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Abstract

Peaks in the spectrum of a stationary process are indicative of periodic phenomena, such as

seasonality or business cycles. Hence one important aspect of developing parametric models for

periodic processes is proper characterization of spectral peaks. By using diagnostics constructed

from the average ratio of two spectral densities this work proposes to test whether a hypothesized

model is locally supported in the frequency domain by the data. The local fit of a model is

assessed by considering a subset of the whole frequency band, focused on the locality of the

spectral peak. This technique can therefore be used to test the goodness-of-fit of a model

with respect to local frequency domain properties of the data. For example, one can test for

the appropriateness of a hypothesized seasonal or cyclical spectral peak in the model for the

data. In the development of these diagnostics we provide a result of independent interest,

the asymptotic distribution of general polynomial functionals of the periodogram. We present

theoretical properties for several new diagnostics, and also explore their finite-sample properties

through simulation and application to several economic time series.

Keywords. Cycle estimation, Goodness-of-fit, Model Misspecification, Peak detection, Seasonal

Adjustment, Spectral Density.
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1 Introduction

Although there is an abundance of literature on time domain methods for detecting model mis-

specification for a stationary time series (see Li (2004) for a comprehensive discussion), frequency
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domain approaches have received less attention. Perhaps this is due in part to the wide-spread asso-

ciation of modelling in the frequency domain with spectral density estimation via kernel-smoothing

methods. Nevertheless, model misspecification can be assessed in the frequency domain very easily,

namely by comparing a postulated model spectral density (perhaps the maximum likelihood esti-

mate from a particular model class) with some non-model-based spectral estimate, over a suitable

range of frequencies. Although general frequency domain goodness-of-fit tests have been proposed

(see Paparoditis (2000) and Chen and Deo (2004), among others), few have been formulated with

the intent of being limited to a suitable frequency band. One exception, although not fully devel-

oped, is given by Beran (1994). In this paper we propose a wide class of measures, formulated in

the frequency domain, that can be implemented in a band-limited fashion. These measures can

be applied to a number of problems, such as spectral peak detection, significance of unobserved

components, and local model misspecification. We first discuss some of these applications, in order

to provide motivation for our general method.

McElroy and Holan (2005) discusses the problem of spectral peak detection, with applications

to cycle estimation in econometrics, signal detection in engineering, and seasonal adjustment in

federal statistics. If a postulated model fails to adequately capture a prominent spectral peak

really present in the data, then certain periodic phenomena will be completely absent from our

model, resulting in a loss of explanatory power. So peak detection is important, and one way of

measuring the strength of spectral peaks is via aggregating the spectral density’s convexity in a

neighborhood of the node. This is the approach of McElroy and Holan (2005), though that work

adopts a nonparametric framework.

In the basic Unobserved Component (UC) model, each component of economic phenomenon, e.g.,

trend, cycle, seasonal, is modelled as a separate time series, and the sum of all components yields

the observed process. Given the usual issues of parsimony in statistical modelling, one is interested

in knowing whether the addition of another component is compelling with respect to the data. A

time domain method of answering this question, which enjoys some popularity, is to determine if

the variance of the innovation sequence of an ARIMA representation of a given component differs

significantly from zero. In contrast, a frequency domain perspective examines the spectral density

of the postulated component model at a range of frequencies, and determines whether the data

prefers a model that includes that particular component.

More generally, we may be interested in whether a model fits the data at hand in a particular

spectral range. The Gaussian maximum-likelihood algorithm involves finding a model spectral

density for the data such that it is close to the periodogram in an average sense, in that the

discrepancy is aggregated over all frequencies. Thus, maximum likelihood estimates can be expected
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to provide a decent model in a global sense, over all frequencies. However, it is possible that the

model is less desirable over certain frequency bands, even though it is optimal globally. This is

problematic for certain applications, where it may be more important to correctly model certain

frequencies, whereas the behavior at other frequencies is deemed to be less important. For example,

consider cycle modelling in econometrics; here the low frequency band, where the cycle periodicities

are located, is crucial while the high frequency behavior is less vital.

The spectral measures presented in this paper provide a flexible set of tools that can address a

wide class of problems, including those already described. In Section 2 we develop a general theory

for such measures, including a discussion of finite sample behavior, asymptotics, and statistical

power for relevant hypotheses. Section 3 gives relevant details for several applications, including

spectral peak identification, component model significance, and local goodness-of-fit. Moreover, we

discuss some possible kernels that can be used for spectral averaging. Section 4 provides the results

of a simulation study, which show the efficacy of these methods in practice. Finally, in order to

illustrate the various applications several time series are considered. Section 5 concludes, and all

proofs are left to the Appendix.

2 Theory for Spectral Measures

Suppose that, after suitable transformations and differencing if necessary (and removal of regres-

sion effects), we have a mean zero stationary time series X1, X2, · · · , Xn, which will sometimes be

denoted by the vector X = (X1, X2, · · · , Xn)
′
. The spectral density f(λ) is well-defined so long as

the autocovariance function γf (h) is absolutely summable, and can be defined by

f(λ) =
∞∑

h=−∞
γf (h)e−ihλ (1)

with i =
√
−1 and λ ∈ [−π, π]. It follows that the inverse Fourier transform yields

γf (h) =
1
2π

∫ π

−π
f(λ)eihλ dλ,

a relation that we will use repeatedly in the sequel. That is, γf and f are Fourier transform pairs;

this relationship holds for any integrable function f , not just for spectral densities. Furthermore,

denoting the Toeplitz matrix associated with γf by Σ(f), it follows that

Σjk(f) =
1
2π

∫ π

−π
f(λ)ei(j−k)λdλ.

Finally, let f̂(λ) denote the periodogram, defined on a continuum of frequencies. Then f̂(λ) can

be expressed as

f̂(λ) =
1
n

∣∣∣∣∣
n∑

t=1

Xte
−itλ

∣∣∣∣∣
2

=
n−1∑

h=1−n

R(h)e−ihλ, (2)
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with R(h) equal to the sample (uncentered) autocovariance function. We consider two basic types

of spectral measures: the first depends on the data alone, whereas the second depends on both

data and a prespecified model. The measures are defined by

θA(g) =
1
2π

∫ π

−π
A(λ)g(λ) dλ (3)

φA(g, f) =
1
2π

∫ π

−π
A(λ)g(λ)/f(λ) dλ. (4)

Of course, φA is a special case of θA, but we will distinguish them due to separate applications and

interpretations. Here, g and f are integrable functions that are possibly random, e.g., g = f̂ . The

function A denotes a kernel, and is typically chosen to approximate a step function over a suitable

interval of frequencies, thereby affecting aggregation of the spectral densities. Based on the above

definitions, it follows that

θA(f̂) =
1
n
X

′
Σ(A)X

φA(f̂ , f) =
1
n
X

′
Σ(A/f)X.

Now the fact that θA(f̂) can be represented as a quadratic form is convenient, since the Toeplitz

matrix Σ(A) can be computed separately, and applied to many different time series. When the

kernel A corresponds to a rational function, it is fairly simple to compute autocovariances of A/f ,

given that f corresponds to an ARMA model; for this case, the method of Tunnicliffe-Wilson

(1979) can be used. If A cannot be written as a rational function in e−iλ, one can still proceed if f

corresponds to an AR process, as Proposition 1 demonstrates. The result requires a few additional

concepts. Let g be a polynomial of degree d, and define the (m − d) ×m matrix (where m > d is

arbitrary) ∆(g) as having jkth entry given by gj−k+d, the (j−k+d)th coefficient of g (if j−k+d > d

or j − k + d < 0, simply let gj−k+d = 0).

Proposition 1 Consider polynomials θ1, θ2, · · · , θJ with degrees qj, and let g be an integrable func-

tion on [−π, π], and let h be defined by

h(λ) = ΠJ
j=1|θj(e−iλ)|2.

Then Σ(g · h) = BΣ(g)B
′
, where

B = ΠJ
j=1∆(θj).

