsystematic variation, and in direct

analogy with discrete-time, it is assumed to be WN(σ2
ε). In formulating the estimation of ψ(t) as

a signal extraction problem, we set the nonstationary signal to µ(t) + ε(t) and the noise to ψ(t).

This is done just to map the estimation problem to the framework developed in the last Section; it

is not intended to suggest any special importance of the signal as a target of extraction. Actually

in this case, the noise part will usually be of greater interest in a business cycle analysis. Thus,

the optimal filter is constructed for µ(t) + ε(t), and the complement of this filter (i.e., that filter

obtained by subtraction from the identity filter) yields the band-pass (when it is integrable). Using

the spectrum of the cycle, combined with the pseudo-spectra of µ(t), it follows that

fµ(λ) =
qζσ

2
ε

λ2d

fψ(λ) =
qκσ2

ε

(ρ2 + (λ− λc)
2)(ρ2 + (λ + λc)

2)

fε(λ) = σ2
ε ,

where qζ = σ2
ζ/σ2

ε is the signal-noise ratio for the trend, qκ = σ2
κ/σ2

ε for the cycle. Consider the

general case d ≥ 0; the band-pass frequency response is obtained from the ratio of fψ divided by

fµ + fψ + fε. The formula is

BPm(λ) =
λ2mqκ

λ2mqκ + (qζ + λ2m)(ρ2 + (λ− λc)
2)(ρ2 + (λ + λc)

2)
,

where BPm stands for band-pass of order pair m. Here the order m = d denotes the order

of integration, as determined by the stochastic trend model; this parallels the development of

13



Harvey and Trimbur (2003). Note that this function is always integrable, and hence the band-pass

weighting kernel ψ exists. Calculation of this weighting kernel requires standard complex analysis

computations, which are omitted here. The low-pass filter, i.e., the trend extraction filter, has gain

function

LPm(λ) =
(ρ2 + (λ− λc)

2)(ρ2 + (λ + ω)2)qζ

(ρ2 + (λ− λc)
2)(ρ2 + (λ + λc)

2)(qζ + λ2m) + λ2mqκ

,

which is only integrable for m ≥ 1 (it is of little interest to consider the model with m = 0). Figure

3 illustrates the low-pass and band-pass gain functions for m = 1 (we use the same cycle model

from Example 3, so ρ = .2 and λc = π/3). The signal-noise ratios were chosen to be qζ = .25 and

qκ = 4. Here the approximate band-pass shape is clearly evident in BP1, and the low-pass LP1

is seen to have a slight dip at the cycle frequencies. Figure 4 illustrates similar features, but with

m = 2, qζ = .04, and qκ = 4. Now the band-pass has a steeper incline on the left side, and the

low-pass has an even steeper drop.

We now consider an application where the “signal” of interest is a linear transformation of the

original signal s(t). In particular, suppose that a linear operator H is applied to the signal, so

that a new signal of interest is given by Hs(t). Examples of such linear operators include D and

convolution with some kernel θ. The new signal-noise decomposition is then given by

Hy(t) = Hs(t) + Hn(t),

and we wish to derive a minimum mean squared error linear estimate of Hs(t) given the data Hy(h)

for h ∈ R. Because H is a linear operator, we can compute the estimate via

Ĥs(t) = Hŝ(t) = H(ψ ∗ y)(t),

where ψ is the WK weighting kernel for the original signal extraction problem. Again by linearity,

the above can be calculated via (HΨ(L))y(t), so long as this new weighting kernel of HΨ(L) exists.

For example, if H = Dd and λdg(λ) is integrable – where g is the frequency response of the

WK filter – then the dth derivative ψ(d)(x) exists and gives the appropriate weighting kernel to

estimate Dds(t). But if H =
∫

θ(x)Lx dx, then the weighting kernel is given by θ ∗ ψ, when this

exists. The first derivative of the signal can be interpreted as a growth rate; more generally, the

first and second derivatives give the velocity and acceleration of the signal. These can be used to

give a mechanical interpretation of the signal’s dynamics; for instance, the “energy” of the signal

over a time interval [t, t+h] could be computed as the integral of the square of the signal’s velocity

estimate over that interval. Alternatively, we may be interested in an aggregate forecast of the

signal, given by H =
∫ 0
−1 Lx dx; the weighting kernel in this case is given by (1(−1,0) ∗ ψ)(t), or

∫ 0

−1
ψ(t− x) dx.

14



If we wish to know the mean squared error of Hy(t) as an estimate of the new signal, we merely

multiply the error spectral density of Theorem 1 by the magnitude squared of F [H](λ), viewing H

as a linear filter (since it is a linear operator). This is valid so long as the resulting error spectral

density is integrable; its integral is then the mean squared error. For example, if H = D then we

multiply the error spectrum by λ2 and integrate the resulting function.

