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Abstract

Business cycle estimates are typically the output of a two-stage filtering process: a statistical

agency first publishes seasonally adjusted data, and from this an econometrician estimates the

cycle. In many cases the two filtering procedures used are not compatible, because two different

agents are acting on the data independently. This paper derives formulas to state the signal

extraction Mean Squared Error (MSE) that results from such two-stage filtering, assuming an

ARIMA model-based framework for a finite sample of data. We also look at the “mixed” and

“direct” techniques of Kaiser and Maravall (2005) for obtaining implied models for the cycle,

and show that the direct approach can generate optimal estimates in the finite-sample context

as well. Several two-stage filtering procedures are analyzed theoretically, and the methods are

demonstrated and compared on a simulated time series.
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1 Introduction

Many economic time series undergo several distinct patterns of stochastic variation. Apart from

trading-day and holiday effects, the major stochastic components are the trend, the seasonal, and

the cycle (see Peña, Tiao, Tsay (2001) and Durbin and Koopman (2001)). It is common practice

to include a white noise irregular as well (some series also require a sampling error component). In

this paper, we focus on an observed series Y that can be viewed as a sum of unobserved component

series, consisting of cycle C, trend T , seasonal S, and irregular I. In particular we assume

Yt = Ct + Tt + St + It (1)
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for times t = 1, 2, · · · , n. This basic model of economic time series plays a prominent role in

ARIMA model-based signal extraction methods such as SEATS (Gómez and Maravall, 1997) as

well as structural time series models (Harvey, 1989). We will focus on the ARIMA model paradigm

in this paper, since this will be the most natural framework in which to develop finite-sample results.

In practice, two-stage filtering for cycle or trend estimation is the most common. This is an

artifact of the way in which economic data becomes publicly available: typically, official agencies

(such as the U.S. Census Bureau) publish seasonally adjusted data, and an economic practitioner

interested in estimating the business cycle may not have access to the raw data. So the first stage

involves government statisticians, who construct seasonal adjustment filters and apply them to

the data, and the second stage involves econometricians (business-cycle analysts, professors, etc.)

who take this filtered data, and in turn construct their own cycle filters and corresponding cycle

estimates. Clearly, it would be more optimal to estimate the cycle directly using just one filter that

appropriately considers all the dynamics of the data (assuming that a model that reflects all the

dynamics could be fitted; Kaiser and Maravall (2005) discuss some of the practical difficulties with

obtaining such a filter). However, so long as the original data Y is not made available, this two-

stage procedure will continue to be the default situation. Thus the appropriate question is: how

much additional error is induced by a two-stage procedure? A related question is: can this error be

corrected somehow? We address this topic by explicitly quantifying the error and discussing two

approaches for error correction.

In order to provide rigorous, exact formulas for the Mean Squared Error (MSE) of the two-stage

procedures, we take the perspective of the ARIMA model-based signal extraction theory. Although

many practitioners prefer the ease and elegance of state space models, with the accompanying ef-

ficiency of the state space smoother, we find it preferable to use the ARIMA formulation. Firstly,

most state space models can be put in ARIMA form. But most importantly, in the ARIMA formu-

lation explicit matrix formulas for the signal extraction linear transformation can easily be derived

(McElroy, 2005), from which basic properties of MSE linear optimal signal extraction become trans-

parent. As will become apparent from the mathematics discussed below, only these matrix formulas

permit a precise analysis of two-stage procedures and their resultant error covariance matrices. In

particular, such formulas cannot be obtained as output from the state space smoother. Although

these matrix formulas involve inversions of n-dimensional matrices, the computer code is extremely

simple to write and implement on a computer. In addition, the matrix approach is not limited

to homogeneous nonstationarity, but can be extended to heteroscedastic components as well. For

these reasons, the ARIMA formulation will be the most natural and provide the easiest exposition.
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Model-based (ARIMA or otherwise) seasonal adjustment and cycle estimation is accomplished

through a variety of methods. Model estimation is not our focus here, but for completeness we will

include a brief discussion. If it is thought that (1) describes the important unobserved components

in the data, we might begin by fitting a correctly-specified ARIMA model to Y , and attempt to

derive ARIMA models for the four components via the canonical decomposition method of Hillmer

and Tiao (1982), implemented for example in the popular seasonal adjustment program SEATS

(Gómez and Maravall, 1997). Although appealing from the standpoint that the component models

“add up to” a reasonable model for Y , it sometimes occurs that the partial fraction decomposition

method has no solution, i.e., the component models cannot be mathematically determined. In

our experience this problem becomes worse when a mixture of auto-regressive and moving average

terms are present in the model for Y , which is typically the case if we have both a cycle present

in addition to trend and seasonality. This practical difficulty is part of the motivation for the

hybrid approach discussed in Kaiser and Maravall (2005); there an ad hoc filter that has a model-

based interpretation (e.g., the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997)) is used

to implicitly define a model for the cycle.