The matrices in the product can be written in any order, so long as their dimensions match up

appropriately. If Σ(g) has dimension m, then B is (m−
∑J

j=1 qj)×m dimensional, so m must be

chosen sufficiently large.
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As an application, we can rewrite φA(f̂ , f) when f corresponds to anAR(p) process. In particular,

suppose that f(λ) = |h(e−iλ)|−2 for a polynomial h. Then

φA(f̂ , f) =
1
n
X

′
∆(h)Σ(A)∆

′
(h)X,

where the dimensions are given as follows: ∆(h) is n × (n + p) dimensional and Σ(A) is square

of dimension n + p, where p is the order of h. This follows from Proposition 1, since Σ(A/f) =

Σ(A · |h(e−i·)|2). Hence, for each new AR model f that we wish to try, it is only necessary to

recompute ∆(h). If f is an ARMA process, one needs to recompute Σ(A/f) for each f . Since A(λ)

will often be zero on whole subintervals of [−π, π], it does not have an ARMA representation, and

hence Σ(A/f) may be impossible to compute via the Tunnicliffe-Wilson (1979) algorithm. One

solution is to use the approximation Σ(A)Σ(1/f) .= Σ(A/f), so that Σ(A) need only be computed

once (two examples of kernels A and their autocovariance functions can be found in McElroy and

Holan (2005)). Alternatively, the entries of Σ(A/f) can be determined to any desired precision

using numerical integration to compute φA(e·ih, f) for any integer h.

The first type of measure, θA, is well-suited for measuring whether the data is consistent with a

specified model. Letting f̃ denote the true (but unknown) spectral density of the data, we might

stipulate the hypothesis

H0 : f̃ = f.

With f̂ (the periodogram) as a plug-in estimate for f̃ , the hypothesis can be tested using θA(f̂)−
θA(f). In fact, θA(g) − θA(f) can be viewed as a type of signed measure, giving the discrepancy

between two spectral densities g and f , weighted according to the kernel A. The second measure

φA(g, f) assesses the average ratio of two spectral densities g and f ; recall that the ratio of the

two spectral densities can be viewed as a residual spectral density (Parzen, 1983). If this ratio

is constant, then g effectively “whitens” f . So φA(f̂ , f) can be used as a test statistic for the

hypothesis H0. Note that ultimately the agreement between f̃ and f is important only at those

frequencies contained in the support of A. So in proposing a model f for the data, it is primarily

of importance that the model be appropriate at frequencies in the support of A; if the modelling at

frequencies outside the support of A is thought to be poor, this will have no effect asymptotically

on the testing procedures considered below (though in finite sample, it is important to know f̃

under the Null hypothesis at frequencies outside the support of A). Theorems 1 and 2 summarize

the important statistical properties of such measures.

The asymptotic theory we develop requires some mild conditions on the data. We follow the ma-

terial in Taniguchi and Kakizawa (2000, Section 3.1.1). The sufficient conditions can be expressed

using two different formulations. The first formulation, which is denoted as condition (B) and is

due to Brillinger (1981), states that the process is strictly stationary and that condition (B1) of
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Taniguchi and Kakizawa (2000, page 55) holds. Alternatively, condition (HT), due to Hosoya and

Taniguchi (1982), states that the process has a linear representation, and requires that conditions

(H1) through (H6) of Taniguchi and Kakizawa (2000, pages 55 – 56) hold. Neither of these con-

ditions are stringent; for example, a causal MA(∞) process having finite fourth moments satisfies

(HT). Finally, let C1 denote the space of non-negative definite functions g defined on [−π, π] such

that ∑
h

|h||γg(h)| <∞.

We first discuss the measure θA in Theorem 1:

Theorem 1 Let f̂ be the periodogram given by (2), and f̃ be the true spectral density of the data.

The mean of θA(f̂) is given by

EθA(f̂) =
1
n
tr(Σ(A)Σ(f̃)),

where tr denotes the trace. If the third and fourth cumulants of {Xt} are zero, then

nV arθA(f̂) =
2
n
tr(Σ(A)Σ(f̃)Σ(A)Σ(f̃)).

If in addition A, f̃ ∈ C1, then as n→∞

EθA(f̂) → 1
2π

∫ π

−π
A(λ)f̃(λ) dλ

nV arθA(f̂) → 2
2π

∫ π

−π
A2(λ)f̃2(λ) dλ.

Finally, if A, f̃ ∈ C1, the process {Xt} satisfies either condition (B) or (HT), and the kernel A is

real, continuous, and even, then

√
n
(
θA(f̂)− θA(f̃)

)
L=⇒ N (0, V )

with variance given by

V =
2
2π

∫ π

−π
A2(λ)f̃2(λ) dλ+

1
(2π)2

∫ π

−π

∫ π

−π
A(λ)A(ω)GX(−λ, ω,−ω)dλdω.

Here GX is the tri-spectral density

GX(λ, ω, θ) =
∞∑

j,k,l=−∞
exp{−i(λj + ωk + θl)}cX(j, k, l).

The function cX denotes the fourth-order cumulant function.

Next, we consider the properties of φA:
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Theorem 2 Let f̂ be the periodogram given by (2), and f̃ be the true spectral density of the data.

The mean of φA(f̂ , f) is given by

EφA(f̂ , f) =
1
n
tr(Σ(A/f)Σ(f̃)).

If the third and fourth cumulants of {Xt} are zero, then

nV arφA(f̂ , f) =
2
n
tr{Σ(A/f)Σ(f̃)Σ(A/f)Σ(f̃)}.

If in addition A, f̃ ∈ C1, then as n→∞

EφA(f̂ , f) → 1
2π

∫ π

−π
A(λ)

f̃(λ)
f(λ)

dλ

nV arφA(f̂ , f) → 2
2π

∫ π

−π
A2(λ)

(
f̃(λ)
f(λ)

)2

dλ.

Finally, if the process {Xt} satisfies either condition (B) or (HT), and the kernel A is real, contin-

uous, and even, then
√
n
(
φA(f̂ , f)− φA(f̃ , f)

)
L=⇒ N (0, V )

with variance given by

V =
2
2π

∫ π

−π
A2(λ)

(
f̃(λ)
f(λ)

)2

dλ+
1

(2π)2

∫ π

−π

∫ π

−π

A(λ)A(ω)
f(λ)f(ω)

GX(−λ, ω,−ω)dλdω.

Remark 1 If the data are Gaussian, then the third and fourth cumulants vanish, and the limiting

variances V are straightforward to calculate, given a knowledge of f̃ . In the context of hypothesis

testing, where some knowledge f̃ is supposed, one can actually compute the limiting distribution

in Theorems 1 and 2, as well as the finite sample means and variances. The other conditions of the

theorems, such as f̃ ∈ C1, are not very restrictive and are satisfied by many processes (for example,

all ARMA processes).

Next, we present a much more general central limit theorem for polynomial functionals of the

periodogram. These results do not supersede Theorems 1 and 2, because we restrict ourselves to

the Brillinger (1975) condition (B). However, under this condition, Theorem 3 below represents a

novel generalization of Theorem 3 of Chiu (1988), and thus may be of interest in other applications.

We consider a fairly general “polynomial” functional of the periodogram of the form
∑J

j=1 φj(λ)f̂ j(λ),

where the deterministic functions φj are real and continuous. Theorem 3 below states a central

limit theorem for integrals of such functionals. In Corollary 3 below, we only require the case J = 2.

However, since this theorem may be of independent interest, we state the results more generally.
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Theorem 3 Consider a finite collection of real, continuous functions φj(λ), for j = 1, 2, · · · , J . If

the process {Xt} satisfies (B), then

√
n

 1
2π

∫ π

−π

J∑
j=1

φj(λ)f̂ j(λ) dλ− 1
2π

∫ π

−π

J∑
j=1

φj(λ) j! f̃ j(λ) dλ

 L=⇒ N (0, V )

where the limiting variance V is given by

V =
J∑

j,k=1

(j + k)!− j!k!
2π

∫ π

−π
(φj(λ)φk(−λ) + φj(λ)φk(λ)) f̃ j+k(λ) dλ

+
jkj!k!
(2π)2

∫ π

−π

∫ π

−π
φj(λ)φk(ω)GX(λ,−λ, ω)f̃ j−1(λ)f̃k−1(ω) dλdω.

Remark 2 Note that when the third and fourth cumulants are zero and the φj ’s are even, the

variance reduces to

V =
2
2π

∫ π

−π

J∑
j,k=1

φj(λ)φk(λ) ((j + k)!− j!k!) f̃ j+k(λ) dλ,

which is the limit of the non-negative quantity 2
2π

∫ π
−π V ar

(∑J
j=1 φj(λ)f̂(λ)

)
dλ. Compare Remark

1 of Chiu (1988).

3 Applications

There are many possible applications of these measures, and we move from specific examples to

the more general situation in the subsequent development. We first consider the situation where it

is suspected that certain periodic phenomena are present in the data, and it is desired to detect the

significance of such phenomena. For example, a seasonal pattern may be present in the time series,

which manifests as a peak in the process’s spectral density at the so-called “seasonal frequencies.”