Illustration 2, continued Here we calculate the velocity and acceleration of the trend in the

Smooth Trend model. The velocity is the first derivative, and is interpreted as yielding a growth

rate for the trend. The acceleration is the second derivative, and provides additional information

about the curvature of the trend line. Recall from elementary calculus, that a local maximum is

indicated by zero velocity together with a negative acceleration; hence these so-called “indicators”

may be used in conjunction to determine the onset of a recession or downturn in an economic time

series. In this case, we find that λ2/(1+λ4/q) is integrable, so both derivatives of ψ are well-defined.

Direct calculation yields

ψ̇(x) = −q1/2

2
e−q1/4|x|/√2 sin(q1/4x/

√
2)

ψ̈(x) = − q3/4

2
√

2
e−q1/4|x|/√2

(
cos(q1/4|x|/

√
2)− sin(q1/4|x|/

√
2)

)
.

The error spectrum for the velocity WK filter is σ2
ε λ

2/(1 + λ4/q), which is proportional to the

frequency response for the acceleration weighting kernel. Figures 5 and 6 display the WK weighting

kernels for the velocity and acceleration. Note that the asymmetric shape of the velocity kernel is

due to the oddness of its frequency response function. The acceleration kernel is much less smooth,

which is due to the lessened integrability of its frequency response function.

5 Conclusion

In summary, we have considered the signal extraction problem for nonstationary signals in sta-

tionary noise. Essentially we considered “trend” nonstationarity, where the signal process is in-

tegrated. We have illustrated the signal extraction filter calculations for several examples, many

of which correspond to popular continuous-time component models. The theory for CARIMA

models is particularly simple, since the WK frequency response will be a rational function in λ;

the Fourier Transforms of such functions are fairly easy to compute, because the poles are easy

to identify. However, for econometrics applications these examples may seem abstract, because we

always observe data discretely; unlike engineering, filters in econometrics must be discrete because

our data is not continuously sampled in practice. A related study (McElroy and Trimbur, 2006)

addresses the topic of filter discretization at length, comparing and contrasting this approach with

the more prevalent model discretization methodology. In particular, McElroy and Trimbur (2006)
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discusses many of the examples of this paper (including the Smooth Trend Model) and describes

how the WK filters may be discretized such that any underlying polynomial trends are preserved.

Future research on this topic should address the question of a semi-infinite and/or compact

sample (note that Whittle (1983) treats the former case, again without proof), so that concurrent

filters and continuous State space smoothers can be constructed. In addition, it may be of interest

to generalize the type of nonstationarity considered, e.g., poles in the pseudo-spectrum at nonzero

frequencies. It would then be natural to consider signal extraction where the noise process is also

nonstationary, but with spectral poles distinct from those of the signal (as discussed in Bell (1984),

difficulties arise when there are common zeroes in the differencing operators for signal and noise).

A possible application would be continuous-time seasonal adjustment, where the noise has spectral

poles at annual frequencies and the signal has a spectral pole at the origin.

Acknowledgements. The authors thank David Findley for many stimulating conversations on

this topic, and careful reading of the manuscript.

6 Appendix: Mathematical Proofs

Proof of Theorem 1. Throughout, we shall assume that d > 0, since the d = 0 case is essentially

handled in Kailath et al. (2000). In order to prove the theorem, it suffices to show that the error

process e(t) = ŝ(t)− s(t) is orthogonal to the underlying process y(h). By (16), it suffices to show

that e(t) is orthogonal to w(t) and the initial values y∗. So we begin by analyzing the error process

produced by the proposed weighting kernel ψ = F−1[g]. We first note the following interesting

property of ψ. The moments of ψ

∫
zkψ(z) dz = ik

dk

dλk

fu(λ)
fw(λ)

|λ=0

for k < d exist by the smoothness assumptions on g, and are easily shown to equal zero if 0 < k < 2d

(i.e., for d ≤ k < 2d, the moments are zero so long as they exist – their existence is not guaranteed

by the assumptions of the theorem). Moreover, the integral of ψ is equal to 1 if d > 0. These

properties ensure (when d > 0) that the filter Ψ(L) passes polynomials of degree less than d. This

is because Ψ(L)tj = tj for j < d. Now we will utilize the orthogonal increments representation of

a stationary time series (Hannan, 1970) to write

[Idu](t) =
∫ ∞

−∞
(iλ)−d


eiλt −

d−1∑

j=0

(iλt)j

j!


 Zu(dλ), (18)

where Zu(dλ) is the orthogonal increments spectral measure associated with u(t). The above rep-

resentation is obtained by computing the frequency response [Idei·](t) via induction on d. Together
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with (16) applied to s(t), (18) yields a full description of the signal. Then the error process can be

written as

e(t) = (ψ ∗ y)(t)− s(t) = (ψ ∗ s)(t)− s(t) + (ψ ∗ n)(t).

Using the property that Ψ(L) passes polynomials on (16) and (18), we obtain

(ψ ∗ s)(t) =
d−1∑

j=0

tj

j!
s(j)(0) +

∫ ∞

−∞
(iλ)−d


g(λ)eiλt −

d−1∑

j=0

(iλt)j

j!