Alternatively, one may be interested in setting up models for the unobserved components and

directly estimating them from the data through their aggregate Y (see Harvey, 1989). This can

be done by postulating ARIMA models for the components, though the implementation by the

program STAMP utilizes so-called structural models, which are essentially constrained-coefficient

ARIMA models. This latter approach is attractive, in that it incorporates our prior beliefs about

the existence of the unobserved components directly into the model estimation, and the math-

ematical difficulties of the decomposition approach is avoided. However, in some cases we have

found it is difficult to obtain good parameter estimates unless the samples are quite large (e.g.,

30 years of monthly data). This is especially true of the cycle parameters (see Harvey and Jaeger

(1993) and Gómez (2001)), since in the pseudo-spectrum the cycle is dominated by the trend’s low

frequency spectral peak. We have also explored a hybrid between the structural and decomposition

approaches that seems to do reasonably well, and which will be further discussed in Section 4.

Whichever approach is adopted, it is true that the pseudo-spectrum for Y is given as the sum of

the pseudo-spectrums of the four component processes. We can write down the ARIMA models

for all the components, and the MSE linear optimal signal extraction matrix (where the signal is

any combination of the four components, and the noise consists of the remaining components) can

be easily calculated. As alluded to above, this matrix applied to the data Y yields the linear signal

extraction estimate that is MSE optimal under Assumption A on the components (see Bell, 1984),

and is identical to the output of the state space smoother. In this way, ARIMA model-based signal

extraction from a finite-sample can always be reduced to the operation of a filter matrix on the
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data, whether we take a decomposition or a structural approach to component model estimation.

Hence, our questions about MSE’s for two-stage procedures will be answered by reading off the

diagonal entries of the appropriate error covariance matrices. This provides the motivation and the

framework for the mathematical developments below.

In this paper, we first set out certain mathematical preliminaries in Section 2. We set up the

basic signal extraction notation, and extend certain results of McElroy (2005) and McElroy and

Sutcliffe (2006). Our new results are relevant, as they demonstrate that certain idealized two-stage

filtering procedures can produce optimal estimates. In Section 3 we discuss our main questions in

more detail, applying the mathematical techniques of Section 2. We demonstrate that the common

approach to two-stage filtering results in a heightened error that is precisely quantifiable in terms

of the models for the components. If instead a cycle filter is used that essentially implies a cycle

model, as in Kaiser and Maravall (2005), then the resultant two-stage filter will be optimal under

the assumption that this implied cycle model is correct; this result confirms and expands the Kaiser

and Maravall (2005) result to the finite sample context. Finally, and perhaps of greatest interest,

we illustrate a fairly simple technique for producing an optimal filter out of two sub-optimal filters;

our method is essentially the iterative procedure of McElroy and Sutcliffe (2006) extended to the

case where all the components may be nonstationary. Next in Section 4 we illustrate the ideas of

Section 3 on simulated data, which gives the sense of how our results can be utilized. Proofs are

contained in a separate Appendix.

2 Basic results on two-stage signal extraction

We will first give a short preliminary discussion of the two-stage filtering procedures that we

consider in this paper. Assuming the underlying component decomposition (1), our basic two-stage

process involves an initial seasonal adjustment, followed by a cycle estimation phase. The seasonal

adjustment basically involves viewing the seasonal S as noise, and the cycle-trend-irregular C+T +I

as the signal. We note that in practice, the so-called “trend-cycle” C + T may be treated (and

modeled) as a single component. For example, the original approach of Hillmer and Tiao (1982)

specified seasonal, trend, and irregular components; the cycle is either ignored completely, or may

be viewed as rolled up in the trend component. In the second phase of the basic two-stage, a cycle

filter is applied, where the noise process is now trend-irregular T + I – this assumes that only

C +T +I is left after the seasonal adjustment. In practice, of course only nonstationary seasonality

is removed by the seasonal adjustment filter, as is clear from the matrix formulation of McElroy

(2005).
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In contrast to this, the so-called SEATS two-stage approach (which corresponds to the “mixed”

approach of Kaiser and Maravall, 2005) involves first producing a trend-cycle estimate C+T ; again,

the separate dynamics of cycle and trend are not modeled at this stage. Only the model of their

sum, the trend-cycle, is important. Then in the second stage we apply a signal extraction filter,

where the noise is the trend T and the signal is the cycle C. Even if we use an ad hoc filter to do

this, e.g., the HP filter, we can retrospectively define models for the cycle and trend such that the

given cycle filter is an MSE optimal filter. This is the idea presented in Kaiser and Maravall (2005)

(though not in a finite-sample context), and is currently implemented in SEATS. This represents

a resolution of the error implied by a two-stage procedure, to the extent that it is believed that the

implied model for the cycle correctly models the true underlying cycle dynamics.