These would be π/6, 2π/6, 3π/6, 4π/6, 5π/6, and 6π/6 for monthly data. Another example comes

from econometrics, where much interest focuses on detection of a business cycle in macro-economic

series. A business cycle represents the slowly moving (stationary) oscillations about a smooth trend,

and is commonly thought to have a period between 2 and 10 years for most series (Harvey and

Trimbur, 2003). Again, the presence of a cycle would be manifested as a peak in the corresponding

frequency range of the spectral density.

Now in formulating a model f that attempts to model a peak in the spectrum, one may ask

whether the data X significantly warrants such structure in the model. A crude measure would

be given by comparing the model spectral density f and the periodogram f̂ at the frequencies

of interest. A more thoughtful approach involves first constructing a measure of “peakedness” or
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“modality” for any given model f ; one can then compare the modality measure for both f and f̂ ,

and determine if there are significant discrepancies. As suggested by the approach of McElroy and

Holan (2005), we consider aggregating the model f over a range of frequencies about the desired

frequency of interest, summing against a kernel function that can be interpreted as measuring the

second derivative, or convexity, of f . In fact, using the second derivative of a smooth aggregation

kernel will yield such an interpretation, and so we consider a measure of the form

θÄ(g) =
1
2π

∫ π

−π
A(λ)g̈(λ) dλ,

where the equality follows from integration by parts (along with the boundary conditions that

A and its derivative are zero at ±π). By letting g = f , where f is a hypothesized model, we

can compute a modality measure; see McElroy and Holan (2005) for a complete discussion. For

computational purposes, one would typically place the derivatives on the known kernel A, and the

measure would be calculated via the representation∑
h∈Z

γÄ(−h)γf (h),

which follows from use of the discrete Fourier Transform. In general, such a quantity will require an

approximation of the infinite series, or a numerical method for evaluation of the integral. However,

since θÄ(f) can be interpreted as the limiting expectation of θÄ(f̂) under the assumption that

f = f̃ , i.e., that the hypothesized model is truth, it follows that another suitable modality measure

is given by the exact finite sample expectation, namely

θn,Ä(f) =
1
n
tr(Σ(Ä)Σ(f)).

Note that, even for large samples, this will not take much computer time to calculate. In a similar

fashion, we can compute the finite sample variance measure

σ2
n,Ä

(f) =
2
n
tr
(
Σ(Ä)Σ(f)Σ(Ä)Σ(f)

)
.

Now Theorem 1 implies that, under the appropriate conditions, θn,Ä(f) → θÄ(f) and σn,Ä(f) →
σÄ(f) as n→∞, where

σ2
Ä
(g) =

2
2π

∫ π

−π
A2(λ)g2(λ) dλ.

Asymptotically the finite sample variance forms a self-normalization for the modality measure,

such that θÄ(f)/σÄ(f) has magnitude bounded by 1/
√

2 (this follows from the Cauchy-Schwarz

inequality). By comparing θÄ(f̂) and θn,Ä(f), we can test the Null Hypothesis that f = f̃ over a

relevant spectral region. To see this, we use the following corollary of Theorem 1:
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Corollary 1 Suppose that the third and fourth cumulants of {Xt} are zero, A is twice continuously

differentiable with Ä, f̃ ∈ C1, and the process {Xt} satisfies either condition (B) or (HT). If the

kernel Ä is real and even, then

√
n

(
θÄ(f̂)− θn,Ä(f̃)

)
σn,Ä(f̃)

(5)

has mean zero and variance one for all n, and converges weakly to a standard normal as n→∞.

Remark 3 Thus under H0, namely that f = f̃ , we compute (5) and use the standard normal

quantiles for the test’s critical values. In particular, an α-level lower one-sided test, with f0 denoting

the Null model, has asymptotic critical value

xα =
σn,Ä(f0)√

n
zα + θn,Ä(f0)

with zα = Φ−1(α) and Φ the standard normal cumulative distribution function. Similar results can

be formulated for the 2-sided test. In a similar fashion if we assume f0, f1 ∈ C1, the asymptotic

power of the test can be determined: for each alternative model f1 that differs from the null model

f0, the asymptotic power is

Φ

(
σn,Ä(f0)

σn,Ä(f1)
zα +

√
n

σn,Ä(f1)

[
θn,Ä(f0)− θn,Ä(f1)

])
.

Example 1: Suppose that we wish to perform local peak detection; then we would posit a Null

model f0 that has a peak at a desired frequency λ0. A very simple model is given by the following

AR(2):

(1− 2ρ cosωB + ρ2B2)Xt = εt (6)

where εt is a white noise sequence with variance τ2. The frequency ω parameterizes the location

of the peak, which is at cos−1(cosω(1 + ρ2)/2ρ). The parameter ρ governs the overall shape of the

curve, with ρ = 1 corresponding to an infinite peak. The corresponding spectral density is

f0(λ) =
τ2

(1− 2ρ cos(λ+ ω) + ρ2)(1− 2ρ cos(λ− ω) + ρ2)
. (7)

For simplicity of exposition, we will focus on this case, with ω selected such that the peak occurs

at a desired frequency λ0.

In order to implement the test, we apply Proposition 1 to compute Σ(Ä/f0). As discussed above,

this is easily computed when f0 corresponds to an AR model. See McElroy and Holan (2005) for

more discussion of kernels.
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As a second application, we consider testing a model by considering its ratio to the true model.

Our Null hypothesis is still f̃(λ) = f(λ). Note that f̃/f can be interpreted as a residual spectral

density; thus our Null hypothesis asserts that this residual spectral density is a constant, the

spectrum of unit variance white noise (Parzen, 1983). In general, if we have two models g and

f in mind, we might measure their local spectral discrepancy via φA(g, f) (note this is not a

true “metric” because it is not symmetric). For example, if A is compactly supported, φA(g, f)

aggregates the ratio of the models over the kernel’s support. Consider the following approximation

to φA(g, f):

φn,A(g, f) =
1
n
tr(Σ(A)Σ(g/f))

Similarly, an approximation to the variance in Theorem 2 is given by

σ2
n,A(g, f) =

2
n
tr{Σ(A)Σ(g/f)Σ(A)Σ(g/f)}.

Now if g is proportional to f , φn,A and σ2
n,A simplify greatly. In particular, if g(λ) = f(λ) for all

λ, then

φn,A(g, f) = γA(0)

σ2
n,A(g, f) =

2
n
tr{Σ2(A)}.

Further, suppose we wish to detect whether the data warrants a spectral model f within a desired

spectral range. By choosing the kernel A appropriate to the spectral range of interest, we can

appeal to the measure φA(f̂ , f). Moreover, adapting the proof of Theorem 2 it can be shown that

the mean and variance of φA(f̂ , f) are approximately φn,A(f̃ , f) and σ2
n,A(f̃ , f) respectively. Thus

we have the following corollary:

Corollary 2 Suppose that the third and fourth cumulants of {Xt} are zero, A, f̃ ∈ C1, and the

process {Xt} satisfies either condition (B) or (HT). If the kernel A is real, continuous, and even,

then
√
n

(
φA(f̂ , f)− φn,A(f̃ , f)

)
σn,A(f̃ , f)

converges weakly to a standard normal as n→∞.

Remark 4 Now under H0, the convergence result becomes

√
n

(
φA(f̂ , f)− γA(0)

)
√
n−12tr{Σ2(A)}

L=⇒ N (0, 1). (8)

This quantity can now be used as a test statistic, with standard normal critical values. Note that

it does not have mean zero and variance one in finite sample, because we are using approximations

to the mean and variance. If desired, the exact quantities from Theorem 2 can be used, but the

approximations φn,A(f̃ , f) and σn,A(f̃ , f) may be easier to compute.
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Example 2: Suppose we are interested in peak modelling, which is similar to peak detection. We

might postulate a Null model f0 of the AR(2) form given in Example 1. Under H0, the true model

is equal to f0; if the peak is not actually present in the spectrum of the data, the division by large

values of f0 at the cycle frequencies will not be compensated by the numerator of f̃/f0, resulting

in a low value of φA and rejection of H0. Note that this would result in a negative value of the

standardized φA, whereas a significantly positive φA indicates that f̃/f0 is too large at the cycle

frequencies. The kernel A should be selected in an approximate band-pass fashion, such that only

cycle frequencies are permitted to affect the diagnostic.