 Zu(dλ).

Subtracting s(t) leaves

(ψ ∗ s)(t)− s(t) =
∫ ∞

−∞
(iλ)−d(g(λ)− 1)eiλt Zu(dλ).

Of course g(λ) − 1 = −λ2dfn(λ)/fw(λ), utilizing (15). The other portion of the error process is

(ψ ∗ n)(t), which can be re-expressed in terms of the orthogonal increments representation of n(t).

Altogether, the error process is

e(t) =
∫ ∞

−∞
(iλ)−d(g(λ)− 1)eiλt Zu(dλ) +

∫ ∞

−∞
g(λ)eiλt Zn(dλ),

which is stationary (its spectral density is computed below). Now again using (16) applied to y(t),

we have

E[e(t)y(t + h)] = E[e(t)
d−1∑

j=0

(t + h)j

j!
y(j)(0)] + E[e(t)[Idw](t + h)]

for all h ∈ R. The first term on the right hand side is zero due to Assumption A, since the terms

in the error e(t) are merely linear filters of the processes u(t) and n(t). The second term on the

right is

∫ ∞

−∞
(iλ)−d

(−λ2dfn(λ)
fw(λ)

)
eiλt(−iλ)−d


e−iλ(t+h) −

d−1∑

j=0

(−iλ(t + h))j

j!


E[ZuZw](dλ) (19)

+
∫ ∞

−∞

fu(λ)
fw(λ)

eiλt(−iλ)−d


e−iλ(t+h) −

d−1∑

j=0

(−iλ(t + h))j

j!


E[ZnZw](dλ).

Here Zw denotes the orthogonal increments process, which can be expressed as

Zw(dλ) = Zu(dλ) + (iλ)dZn(dλ)

(this follows from w(t) = u(t) + Ddn(t). Therefore

E[ZuZw](dλ) = fu(λ)dλ E[ZnZw](dλ) = (−iλ)dfn(λ)dλ.

Substituting into (19) yields zero after simplification. This holds for all t, h ∈ R, which proves that

Ψ(L) is MSE optimal. Note that in order for the various integrals in (19) to exist, we require that

fn(λ)fu(λ)/fw(λ) be integrable when multiplied by the polynomial λd−1. But since

fn(λ)fu(λ)
fw(λ)

=
1

1/fn(λ) + λ2d/fu(λ)
,
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the integrability conditions hold so long as fn and fu are bounded. Finally, we compute the error

spectral density:

E[e(t)e(t + h)] =
∫ ∞

−∞
|(iλ)|−2d

∣∣∣∣
−λ2dfn(λ)

fw(λ)

∣∣∣∣
2

e−iλhfu(λ)dλ

+
∫ ∞

−∞

∣∣∣∣
fu(λ)
fw(λ)

∣∣∣∣
2

e−iλhfn(λ)dλ

=
∫ ∞

−∞

fn(λ)fu(λ)
fw(λ)

e−iλh dλ,

which is integrable under the same boundedness conditions on fn and fu. Thus the error spectral

density is fnfu/fw, which completes the proof. 2

Derivation of the Weighting Kernel in Illustration 2. We compute the Fourier Transform

via the Cauchy Integral Formula (Ahlfors, 1979), letting q = 1 for simplicity:

1
2π

∫ ∞

−∞

1
1 + λ4

e−iλxdλ

We can replace x by |x| because the integrand is even. The standard approach is to compute the

integral of the complex function

f(z) =
eiz|x|

1 + z4

along the real axis by computing the sum of the residues in the upper half plane, and multiplying

by 2πi (since f is bounded and integrable in the upper half plane). It has two simple poles there:

eiπ/4 and ei3π/4. The residues work out to be

(z − eiπ/4)f(z)|eiπ/4 =
e−|x|(1−i)/

√
2

4i(1 + i)/
√

2

(z − ei3π/4)f(z)|ei3π/4 =
e−|x|(1+i)/

√
2

4i(1− i)/
√

2

respectively. Summing these and multiplying by i gives the desired result, after some simplification.

To extend beyond the q = 1 case, simply let x 7→ q1/4x and multiply by q1/4 by change of variable.

2
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Figure 1: Spectral Density for Cycle (ρ = .2, λc = π/3, σ2 = 1)
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Figure 2: Smooth Trend WK Weighting Kernels

−100 −50 0 50 100

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

q=10E−3
q=10E−4
q=10E−5

Figure 3: Low-Pass and Band-Pass Gain Functions (m = 1,qζ = .25,qκ = 4)
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Figure 4: Low-Pass and Band-Pass Gain Functions (m = 2,qζ = .04,qκ = 4)
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Figure 5: Smooth Trend Velocity WK Weighting Kernels
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Figure 6: Smooth Trend Acceleration WK Weighting Kernels
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