Finally, we will also consider the truncated two-stage process, where the first step of seasonal

adjustment is performed in complete ignorance of the presence of a cycle – we may conceive of a

cycle being present, but we do not attempt to model it in any way during the seasonal adjustment

phase, and it is not considered to be part of the trend component. So we perform signal extraction,

where the noise is the seasonal S and the signal is the trend-irregular T + I. In the second phase,

we extract the cycle C as the signal from trend-irregular T + I noise, as in the basic two-stage.

The term “truncated” refers to the absence of cycle noise being accounted for in the first stage of

seasonal adjustment. For many applications, this may be considered a more realistic representation

of what happens in practice, versus the basic two-stage.

Now we discuss some of the basic mathematical notation needed for our signal extraction results.

Let us write the decomposition (1) in vector form

Y = C + S + T + I. (2)

So Y = {Y1, Y2, · · · , Yn}
′
, and similarly for the components. For most applications, the seasonal

and trend components are nonstationary, with associated differencing polynomials δS(z) and δT (z)

respectively, whereas the cycle and irregular are stationary. However, Theorems 1 and 2 of this

section are proved generally, in that any of the components may be stationary or nonstationary; the

one assumption is that their differencing polynomials are relatively prime, i.e., share no common

zeroes. The differencing polynomial for Yt is δ(z) = δS(z)δT (z), and Wt = δ(B)Yt is stationary,

where B is the backshift operator. These polynomials δ, δS , and δT all have their zeroes located

on the unit circle of the complex plane, and their leading coefficient is one by convention. We let

the differenced components be defined as

US
t = δS(B)St UT

t = δT (B)Tt,

which are mean zero weakly stationary time series. Let d be the order of δ, and let dS and dT be

the orders of δS and δT respectively. Clearly d = dS + dT . For example, the seasonal operator for
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monthly data might be δS(z) = 1 + z + z2 + · · · + z11, and δT (z) = (1− z)2 is appropriate for a

second-order trend.

We assume Assumption A of Bell (1984) holds on the component decomposition, appropriately

generalized to four components. Assumption A states that the initial values, i.e., the variables

Y∗ = (Y1, Y2, · · · , Yd), are independent of the differenced component series {US
t }, {UT

t }, Ct, and

It. Bell (1984), Bell and Hillmer (1988), McElroy (2005), and McElroy and Sutcliffe (2006) all

discuss the implications of this assumption. Note that mean square optimal signal extraction filters

derived under Assumption A agree exactly with the filters implicitly used by a properly initialized

state space smoother, see Bell and Hillmer (1991, 1992). We will also assume that the differenced

components {US
t }, {UT

t }, Ct, and It are uncorrelated with one another.

Next, we formulate these notations in matrix form. Let ∆ be a n − d × n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d). The matrices ∆S and

∆T have entries given by the coefficients of δS(z) and δT (z), but are n − dS × n and n − dT × n

dimensional respectively. This means that each row of these matrices consists of the coefficients

of the corresponding differencing polynomial, horizontally shifted in an appropriate fashion. For

example, ∆ is given by

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




Hence we can write

W = ∆Y, US = ∆SS, UT = ∆T T.

Now to express the important equation

Wt = δS(B)UT
t + δT (B)US

t + δ(B)Ct + δ(B)It

in matrix form we need to define further differencing matrices ∆T and ∆S , which have row entries

given by the coefficients of δT (z) and δS(z) respectively, but are n− d× n− dS and n− d× n− dT

dimensional. Then the equation that relates the components is

W = ∆T US + ∆SUT + ∆C + ∆I, (3)

which uses the relationship

∆ = ∆T ∆S = ∆S∆T (4)

proved in McElroy and Sutcliffe (2006). We will be principally interested in making estimates of C.

For each 1 ≤ t ≤ n, the minimum mean squared error signal extraction estimate is Ĉt = E[Ct|Y ].
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This can be expressed as a certain linear function of the data vector Y when the data are Gaussian.

This estimate is also the minimum mean squared error linear estimate when the data is non-

Gaussian. For the remainder of the paper, we do not assume Gaussianity, and by optimality we

always refer to the minimum mean squared error linear estimate. Writing Ĉ = (Ĉ1, Ĉ2, · · · , Ĉn)
′
,

the coefficients of these linear functions form the rows of a matrix F :

Ĉ = FY

The various rows of F differ, since only a finite number of Yt’s are available for filtering. The last

row of F , for example, corresponds to the concurrent filter. Letting ΣX denote the covariance

matrix of any random vector X, the formula for F is

F = ΣC∆
′
Σ−1

W ∆, (5)

see, e.g. McElroy (2005). From this formula, it is clear that we only need a model for C and a

model for the differenced data W ; it is not necessary to compute models for S, T , and I, but only

for their aggregate.