Now all the quantities in the test statistic in (8) can be easily calculated; if γA(0) = 0 as well, the

statistic will be properly centered automatically. In general though, we conceive of the kernel A as

representing aggregation over an interval of frequencies, and thus the assumption that γA(0) = 0

seems incompatible with this concept (since γA(0) = 1
2π

∫ π
−π A(λ) dλ). A more natural example

would be a constant function over the interval of desired frequencies (the level of the constant

function does not really matter, since this will cancel out of the test statistic). If one wishes to

weight middle frequencies more highly, then a kernel of the type

A(λ) = 1 + cosλ

could be used (or powers thereof). Since this choice is appropriate for the interval [−π, π] with

centering at zero, a shifted, scaled and reflected version of the above sinusoidal kernel may be used

for other frequency ranges; see McElroy and Holan (2005) for a more detailed discussion. Of course,

this method is not limited to peak modelling; we may be interested in the local fit of f to the data

at any and all frequencies, not necessarily where peaks or troughs occur. A practitioner should

invest some thought into choosing a kernel A appropriate for the local properties of the Null model.

Another application is given by using the measure φA to test for the presence of unobserved

components. Suppose that we formulate a model for the time series that consists of two unob-

served components, modeled by g(λ) and f(λ) respectively. We may wish to discern whether the

component modeled by g(λ) is warranted by the data. That is, we may wish to compare a model

having one component to a model containing two components. This suggests using the measure

φA(f, f+g); instead we consider φA(f0, f1+g), where f0 and f1 have the same form but are allowed

to differ in their parameter values (the advantage of not restraining f0 = f1 is that we can then

ensure that both f0 and f1 + g have approximately equal total power, thereby making it more

difficult to reject the Null hypothesis), and with kernel A chosen to weight g more highly. To see

that this is the appropriate measure, suppose we wish to assess the data against a hypothesized

model f1 + g, which would naturally be done via the measure φA(f̂ , f1 + g). Asymptotically, this

quantity is φA(f̃ , f1 + g). Under the Null hypothesis that no unobserved component is needed,

12



we have H0 : f̃ = f0, so that our measure converges to φA(f0, f1 + g). Adapting Corollary 2 in a

straightforward manner (i.e., assuming g ∈ C1) we obtain

√
n

(
φA(f̂ , f1 + g)− φn,A(f̃ , f1 + g)

)
σn,A(f̃ , f1 + g)

L=⇒ N (0, 1), (9)

where, under H0, the above quantities are defined by

φA(f̂ , f1 + g) =
1
n
X

′
Σ(A/(f1 + g))X

φn,A(f0, f1 + g) =
1
n
tr{Σ(A)Σ(f0/(f1 + g))}

σ2
n,A(f0, f1 + g) =

2
n
tr{(Σ(A)Σ(f0/(f1 + g)))2}.

Thus extreme values of φA(f̂ , f + g) indicate that f0 is not a sufficient model for the data at

frequencies where the kernel A is centered, and hence that the component model f1 +g is preferred.

Example 3: Suppose that we have a macroeconomic series, and we wish to know whether a cycle

should be added as an unobserved component to the overall model. For concreteness, suppose that

the cycle is given by the AR(2) model used in Example 1. That is, g(λ) is given by (7). The

remaining portion f could model the trend (i.e., long-term movements), and might, for example,

be given by an MA model. In order to implement the above tests, we will require an explicit form

for f0 and f1 so that we can compute Σ(f0), etc. Additionally, the kernel A should be centered

at the low frequencies – perhaps at frequency 0. Thus if the data has a significant spectral peak

in a neighborhood of the cycle peak frequency cos−1(cosω(1 + ρ2)/2ρ) and f0 is unable to capture

this behavior by itself, extreme values of the test statistic will tend to be produced, resulting in

rejection of H0 and incorporation of the trend plus cycle into our overall model.

Finally, we come to a much more general model comparison procedure. Given a proposed model

f1, we know how to assess whether it fits the data locally (or even globally): we can apply Corollary

2 under the Null Hypothesis that f̃ = f1, and choose the kernel A according to the frequency band

we are interested in. Of course, this yields a signed measure of goodness-of-fit, and we must have a

positive measure if we wish to compare the fit of competing models. This leads us to consider the

following measure

ψA(g, f) =
1
2π

∫ π

−π
A(λ)

(
g(λ)
f(λ)

− 1
)2

dλ = φA(g2, f2)− 2φA(g, f) + γA(0), (10)

which follows by expanding the square. Note that ψA(f̂ , f) yields a positive measure of the fit of

a model f to the data, with respect to the kernel A. A similar measure is studied in Paparoditis

(2000), but that work focuses on a kernel with shrinking bandwidth. If we choose the kernel A to

be non-negative everywhere, then the measure ψA(g, f) = 0 if and only if g and f coincide almost
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everywhere. Alternatively, if we have two candidate models f1 and f2, then we can determine which

model yields a better fit to the data with respect to A, simply by using the measure ψA(f̂ , f1) −
ψA(f̂ , f2); positive values indicate that f2 is superior, whereas negative values indicate that f1

is superior. In order to make these statements statistically significant, we must develop some

asymptotic theory for ψA; it is also necessary to develop a convenient way to compute ψA in the

spirit of our previous measures.

The second and third terms of ψA(f̂ , f) in (10) are easily computed by −2φA(f̂ , f)+γA(0), which

can be conveniently represented as a quadratic form in the data (plus a constant). The first term

involves the square of f̂ , and hence is more complicated. Following McElroy and Holan (2005), let

R denote the column vector of sample autocovariances: R = {R(1− n), · · · , R(0), · · · , R(n− 1)}
′
,

where

R(h) =
1
n

n−|h|∑
t=1

XtXt+|h|.

Then, applying Proposition 1 to compute Σ(A/f2) if necessary, we have

R
′
Σ(A/f2)R =

1
2π

∫ π

−π
A(λ)

f̂2(λ)
f2(λ)

dλ. (11)

The derivation of (11) is given in the proof of Corollary 3 below. So our goodness-of-fit measure is

calculated via

ψA(f̂ , f) =
1
2
R

′
Σ(A/f2)R− 2n−1X

′
Σ(A/f)X + γA(0).

Note that the factor of 1/2 associated with the first term is essentially due to the fact that Ef̂2(λ) →
2f̃2(λ). We emphasize that ψA(f̂ , f) is easy to compute given a knowledge of f . This measure

can be used in two ways: as a stand-alone goodness-of-fit, comparing a proposed model f to the

true process f̃ , and for comparing two models f1 and f2 to the process f̃ . The following result is a

corollary of Theorem 3.

Corollary 3 Suppose that the third and fourth cumulants of {Xt} are zero, A, f̃ ∈ C1, and the

process {Xt} satisfies condition (B). If the kernel A is real, continuous, and even, then

√
n

ψA(f̂ , f)− 1
2π

∫ π

−π
A(λ)

(
f̃(λ)
f(λ)

− 1

)2

dλ

 L=⇒ N (0, V ),

where the asymptotic variance is given by

V =
2
2π

∫ π

−π
A2(λ)

(
f̃(λ)
f(λ)

)4

dλ+
8
2π

∫ π

−π

A2(λ)f̃2(λ)
f2(λ)

(
f̃(λ)
f(λ)

− 1

)2

dλ.

In addition, if f1, f2 ∈ C1, then

√
n

(
ψA(f̂ , f1)− ψA(f̂ , f2)−

1
2π

∫ π

−π
A(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)(
f̃(λ)
f1(λ)

+
f̃(λ)
f2(λ)

− 2

)
dλ

)
L=⇒ N (0,W ),
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where the asymptotic variance is given by

W =
2
2π

∫ π

−π
A2(λ)

(
f̃2(λ)
f2
1 (λ)

− f̃2(λ)
f2
2 (λ)

)2

dλ+
8
2π

∫ π

−π
A2(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)2(
f̃(λ)
f1(λ)

+
f̃(λ)
f2(λ)

− 1

)2

dλ.

Remark 5 Note that W reduces to V when f1 = f̃ or f2 = f̃ . In the basic goodness-of-fit testing

scenario, we formulate the Null hypothesis that f̃ = f , so that the asymptotic mean is zero and

V reduces to 2
2π

∫ π
−π A

2(λ) dλ. However, if we are comparing both f1 and f2 to the data, then our

Null hypothesis should state that f1 and f2 compare equally favorably to the data, i.e.,(
f̃

f1
− 1

)2

=

(
f̃

f2
− 1

)2

.