Now since we will be analyzing two-stage filtering procedures, we require a more flexible notation,

which generalizes ideas in McElroy and Sutcliffe (2006). Since we wish to state our results more

generally, we will consider a scenario with three components {αt}, {βt}, and {γt} that are possibly

nonstationary, with relatively prime differencing polynomials δα, δβ, and δγ ; let {Uα
t }, {Uβ

t }, and

{Uγ
t } be the differenced components. Denote by FX

XZ the filter matrix such that FX
XZ(X + Z) is

the optimal linear estimate of X from observed X + Z, given that Assumption A holds on the

decomposition Xt + Zt, where X and Z are random vectors of unobserved components. In this

fashion we define Fα
αβ , Fα

αβγ , Fαβ
αβγ , etc. The general formulas for these filter matrices can be

deduced from Theorem 1 of McElroy (2005). The following theorem shows how the filter matrices

are related:

Theorem 1 Let Assumption A hold on the decomposition α+β+γ, and assume that {Uα
t }, {Uβ

t },
and {Uγ

t } are independent and purely nondeterministic. Then

Fα
αβγ = Fα

αβ Fαβ
αβγ .

Letting α, β, and γ denote trend, cycle, seasonal, irregular, or combinations thereof as appropriate,

we have the following corollary.

Corollary 1 Under the same assumptions as Theorem 1, we have the following relations:

FC
CSTI = FC

CT FCT
CSTI = FC

CTIF
CTI
CSTI = FC

CSIF
CSI
CSTI

Similar relations hold for all of the other components.
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The first expression in Corollary 1 is the optimal cycle filter in a one-stage process, while the

other expressions all represent two-stage processes, that nevertheless result in the optimal filter.

The second expression corresponds to the SEATS approach mentioned in the beginning of this

section, where trend-cycle estimation in stage one is followed by cycle estimation from a trend

noise. The third expression corresponds to the basic two-stage; for the truncated two-stage we need

a different result. The following theorem provides an explicit formula for the filter Fα
αβγ in terms of

“two-component” filters Fα
αβ , F β

βγ , etc. It is a generalization of Theorem 1 of McElroy and Sutcliffe

(2006) to the case where all 3 unobserved components are nonstationary. We let 1 be a shorthand

for the n× n identity matrix.

Theorem 2 Under the same assumptions as Theorem 1, 1−Fα
αγF β

βγ and 1−Fα
αβF γ

βγ are invertible,

and

Fα
αβγ =

(
1− Fα

αγF β
βγ

)−1
Fα

αγ(1− F β
βγ) =

(
1− Fα

αβF γ
βγ

)−1
Fα

αβ(1− F γ
βγ).

The invertibility claimed in Theorem 2 depends upon the assumption that the differencing operators

are relatively prime. This result can be applied to cycle estimation through the following corollary:

Corollary 2 Under the same assumptions as Theorem 1, we have the following expressions:

FC
CSTI =

(
1− FC

CTIF
S
STI

)−1
FC

CTI(1− FS
STI) =

(
1− FC

CT FSI
STI

)−1
FC

CT (1− FSI
STI)

Similar expressions hold for all of the other components.

In the next section we will see various applications of Corollaries 1 and 2. We note that the

truncated two-stage corresponds to the filters FC
CTI(1 − FS

STI), which are found on the right hand

side of the second expression in Corollary 2; hence, multiplication by the inverse of the matrix

(1− FC
CTIF

S
STI) provides a “correction factor,” yielding the optimal filter matrix FC

CSTI . The next

section develops exact error formulas for several cycle estimation procedures, taking into account

the fact that model parameter estimates in the first and second stages of a two-step procedure may

well differ from one another, and also differ from the true Data Generation Process (DGP).

3 Errors in Cycle Estimation

In this section, we consider the various cycle estimation methods discussed in the introduction,

and provide formulas for the MSE in each case. In general, the MSEs are the diagonal entries of

the covariance matrix of FY − ξ, where ξ is the signal of interest. For convenience of exposition,

we will refer to this covariance matrix as the MSE matrix. Now if Y = ξ + η is a signal plus noise

decomposition, then

FY − ξ = (F − 1)ξ + Fη
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gives a breakdown of the error process. It is desirable that this expression be mean zero and a

function of only the differenced components U ξ and Uη. A process that is a linear transformation

of stationary random vectors, or sums thereof, will be called “broadly stationary.” We require that

the error process FY −ξ be broadly stationary, which is the finite-sample analogue of the bi-infinite

sample requirement that the error process be stationary. Without this requirement, the MSE will

depend on the variances of nonstationary processes, which may grow in an unbounded fashion with

increasing sample size. A sufficient condition for broad stationarity is that

(F − 1) = P∆ξ, F = Q∆η (6)

for some (non-square) matrices P and Q. Here ∆ξ and ∆η are the differencing matrices associated

with the possibly nonstationary ξ and η. All of the model-based filters have this property, as is

easily verified from McElroy (2005). However, for a two-stage procedure resulting in a filter F ,

broad stationarity of the error process need not hold. This will be explored further below.

We employ the following notation. The true covariance matrix of a random vector X is denoted

by ΣX , while a proxy for this quantity – perhaps based upon some model for {Xt} – is denoted by

Σ̇X . If there is a second proxy, it is denoted by Σ̈X . Below, we will consider proxies Σ̇X for ΣX

used in the first stage of the filtering, obtained perhaps by fitting a model to the data; in the second

stage we have different proxies Σ̈X that arise from different models. Note that even though the

parameter estimates that enter into these proxies are data-dependent, and hence random, we treat

them as deterministic in the formulas developed below. Thus, our formulas do not take parameter

uncertainty into account. Finally, Ḟ and F̈ will denote filter matrices utilized in the first and second

stages, respectively.

3.1 One-stage as a Benchmark

Now we are only interested in the optimal, one-stage procedures as a sort of benchmark for the

two-stage procedures. We can construct the filter ḞC
CSTI by plugging in proxy covariance matrices

for the true matrices. With USTI = ∆(S + T + I), we have

ḞC
CSTI =

(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

∆
′
Σ̇−1

USTI ∆ = Σ̇−1
C ∆

′
Σ̇−1

W ∆,

which follows from the general formulas in McElroy (2005). As noted in that paper, Σ̇USTI can be

constructed from the component covariance matrices Σ̇UT , Σ̇US , and Σ̇I via the equation

Σ̇USTI = ∆SΣ̇UT ∆
′
S + ∆T Σ̇US∆

′
T + ∆Σ̇I∆

′
.

Then the error process is given by

ḞC
CSTIY − C = −

(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

Σ̇−1
C C +

(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

∆
′
Σ̇−1

USTI U
STI ,
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which has covariance matrix
(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1 (

Σ̇−1
C ΣCΣ̇−1

C + ∆
′
Σ̇−1

USTI ΣUSTI Σ̇−1
USTI ∆

)(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

. (7)

Typically, we just use the proxies ΣC = Σ̇C and ΣUSTI = Σ̇USTI , which results in a reduction of

(7) to the familiar (
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

.

3.2 Basic two-stage

Now we turn to the analysis of the two-stage procedures delineated in Section 2. First, we consider

the basic two-stage procedure, formulated generally. For generic nonstationary components α, β,

and γ, the basic two-stage filter is

F̈α
αβḞαβ

αβγ ,

where F̈α
αβ is a filter constructed from component models estimated from Ḟαβ

αβγY . The idea is

to first estimate models for components α, β, γ, and apply Ḟαβ
αβγ . This produces a process with

nonstationary α and β components, but only a stationary γ, since Ḟαβ
αβγ accomplishes δγ differencing.

So the resulting process can conceivably be modelled as having nonstationary components α and

β; the residual Ḟαβ
αβγγ content from the γ component is broadly stationary, and gets lumped in

with the nonstationary Ḟαβ
αβγα and Ḟαβ

αβγβ. So Ḟαβ
αβγY can be given (and is given, in practice) a

two-component model, and the filter for α is called F̈α
αβ, which is estimated from models of α and

β in Ḟαβ
αβγY . Thus our final filter is F̈α

αβḞαβ
αβγ applied to Y .

For the following theorem, we use the notations employed in the proof of Theorem 2; also let ∆α

be an n− (dα + dβ + dγ)× n− (dβ + dγ) dimensional matrix that accomplishes δα differencing.

Theorem 3 Under the same assumptions as Theorem 1,

F̈α
αβḞαβ

αβγ = Ḟα
αβγ + M−1P Σ̇−1

W ∆ (8)

M = ∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ∆β

P = ∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
αγ −∆

′
αΣ̈−1

UαΣ̇Uα∆
′
βγ .

Letting Q = ∆
′
αΣ̇−1

Uα∆α + ∆
′
βγΣ̇−1

Uβγ∆βγ and R = ∆αΣUβγ Σ̇−1
Uβγ∆βγ − ∆βγΣUαΣ̇−1

Uα∆α, the MSE

matrix is given by

M−1P Σ̇−1
W ΣW Σ̇−1

W P ′M−1

+ M−1P Σ̇−1
W RQ−1 + Q−1R′Σ̇−1

W P ′M−1

+ Q−1∆
′
αΣ̇−1

UαΣUαΣ̇−1
Uα∆αQ−1 + Q−1∆

′
βγΣ̇−1

UβγΣUβγ Σ̇−1
Uβγ∆βγQ−1.
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Remark 1 The form of (8) says that the two-stage filter equals the benchmark filter Ḟα
αβγ plus

some error given by M−1P Σ̇−1
W ∆. If the DGP matches the first-stage component model estimates,

then R = 0 and terms two and three in the MSE formula vanish; also, terms four and five consolidate

to Q−1. One then has the simpler formula

Q−1 + M−1P Σ̇−1
W P

′
M−1.