Assuming that f1 6= f2 (if f1 = f2, the theorem becomes trivial), the above condition is equivalent

to the statement that

2 =
f̃

f1
+
f̃

f2
.

From this we can deduce that f̃ = 2 f1f2

f1+f2
. So under this H0, the latter goodness-of-fit measure has

asymptotic mean zero, and the limiting variance W simplifies to

64
2π

∫ π

−π
A2(λ)

(
f1(λ)− f2(λ)
f1(λ) + f2(λ)

)2

dλ.

Using these facts, one can easily set up two-sided tests with approximately normal critical values.

4 Empirical Study

The spectral measures we provide can be used in many different settings. The examples described

in Section 3 demonstrate the utility of our approach for several applications. However, the examples

we provide do not constitute an exhaustive list of problems for which these diagnostics are poten-

tially useful, and we restrict our attention to just a few case studies. In this section we present the

results of a simulation study which gives insight into the finite sample performance for several of the

proposed measures. Specifically, using the AR(2) cycle model presented in Example 3 as our Null

hypothesis, we investigate the size and power of our diagnostics under several alternatives from the

class of ARMA models. Finally, we illustrate our methodology using two separate examples from

macro-economic time series. The first example is concerned with assessing the appropriateness of

a business cycle model and is therefore concerned with local spectral goodness-of-fit in the low

frequency band. The second example considers the addition of extra components when fitting UC

models.
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4.1 Simulation Study

We simulated data from the AR(2) model using (6). This model satisfies all of the assumptions

of the previous theorems and corollaries as well as providing a Null model capable of illustrating

several different hypothesis tests. For example, this model can be used when the goal is to assess

local goodness of fit or, alternatively, to carry out model based peak detection. It is worth noting

that although these problems are not unrelated they can be tested using different diagnostics.

For simplicity of generation and exposition we restrict ourselves to one Null model and several

alternative models from the class of ARMA processes (including white noise). These models were

chosen to be representative of different peak and trough behavior in the neighborhood of the spectral

node under consideration; see Figure 1. It should be noted that all of the models investigated were

chosen to have identical innovation variance. With these models in hand, we consider several

of the diagnostics simultaneously. Moreover, we consider several sample sizes and generate one

thousand repetitions for each sample size. Specifically, we consider the hypothesis H0 : f̃ = f ; this

hypothesis is tested using test statistics (5) and (8). Additionally, the Null model was chosen such

that a spectral node is present at frequency .353. This choice comes from considerations of cycle

modelling where spectral peaks are present in the low frequency band. Finally, the simulations were

all conducted using a sinusoidal kernel with centering frequency µ = .353 and bandwidth β = .706;

see McElroy and Holan (2005) for a complete justification of these choices.

The results of the simulation study demonstrated good finite sample performance for the cases

investigated. Both test statistics (5) and (8) produced α-levels close to the nominal α-level .05

for each of the sample sizes under consideration. Additionally, the power of the test (under a

nominal α-level of .05) ranged from adequate to excellent depending on the alternative hypothesis

being considered, even for sample sizes as small as n = 120. Furthermore, the power increased with

increased sample size, as expected, and increased along with the departure from the Null hypothesis

in the frequency domain over the bandwidth being considered; see Figure 1 and Table 1.

The distribution of both test statistics under the Null hypothesis approached the distribution

of a standard Normal random variable, confirming our theoretical asymptotic results. Moreover,

the test statistics achieved approximate Normality even in small sample sizes and the distribution

means and standard deviations were at the approximate (0,1) level; see Table 2 and Figures 2 and

3.

The speed of convergence to Normality of the distribution of the test statistic φA under H0 is

sensitive to our choice of Null model. As seen in Figure 3 the distribution has a fairly long right tail

for this choice of Null process, while for the θÄ diagnostic Normality is achieved at a faster rate.
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This property of the diagnostics suggest that the choice of test statistic should be made according to

the intended application and that for small sample sizes p-values based on Monte Carlo simulation

may be preferred. Finally, simulations were conducted for the other diagnostics yielding similar

results.

4.2 Example 1: Cycle Model Identification

As an illustration we consider the annual series of U.S. GDP. Figure 4 displays the logarithm of

the data from 1870 to 1998; a single differencing seems sufficient to render the series stationary.

Figure 5 plots an AR(9)-spectrum of the differenced logged data. The model was obtained using

maximum likelihood estimation and AIC model selection. The left-hand peak may indicate the

presence of a cycle in the differenced data. Thus, we apply our data analytic method to discern if

the peak is significant as well as to assess the local (low frequency band) fit of the AR(9) model.

Based on the analysis in Harvey and Trimbur (2003) of quarterly post-World War II GDP and

the nonparametric results of McElroy and Holan (2005), a reasonable frequency for the cycle is

2π/17.8 = .353, which we take as the frequency for centering our kernel, µ, in the diagnostics.

Additionally, we choose our window width β as wide as possible (in this case, the constraint is that

the left-hand boundary of the kernel’s support is at the origin). Hence we set β = .706, which

places the support of the kernel on the interval [0, .706].

Using the sinusoidal kernel with the µ = .353 and β = .706 we test the hypothesis H0 : f̃ =

f , where f is our hypothesized AR(9) model. This hypothesis is tested using both (5) and (8)

respectively. In both hypothesis tests our alternative is chosen to be two sided. The p-value for the

θÄ diagnostic is .48 while the p-value for the φA diagnostic is .75. Therefore these tests indicate that

there is insufficient evidence to reject the AR(9) model on the frequency band [0, .706]. Moreover,

the θÄ test can be interpreted as rejection of flatness in the direction of negative convexity. That is,

with significance, there is insufficient evidence to conclude local flatness or trough behavior of the

spectral density. This corroborates the findings in Harvey and Trimbur (2003) as well as McElroy

and Holan (2005).

4.3 Example 2: Unobserved Component Modelling

As an illustration of our diagnostics in the setting of unobserved component models we first

consider the United States Consumer Price Index Series (CPI) from January 1913 through August

2005. Specifically we analyzed the logarithm of the CPI (all items; 1982-84=100; NSA), see Figure

6. Complete information regarding this series can be found on the Bureau of Labor Statistics

website (http://www.bls.gov).
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Using the Ox software program several models were fit to the logarithm of the CPI series. Among

the models under consideration a component model having only an IMA(2,2) trend was determined

best according to AICc and log-likelihood value. Another model under consideration was a model

having an ARMA(2,1) cycle component with IMA(2,2) trend, and by the same model selection

criteria was deemed a competitive model (AICc = −6.5617 vs. AICc = −6.46479); see Harvey

and Trimbur (2003) for a detailed description of the ARMA(2,1) cycle model under consideration.

In light of the underlying data generating process and the fact that the model fitting algorithm is

sensitive to the starting values supplied in the numerical algorithm, we conducted the hypothesis

test H0 : f̃ = f0 (trend) vs. Ha : f̃ = f1 + g (trend/irregular plus cycle component). Using

the sinusoidal kernel, this hypothesis test was evaluated using the test statistic in (9) with f0, f1

equal to the spectral density of the trend-irregular component and g equal to the cycle spectral

density1. Note that these time series (and their spectra) were second differenced in order to achieve

stationarity.

The business cycle, if it exists, is of unknown period. Since it was of interest to determine whether

the data supported a cycle component in the model, we performed four separate tests centering the

domain of support for the kernel diagnostic at different frequencies. The four frequencies chosen

were π/6, π/12, π/24 and .62 (the hypothesized cycle frequency); the kernel bandwidths were set

equal to the centering frequencies. The four tests produced p-values all less than .01. Thus, we

conclude that the data supports an IMA(2,2) trend-irregular component plus an ARMA(2,1) cycle

component in favor of a model having only an IMA(2,2) trend-irregular component (the fact that

the procedure indicates the presence of cyclical power at all four choices of µ demonstrates that the

practitioner need only have a vague notion of the location of the potential spectral peak; it does

not indicate the presence of four cycles!).

As a final illustration we consider the Producer Price Index(PPI) from January 1913 through

August 2005. Again we analyzed the logarithm of the data (PPI, all commodities; NSA), see Figure

7. Complete information regarding this index can be found at http://www.bls.gov. In exactly the

same manner as the CPI, we compared a model having only an IMA(2,2) trend component with a

model having both an IMA(2,2) trend and an ARMA(2,1) cycle. For this series the model containing

a cycle component was found best according AICc (AICc = −5.158 vs. AICc = −5.14049).