Typically, P = 0 only if the first and second estimates of the component models match. However,

this would be a strange assumption in practice. Now Q−1 is the MSE matrix of the optimal filter,

so the second term in the above expression represents the additional error incurred by utilizing a

two-stage approach.

To apply this result to the basic two-stage method, we let α be the cycle, β be the trend-irregular,

and γ be the seasonal. Then the filter is given by

F̈C
CTI Ḟ

CTI
CSTI = ḞC

CSTI +
(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1 [
∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
S − Σ̈−1

C Σ̇C∆
′]

Σ̇−1
W ∆

with UTI = ∆T (T + I) here. This formula tells us that the additional error essentially arises from

having different models for the cycle and trend-irregular in the first and second stages. The MSE

matrix is
(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1 [
∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
S − Σ̈−1

C Σ̇C∆
′]

Σ̇−1
W ΣW Σ̇−1

W

[
∆SΣ̇UTI Σ̈−1

UTI ∆T −∆Σ̇CΣ̈−1
C

] (
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1

+
(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1 [
∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
S − Σ̈−1

C Σ̇C∆
′]

Σ̇−1
W

(
ΣUSTI Σ̇−1

USTI ∆−∆ΣCΣ̇−1
C

)(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

+
(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1 (

∆
′
Σ̇−1

USTI ΣUSTI − Σ̇−1
C ΣC∆

′)
Σ̇−1

W

[
∆SΣ̇UTI Σ̈−1

UTI ∆T −∆Σ̇CΣ̈−1
C

] (
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1

+
(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

Σ̇−1
C ΣCΣ̇−1

C

(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

+
(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

∆
′
Σ̇−1

USTI ΣUSTI Σ̇−1
USTI ∆

(
Σ̇−1

C + ∆
′
Σ̇−1

USTI ∆
)−1

(9)

This formula (9) can be used when the true DGP is known (as in the illustration of Section 4).

Otherwise, proxies are used for ΣC and ΣUSTI , e.g., Σ̇C and Σ̇USTI .

3.3 SEATS two-stage

As alluded to in Section 2, the so-called SEATS two-stage can be described via

F̃C
CT ḞCT

CSTI ,
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where F̃ denotes a filter matrix chosen in some ad hoc fashion, e.g., using model-based HP filters

with pre-determined parameter values. We use the “tilde” notation rather than a double dot, in

order to distinguish between filters chosen according to a priori design principles and filters that

are based on fitted models. Now the above two-stage filter can be made to equal the benchmark,

as long as we define the models for C and T appropriately. In fact, the models for C and T will be

“implied” by the choice of the given ad hoc filter. This is described in Kaiser and Maravall (2005),

but assuming a bi-infinite sample; some specific details are supplied in McElroy (2006b).

We first note that a given ad hoc symmetric filter can be written as H(B)H(F ) for some power

series H(z); in order for this cycle filter to be given a model-based interpretation, it is necessary

that it accomplish trend-differencing. In fact, its frequency response should contain |δT (e−iλ)|2 as

a factor. Also, the corresponding signal extraction matrix F̃C
CT must have the following form:

F̃C
CT = Σ̃C∆

′
T Σ̃−1

UCT ∆T ,

for some covariance matrices Σ̃C and Σ̃UCT to be determined. In other words, in order for F̃C
CT to

be a model-based finite-sample analogue of H(B)H(F ), it must have the form given by the above

equation. Since the pseudo-spectral density ḟCT (λ) = ḟUCT (λ)/|δT (e−iλ)|2 is known from the first

stage, we can use it to define the “implied” models for C and T . Following Kaiser and Maravall

(2005) yields:

f̃C(λ) := |H(e−iλ)|2ḟCT (λ)

f̃T (λ) :=
(
1− |H(e−iλ)|2

)
ḟCT (λ)

f̃UT (λ) :=
(
1− |H(e−iλ)|2

)
ḟUCT (λ)

Note that in order for f̃C to correspond to a stationary process, it is necessary that the filter

H(B)H(F ) contain the trend-differencing factor, which will cancel the |δT (e−iλ)|2 factor in the

denominator of ḟCT . Now f̃C can be calculated using the results in McElroy (2006b), which will

be further discussed in Section 4 below. Once these spectral densities are defined, we obtain the

covariance matrices Σ̃C and Σ̃UCT by the simple formulas

Σ̃C := Σ(f̃C)