Finally this series was tested using centering frequencies, µ, equal to π/6, π/12,, π/24 and .34

(the hypothesized cycle frequency); again the kernel bandwidths were set equal to the centering

frequencies. With the exception of µ = π/6 (p-value=.02) all the p-values were less than .01.

Therefore based on all the tests conducted we conclude, at any reasonable level α, there is sufficient
1That is, f0 and f1 are trend-irregular models chosen such that f0 and f1 + g are both feasible models of the data,

in the sense that their total power is roughly comparable.
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evidence to reject the Null Hypothesis of a model having only a trend component in favor of a model

with both a trend and a cycle component. Our procedure was really useful in this case, because

the difference in AICc values was so minute.

Although the AICc model selection criteria slightly favored a model having only trend component

one must keep in mind that this model selection criteria is a global measure. Given that in both

cases CPI and PPI produced values of AICc that were extremely similar for both trend and trend

plus cycle models, it is not surprising that when the models are compared locally (in the low

frequency band) that a model having cycle component is preferred.

5 Conclusion

In this paper we employ a model based approach for assessing time series model misspecification.

In particular, we appeal to the frequency domain and develop asymptotic theory for several spectral

measures. These measures provide a flexible set of tools that can be used in a wide class of problems

including spectral peak identification, component significance, and local goodness of fit. To this

end, this article extends the work of McElroy and Holan (2005) as well as providing several results

of independent interest.

Further we provide the results of a simulation study that detail the finite sample performance of

our diagnostics as well as the level and power for several relevant hypotheses. The simulations show

the improvement gained by adopting a parametric framework, versus the nonparametric approach

of McElroy and Holan (2005). Additionally, the methodology is illustrated through the analysis of

several economic time series. Although several spectral domain diagnostics are currently available

for assessing goodness-of-fit, they are usually concerned with a global measure. The framework we

develop considers local assessment of goodness-of-fit. Finally, as we have demonstrated, these local

measures may be more appropriate for several of the applications encountered in practice.

One limitation of the current approach is the requirement that the input series be stationary.

Since economic data is typically nonstationary, it must be suitably differenced before applying these

measures. However, the very operation of differencing affects the shape of the spectral density, and

this affect is not just felt at frequencies corresponding to the unit roots. Future work must focus

on addressing this important topic.
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Appendix: Proofs

Proof of Proposition 1. We first show that if g is a polynomial, then ∆(g)Σ(f)∆
′
(g) = Σ(f ·

|g(e−i·)|2). Here Σ(f) is m×m dimensional, and ∆(g) is (m− q)×m for any m > q, the order of

g. Suppose {Xt} is a weakly stationary time series with spectral density f , and let Yt = g(B)Xt

so that {Yt} has spectral density f |g(e−i·)|2. Then we have the following matrix relation for any

m > q: 
Yq+1

...

Ym

 = ∆(g)


X1

...

Xm

 .
Computing autocovariances now, we obtain

ΣY = ∆(g)ΣX∆
′
(g)

where ΣY = Σ(f |g(e−i·)|2) and is m− q dimensional, and ΣX = Σ(f) and is m-dimensional. 2

Proof of Theorem 1. The formula for the expectation is immediate from the definition of θA(f̂).

For the variance, rewrite as

θA(f̂) =
1
n
Z

′
Σ1/2(f̃)Σ(A)Σ1/2(f̃)Z,

where Σ1/2(f̃) is the symmetric matrix square root of Σ(f̃), which exists because the matrix is

positive definite (see Golub and Van Loan (1996)). Here Z is a vector of uncorrelated random

variables defined by Z = Σ−1/2(f̃)X. Then if the third and fourth order cumulants vanish, the

variance of the quadratic form (McCullagh, 1987) is given by

2
n2
tr
(
(Σ1/2(f̃)Σ(A)Σ1/2(f̃))

2
)

(A.1)

from which the result follows. For the convergence of the mean and variance, we use several lemmas

from McElroy (2006). A discrete approximation to γg(j − k) is given by

γg(h) =
1
n

n∑
k=1

g(λk)eihλk

with λk = 2πk/n. In this manner the Toeplitz approximation to Σ(g) is defined by

Σjk(g) = γg(j − k).

See Taniguchi and Kakizawa (2000) for related results, which we cite here for easy reference. It

can be shown that

Σ(g) = H∗DH
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with Hjk = n−1/2ei2πjk/n and D = diag{g(λ1), · · · , g(λn)}. The ∗ denotes conjugate transpose.

Now Lemmas 2 and 3 of McElroy (2006) can be adapted to deterministic vectors Z and X. For

example, let e denote the vector of ones; then

tr(Σ(A)Σ(f̃)) = e
′
Σ(A)Σ(f̃)e = O(1) + e

′
Σ(A)Σ(f̃)e.

This follows by applying Lemma 2 and 3 of McElroy (2006). Then we use Σ(A)Σ(f̃) = Σ(Af̃), and

apply Lemma 2 once more:

e
′
Σ(Af̃)e = O(1) + e

′
Σ(Af̃)e = O(1) + tr(Af̃).

The order statements are as n→∞, and are based on a result of Wahba (1968). Finally,

1
n
tr(Σ(A)Σ(f̃)) =

1
2π

∫ π

−π
A(λ)f̃(λ) Ie(λ) dλ

where Ie(λ) = n−1|
∑n

t=1 e
−iλt|2 =

∑
|h|<n(1− |h|/n)e−iλh. Thus

1
2π

∫ π

−π
A(λ)f̃(λ)

(∑
h∈Z

e−ihλ − Ie(λ)

)
dλ

=
1
2π

∫ π

−π
A(λ)f̃(λ)

∑
|h|≥n

e−ihλ + n−1
∑
|h|<n

|h|e−ihλ

 dλ.

Let g(λ) = A(λ)f̃(λ), so that the above error can be written∑
|h|≥n

γg(h) + n−1
∑
|h|<n

|h|γg(h).

It is a simple exercise to show that g ∈ C1. As a result, the second term above is O(1/n). Also, it

is necessary that |γg(h)| ≤ Ch−2, from which it follows that the first term is O(1/n) as well. This

establishes that
1
n
tr(Σ(A)Σ(f̃)) = O(1/n) +

1
2π

∫ π

−π
A(λ)f̃(λ) dλ

using
∑

h∈Z γg(h) = 1
2π

∫ π
−π g(λ) dλ. So the mean converges to its limit at rate 1/n; the proof for

the variance is similar. The asymptotic normality result, it follows from Lemma 3.1.1 of Taniguchi

and Kakizawa (2000) that

√
n(θA(f̂)− θA(f̃)) =

√
n

1
2π

∫ π

−π
A(λ)(f̂(λ)− f̃(λ)) dλ L=⇒ N (0, V )

with V as stated in the theorem. 2
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Proof of Theorem 2. This proof is similar to that of Theorem 1; the calculations for the mean

and variance are straightforward. The limiting behavior of the mean and variance are proved

similarly to Theorem 1. For the asymptotic normality we apply Lemma 3.1.1 of Taniguchi and

Kakizawa (2000):

√
n
(
φA(f̂ , f)− φA(f̃ , f)

)
=
√
n

1
2π

∫ π

−π

A(λ)
f(λ)

(f̂(λ)− f̃(λ)) dλ L=⇒ N (0, V )

with V as stated in the theorem. This proves the theorem. 2

Proof of Theorem 3. The technique of proof is a routine adaption of the proof of Theorem 3 of

Chiu (1988), using material from Brillinger (1975). However, due to the terseness of Chiu (1988)’s

treatment, we provide considerably more details here. The expression for the asymptotic mean

follows from the proof of Theorem 2 of Chiu (1988). Now generalizing Theorem 5.10.2 of Brillinger

(1975) to higher powers of the periodogram, we can approximate the integral

1
2π

∫ π

−π

J∑
j=1

φj(λ)f̂ j(λ) dλ (A.2)

by a Riemann sum, with error OP (1/n) as follows:

1
n

∑
λ

J∑
j=1

φj(λ)Ij(λ), (A.3)

where the sum is over the Fourier frequencies in (−π, π) \ {0} as in Chiu (1988), and I(λ) denotes

the periodogram f̂(λ) restricted to these Fourier frequencies. Note that the factor of 2π that

occurs in our integral expression, in Chiu (1988) is instead incorporated into the definition of the

periodogram. Define the discrete Fourier transform of the data at Fourier frequencies λ by

d(λ) =
n∑

t=1

Xt e
−iλt.

Hence I(λ) = d(−λ)d(λ)/n. Now the variance of
√
n times (A.3) is given by

n−1
∑
λ1

∑
λ2

J∑
j,k=1

φj(λ1)φk(λ2) cum(Ij(λ1), Ik(λ2)).

Fix j and k for the moment, and without loss of generality suppose that j ≥ k. Then the corre-

sponding term in the variance is given by

n−(j+k+1)
∑

ν

∑
λ1

∑
λ2

φj(λ1)φk(λ2) cum{d(ωlm); lm ∈ ν1} · · · cum{d(ωlm); lm ∈ νq},

where ωlm = (−1)mλl and the summation in ν is over all indecomposable partitions of the following

table (see Brillinger (1975, p. 20))

(1, 1) · · · (1, 2k) · · · (1, 2j)

(2, 1) · · · (2, 2k).
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This result is obtained by applying Theorem 2.3.2 of Brillinger (1975) to

Ij(λ1) = n−j(d(−λ1) · d(λ1))
j

Ik(λ2) = n−k(d(−λ2) · d(λ2))
k.

Now our task is to determine which indecomposable partitions ν will yield asymptotically non-

negligible contributions to the variance. In order to do this, we introduce some terminology. Let a

p-set be any subset of a given table with exactly p elements. We will say that a p-set straddles the

table if it has at least one element in each row. Now a partition ν consists of a disjoint collection

of p-sets (for various p), such that the union yields the whole table. Note that these p-sets need

not be connected. Below, we will show that the only partitions ν that we need to consider are of

two types: either they contain exactly one 4-set (which straddles, with 2 elements in the top row

and 2 in the bottom), k − 1 non-straddling 2-sets (contained in the first row) and another j − 1

non-straddling 2-sets (contained in the second row); or there are k + j 2-sets, where at least one

2-set straddles. There are additional conditions on these partitions as well, which are discussed

below.

In the following analysis, we use Theorem 4.3.2 of Brillinger (1975), which requires condition

(B1). Specifically, we use (4.3.15), which is a special case of the above theorem. Asymptotically,

the term ∆(λ) =
∑n

t=1 e
−iλt tends to zero unless λ = 0, in which case the sum is n. Now in order

for a particular partition to contribute to the variance asymptotically, the corresponding cumulants

must together produce j + k − 1 powers of n – then the overall exponent of n will be −2, which

will counteract the growth in the double sum over λ1 and λ2. However, it is possible for the double

sum to collapse into a single sum (e.g., when λ1 = λ2), in which case we require j + k powers of n.

Now according to (4.3.15) of Brillinger (1975), for a particular p-set in a partition ν, the function

∆ is evaluated at the sum of the ωlm’s such that (l,m) are in that p-set. Moreover, ∆ evaluated at

this sum is asymptotically negligible unless the sum is zero; hence, we can only supply powers of n

by considering p-sets such that all the ωlm’s sum to zero. We refer to
∑

(l,m)∈B ωlm as the ω-sum

of the p-set B. For visualization, it is helpful to write out the table of ωlm’s corresponding to the

table given above:

− λ1 λ1 · · · − λ1 λ1 · · · − λ1 λ1

− λ2 λ2 · · · − λ2 λ2.

Clearly, the 2-set given by {(1, 1), (1, 2)} has corresponding ω-sum of zero. Now it follows that if p

is odd, the ω-sum of that p-set cannot be zero. Since we always need to generate j + k − 1 powers

of n (and possibly j + k powers of n), we must have at least j + k − 1 p-sets (but for different p,

possibly) in a partition ν. Since the total size of the table is 2j + 2k, this excludes p ≥ 6 outright.

Also, having more that one 4-set is excluded as well. Hence, the only possible partitions would
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have a single 4-set and j + k − 1 2-sets, or simply j + k 2-sets. Let us consider the former type in

more detail.

4-set, 2-set partitions Now for this type of partition, the ω-sum over the 4-set and over each

of the 2-sets must be zero. Note that we can effectively ignore the “diagonal” aspect of the double

sum over λ1, λ2, i.e., the cases that λ1 = λ2 or λ1 = −λ2. This is because the total number of sets in

this partition is j+k, so that the overall exponent of n is −2; since a single summation in λ is only

order n, it is asymptotically negligible. Hence the ω-sum for each of the 2-sets is only zero if they

don’t straddle, i.e., they are contained in a row. For those 2-sets in the first row, they consist of

exactly one choice of λ1 and one choice of −λ1; for 2-sets in the second row, they consist of exactly

one choice of λ2 and one choice of −λ2. In order for the partition to be indecomposable, the 4-set

must straddle (essentially, the condition of indecomposability for a two row table amounts to the

condition that at least one p-set in the partition straddles). It is easy to see that the 4-set must

contain the elements λ1,−λ1, λ2,−λ2 in some order (it is not possible to draw three elements from

one row and one from another). This gives a fairly precise description of the p-sets in this type of

partition; it is sufficient to count up the number of such partitions using elementary combinatorics.

Ignore for a moment the 4-set and consider the first element λ1 in position (1, 2) in the table.

There are j choices of the element −λ1 that it can form a 2-set with, such that the ω-sum is

zero. Moving on to the second such element in position (1, 4), there are now j − 1 such choices.

Proceeding in this fashion, we obtain j! such 2-set configurations. Independently, we pair up λ2

with elements −λ2 in the second row, and obtain k! configurations there. Now we wish to pick one

of the first row 2-sets and one of the second row 2-sets, and combine them into a 4-set: there are

j k ways of doing this (j 2-set choices for the first row, and k 2-set choices for the second row).

Therefore, the number of 4-set, 2-set partitions is jkj!k!.

Next, we see from (4.3.15) of Brillinger (1975) that each of these partitions yields the same

contribution to the variance, namely

GX(λ1,−λ1, λ2)f̃ j−1(λ1)f̃k−1(λ2).

Note that the 2π factors do not appear, since we define our cumulant spectral densities without

this normalization, which differs from Brillinger (1975). Combining with the φj ’s and replacing the

Riemann sum by an integral yields

jkj!k!
(2π)2

∫ π

−π

∫ π

−π
φj(λ)φk(ω)GX(λ,−λ, ω)f̃ j−1(λ)f̃k−1(ω) dλdω.
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2-set partitions Again we must have the ω-sum of each 2-set to be zero, but since there are j+k

sets, the contribution to the variance from these types of partitions will still be negligible unless

the double sum collapses. Hence we will have two classes of partitions: either λ1 is paired with a

λ2 or a −λ1 in every 2-set, or λ1 is paired with a −λ2 or a −λ1 in every 2-set. In other words, the

first case stipulates that no λ1 and −λ2 are together in a 2-set. Focusing on this case, if a given

2-set contains a λ1 and a −λ1, then the corresponding ω-sum is zero; likewise for 2-sets containing

a λ2 and a −λ2. However if the elements are λ1 and λ2, the ω-sum is only zero if λ1 = −λ2, which

essentially stipulates a condition on the double sum. Since all the ω-sums must be zero for the

partition to make a non-negligible contribution, we see that we must have λ1 = −λ2. Since there

are j + k 2-sets, the overall exponent of n is −1, which balances the single sum. The number of

f̃(λ1) and f̃(λ2) terms is difficult in principal to determine, but since λ = −λ2 and f̃ is even, we

are only concerned with the total number of such terms, which is j + k.

On the other hand, if no λ1 and λ2 can be in the same 2-set, we obtain a zero ω-sum for 2-sets

containing a λ1 and a −λ2 only if λ1 = λ2. Hence the double sum collapses to a single sum here as

well. The contribution to the variance will then be

n−1
∑
λ1

(
φj(λ1)φk(−λ1)f̃ j+k(λ1) + φj(λ1)φk(λ1)f̃ j+k(λ1)

)
.

It remains to count how many such partitions exist; we count the number of partitions yielding

the first case, and the same argument can be applied to the second case. First consider including

decomposable partitions in the count. Taking the first λ1 element in the (1, 2) location of the table,

there are j choices of −λ1 to pair with, and k choices of λ2, so j + k choices total. For the second

λ1, there is one less −λ1 or one less λ2, for a total j+k−1 remaining choices. All together, we find

mates for the λ1 elements in (j+ k)(j+ k− 1) · · · (k+ 1) ways. Now consider the first −λ2 element

(none of the −λ2 elements have yet been paired). It may only pair with λ2 or −λ1, of which in

total there are only k remaining choices. Proceeding, we obtain k! choices of mates for the various

−λ2, and so have (j+k)! configurations of 2-sets satisfying our conditions. However, some of these

partitions are decomposable, so we must subtract off their contribution. As discussed above, there

are j!k! such decomposable partitions, thus our summary count is (j + k)! − j!k!. Now replacing

the Riemann sum by an integral, we have a variance contribution of

(j + k)!− j!k!
2π

∫ π

−π
(φj(λ)φk(−λ) + φj(λ)φk(λ)) f̃ j+k(λ) dλ.