Σ̃UT := Σ(f̃UT ),

where in general Σjk(g) = 1
2π

∫ π
−π g(λ)eiλ(j−k) dλ, i.e., the autocovariance at lag j−k corresponding

to the spectral density g. So our filter matrix F̃C
CT is in turn defined, using these matrices. Now

note that, using Lemma 1 of McElroy (2006a), we have

Σ̃UCT = ∆T Σ̃C∆
′
T + Σ̃UT = Σ

(
|δT (e−i·)|2f̃C

)
+ Σ(f̃UT ) = Σ(ḟUCT ) = Σ̇UCT . (10)

12



This is an important relation, since it is needed to demonstrate the optimality of F̃C
CT ḞCT

CSTI . We

have

F̃C
CT ḞCT

CSTI = Σ̃C∆
′
T Σ̃−1

UCT ∆T ḞCT
CSTI

= Σ̃C∆
′
T Σ̃−1

UCT Σ̇UCT ∆
′
SΣ̇−1

W ∆

= Σ̃C∆
′
T ∆

′
SΣ̇−1

W ∆

= Σ̃C∆
′
Σ̇−1

W ∆,

using (10) and (4). This result is the optimal filter, noting that

Σ̇W = ∆SΣ̇UCT ∆
′
S + ∆T Σ̇US∆

′
T + ∆Σ̇I∆

′

is determined completely by models specified in stage one, while the matrix Σ̃C obtained in stage

two is an implied model for the cycle. So this provides a verification that the “mixed” and “direct”

approaches discussed in Kaiser and Maravall (2005) are equivalent in the finite-sample scenario, so

long as we define F̃C
CT in the prescribed manner.

It follows at once that the SEATS approach produces a broadly stationary error process, and

the MSE matrix is

ΣC + Σ̃C∆
′
Σ̇−1

W ΣW Σ̇−1
W ∆Σ̃C − Σ̃C∆

′
Σ̇−1

W ∆ΣC − ΣC∆
′
Σ̇−1

W ∆Σ̃C .

This might be computed by plugging in the proxies Σ̃C and Σ̇W (without much justification for the

former substitution) for the DGP values; the result is

Σ̃C − Σ̃C∆
′
Σ̇−1

W ∆Σ̃C .

3.4 Truncated and iterated two-stage

As mentioned in Section 2, the truncated two-stage method corresponds to using the filter

F̈C
CTI(1− ḞS

STI).

In the first stage, no accounting of the cycle is made, and so the cycle frequencies get incorporated

into the other three components (primarily in the trend). Since the cycle is typically stationary,

this will not pose much of a problem for the seasonal adjustment procedure. However, in the second

stage we now assume that a cycle is present in the seasonally-adjusted data. Hence we obtain a

model for it, and construct the filter F̈C
CTI . Formulated more generally, the filter is given by F̈α

αβḞ β
βγ .

Here α is not modeled in the first stage. Computation shows that

F̈α
αβḞ β

βγ =
(
∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ∆β

)−1
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ . (11)
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Clearly this filter will transform β + γ to a broadly stationary series. However,

F̈α
αβḞ β

βγ − 1 =
(
∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ∆β

)−1 [
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ −∆
′
αΣ̈−1

Uα∆α −∆
′
βΣ̈−1

Uβ∆β

]
,

which reduces nonstationary α to broad stationarity iff

∆
′
βΣ̈−1

Uβ

(
Σ̇Uβ∆

′
γΣ̇−1

Uβγ∆γ − 1
)

∆β = 0.

But this is only satisfied if ∆γ is the zero matrix, so this method fails our basic requirement (6).

Of course, there is no problem when α is stationary, as in our applications where it represents the

cycle. But for other applications of two-stage filtering, this could be an important consideration.

For example, we might have α as the seasonal, β as the irregular, and γ as the trend; this roughly

corresponds to the iterative method of X−11, but in a model-based formulation – see McElroy and

Sutcliffe (2006). Since α may well be nonstationary, we consider a modification of the truncated

two-stage, which essentially amounts to an iteration of the filters F̈α
αβ and Ḟ β

βγ , and hence is called

iterated two-stage. We take the truncated two-stage filters, and left-multiply by a correction filter

as follows: (
1− F̈α

αβḞ γ
βγ

)−1
F̈α

αβḞ β
βγ . (12)

This is motivated by the formulas in Theorem 2 (note that Ḟ γ
βγ = 1 − Ḟ β

βγ). This is well-defined

whenever the left-hand matrix is invertible; a sufficient condition for this invertibility (which could

be imposed at the second estimation phase) is compatibility: namely, that

Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆γΣ̈Uβ (13)

is non-negative definite. This is termed compatibility, since β is the shared component of the first

and second stage estimations. A second motivation for using the iterated two-stage, is that when

the first and second stage proxies for the covariances matrices are identical, then (12) yields the

optimal filter by Theorem 2. Even when the first and second proxies are not the same, it turns out

that the error process for the iterated two-stage filter matrix is always broadly stationary, and the

following theorem provides the MSE matrix.