All together, the asymptotic variance of
√
n times (A.2) yields V , as stated in Theorem 3. Finally,

we must consider the higher order cumulants, and show that they always tend to zero ad n→∞.
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Consider the hth cumulant of (A.3), which yields

n−h
∑
λ1

·
∑
λh

J∑
j1,··· ,jh

φj1(λ1) · · ·φjh
(λh) cum{Ij1(λ1), · · · , Ijh(λh)}

= n−h−r
∑
λ1

·
∑
λh

J∑
j1,··· ,jh

φj1(λ1) · · ·φjh
(λh)

∑
ν

cum{d(ωlm); lm ∈ ν1} · · · cum{d(ωlm); lm ∈ νq},

where r = j1 + · · ·+ jh and the summation in ν is over all indecomposable partitions of the table

(1, 1) · · · (1, 2j1)

(2, 1) · · · (2, 2j2)
...

(h, 1) · · · (h, 2jh).

We seek the dominant term in the above cumulant. If we consider an indecomposable partition ν

of the above table, many of the same principles apply from our variance analysis. In particular, we

need not consider p-sets in ν with p odd. And the greatest number of factors of n are produced

from ∆ evaluated at ω-sums, if we were to take ν to be a partition consisting solely of 2-sets,

where each λk is paired with a −λk. This would produce r factors of n. However, this approach

leads to a decomposable partition, since no 2-set straddles. By joining two such 2-sets into a 4-set,

we decrease our exponent of n by one. In order to maximize the powers of n contributed by the

partition, and at the same time obtain an indecomposable partition, we need h − 1 4-sets that

straddle such that no row consists purely of 2-sets. Then the rest are row-contained 2-sets, and the

total powers of n contributed will be r−h+1. This is the most that can be contributed; note that

partitions that require a collapsing of λ-sums actually lower the order (which can be compensated

by choosing the partition appropriately). So the maximum exponent of n will be −2h + 1. Now

h of these factors will go towards offsetting the growth due to the λ sums. This leaves an overall

order for (A.3) of n−h+1.

Finally, we multiply by nh/2 and obtain the order n−h/2+1. This is negative if h > 2, and hence

all cumulants of order h ≥ 3 tend to zero. Hence the characteristic function tends to that of a

Gaussian with mean zero and variance V , which proves the theorem. 2
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Proof of Corollary 3. First we derive (11). The quadratic form is seen at once to equal

2n−1∑
j=1

2n−1∑
k=1

R(j − n)R(n− k)
1
2π

∫ π

−π

A(λ)
f2(λ)

eiλ(j−k) dλ

=
1
2π

∫ π

−π

A(λ)
f2(λ)

n−1∑
j=1−n

R(j)eiλj
n−1∑

k=1−n

R(−k)e−iλk dλ

=
1
2π

∫ π

−π

A(λ)
f2(λ)

f̂2(λ) dλ.

Hence the measure can be rewritten as

ψA(f̂ , f) =
1
2π

∫ π

−π

A(λ)
2f2(λ)

f̂2(λ) +
−2A(λ)
f(λ)

f̂(λ) dλ+ γA(0).

So to obtain the first convergence we simply apply Theorem 3, using φ1 = −2A/f and φ2 = A/2f2.

These functions are even, so the variance is

V =
1
2π

∫ π

−π

(
2φ2

1(λ)f̃2(λ) + 16φ1(λ)φ2(λ)f̃3(λ) + 40φ2
2(λ)f̃4(λ)

)
dλ

=
2
2π

∫ π

−π
4A2(λ)

f̃2(λ)
f2(λ)

− 8A2(λ)
f̃3(λ)
f3(λ)

+ 5A2(λ)
f̃4(λ)
f4(λ)

dλ,

which can be re-expressed in the stated form. The calculation for the mean is standard. Next for

the two-model comparison we have φ1 = −2A(1/f1 − 1/f2) and φ2 = A/2 · (1/f2
1 − 1/f2

2 ). So the

asymptotic mean of ψA(f̂ , f1)− ψA(f̂ , f2) is

1
2π

∫ π

−π
A(λ)f̃2(λ)

(
1

f2
1 (λ)

− 1
f2
2 (λ)

)
− 2A(λ)f̃(λ)

(
1

f1(λ)
− 1
f2(λ)

)
dλ+ γA(0)

=
1
2π

∫ π

−π
A(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)(
f̃(λ)
f1(λ)

+
f̃(λ)
f2(λ)

)
− 2A(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)
dλ+ γA(0),

which simplifies to the stated expression. Next, the variance is

W =
2
2π

∫ π

−π
4A2(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)2

− 8A2(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)(
f̃2(λ)
f2
1 (λ)

− f̃2(λ)
f2
2 (λ)

)

+ 5A2(λ)

(
f̃2(λ)
f2
1 (λ)

− f̃2(λ)
f2
2 (λ)

)2

dλ

=
8
2π

∫ π

−π
A2(λ)

(
f̃(λ)
f1(λ)

− f̃(λ)
f2(λ)

)2
1− 2

(
f̃(λ)
f1(λ)

+
f̃(λ)
f2(λ)

)
+

(
f̃(λ)
f1(λ)

+
f̃(λ)
f2(λ)

)2
 dλ

+
2
2π

∫ π

−π
A2(λ)

(
f̃2(λ)
f2
1 (λ)

− f̃2(λ)
f2
2 (λ)

)2

dλ

as desired. This completes the proof. 2
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power

θÄ Level AR(2) AR(9) MA(3) ARMA(1,1) White Noise

n=120 .053 .440 .885 .712 .891 .946

144 .052 .469 .895 .744 .907 .954

180 .043 .501 .899 .752 .902 .945

244 .045 .542 .919 .779 .916 .954

280 .049 .571 .921 .808 .927 .957

360 .046 .594 .920 .824 .940 .971

φA

n=120 .039 .683 1.0 .996 1.0 1.0

144 .036 .763 1.0 .999 1.0 1.0

180 .054 .826 1.0 1.0 1.0 1.0

244 .068 .913 1.0 1.0 1.0 1.0

280 .051 .947 1.0 1.0 1.0 1.0

360 .055 .974 1.0 1.0 1.0 1.0

Table 1: The results of 1000 replications of a simulation study to evaluate the level and power.
Presented results include the level of the test and the power under different alternatives from the
class of ARMA processes. The nominal α-level in all cases was α = .05.

n = 120 n = 144 n = 180 n = 240 n = 288 n = 360

mean - θÄ -.168 -.168 -.175 -.154 -.094 -.060

sd - θÄ .935 .961 .933 .966 .974 .959

mean - φA -.060 -.046 -.022 -.009 .014 .068

sd - φA 1.006 .956 1.000 1.031 .984 1.035

Table 2: The sample mean and standard deviation for the distribution of test statistics (5) and (8).
The simulations consisted of 1000 repetitions at the nominal α-level of α = .05.
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Figure 1: This figure contains plots of the spectral densities used in the simulation study. The
dashed vertical lines denote the support of the Kernel (bandwidth) for this investigation.
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Figure 2: This figure contains a qq plot and histogram for test statistic (5) involving θÄ when
n = 360. For convenience the theoretical distribution of the standard Normal distribution is
superimposed on the histogram.
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Figure 3: This figure contains a qq plot and histogram for test statistic (8) involving φA when
n = 360. For convenience the theoretical distribution of the standard Normal distribution is
superimposed on the histogram.
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Figure 4: Logarithm of U.S. GDP, 1870-1998.



0.0 0.5 1.0 1.5 2.0 2.5 3.0

−7
.0

−6
.5

−6
.0

−5
.5

−5
.0

−4
.5

Log GDP Spectrum

frequency

lo
g 

sp
ec

tru
m

Figure 5: AR(9) Spectrum of differenced U.S. GDP. Left-hand peak may indicate presence of a
cycle in the differenced logged data.
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Figure 6: Logarithm of U.S. CPI, 1913-2005.
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Figure 7: Logarithm of U.S. PPI, 1913-2005.
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