Theorem 4 Assume compatibility (13) as well as the same assumptions as Theorem 1; then
(
1− F̈α

αβḞ γ
βγ

)−1
F̈α

αβḞ β
βγ = M−1∆

′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ

is well-defined, where M = ∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ . This filter matrix satisfies (6),

and the MSE matrix is given by

M−1
(
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

UβγΣUβγ Σ̇−1
Uβγ∆γΣ̇Uβ Σ̈−1

Uβ∆β + ∆
′
αΣ̈−1

UαΣUαΣ̈−1
Uα∆α

)
M ′−1.
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Remark 2 This estimate possesses a form of “mixed optimality.” If one equates the first and

second stage proxies in the filter formula, one clearly recovers the optimal filter Ḟα
αβγ , which is in

agreement with Theorem 2. Because of this property, and the fact that for nonstationary α (12)

provides a broadly stationary error process, this iterated two-stage is preferable to the truncated two-

stage method whenever the correction matrix 1− F̈α
αβḞ γ

βγ is invertible (compatibility is a sufficient

condition for this, but is not necessary).

Remark 3 The term iterated two-stage comes from an iterative approach to signal extraction, as

described in McElroy and Sutcliffe (2006). Essentially, we can consider an iterative procedure as

follows:

γ̂ ← Ḟ γ
βγ(Y − α̂)

α̂ ← F̈α
αβ(Y − γ̂)

So long as the correction matrix is invertible, this iterative procedure converges quickly to the

estimates of α and γ described by the formulas of Theorem 4. As mentioned above, McElroy and

Sutcliffe (2006) develops this algorithm with α equal to the seasonal, β equal to the irregular, and

γ as the trend.

To apply this result to the two-stage method for cycle estimation, we let α be the cycle, β be the

trend-irregular, and γ be the seasonal. Assuming compatibility, the filter is given by
(
1− F̈C

CTI Ḟ
S
STI

)−1
F̈C

CTI Ḟ
TI
STI =

(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
SΣ̇−1

USTI ∆
)−1

∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
SΣ̇−1

USTI ∆.

Note that this filter can be computed solely from a knowledge of the matrices ḞS
STI and F̈C

CTI . So

long as the first-stage filter ḞS
STI is made available to the cycle analyst, the correction factor can be

computed and applied (assuming it is invertible) completely in the second stage. The MSE matrix

is given by
(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
SΣ̇−1

USTI ∆
)−1

(
∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
SΣ̇−1

USTI ΣUSTI Σ̇−1
USTI ∆SΣ̇UTI Σ̈−1

UTI ∆T + Σ̈−1
C ΣCΣ̈−1

C

) (
Σ̈−1

C + ∆
′
Σ̇−1

USTI ∆SΣ̇UTI Σ̈−1
UTI ∆T

)−1
,

which can be computed using the proxies ΣUSTI = Σ̇USTI and ΣC = Σ̈C .

Now when α is stationary, the truncated two-stage can be used, and its error process is broadly

stationary. The MSE matrix in this case is
(
Σ̈−1

α + ∆
′
βΣ̈−1

Uβ∆β

)−1 (
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

UβγΣUβγ Σ̇−1
Uβγ∆γΣ̇Uβ Σ̈−1

Uβ∆β + LΣαL
′)(

Σ̈−1
α + ∆

′
βΣ̈−1

Uβ∆β

)−1

L =
[
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ −∆
′
αΣ̈−1

α ∆α −∆
′
βΣ̈−1

Uβ∆β

]
= −∆

′
βΣ̈−1

Uβ∆βḞ γ
βγ −∆

′
αΣ̈−1

α ∆α.
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This can be compared to the MSE in Theorem 4 when α is stationary. In the case of cycle-seasonal-

trend-irregular data, this formula becomes
(
Σ̈−1

C + ∆
′
T Σ̈−1

UTI ∆T

)−1 (
∆
′
T Σ̈−1

UTI Σ̇UTI ∆
′
SΣ̇−1

USTI ΣUSTI Σ̇−1
USTI ∆SΣ̇UTI Σ̈−1

UTI ∆T + LΣCL
′)(

Σ̈−1
C + ∆

′
T Σ̈−1

UTI ∆T

)−1

L = ∆
′
T Σ̈−1

UTI ∆T ḞS
STI − Σ̈−1

C ,

which can be computed using the proxies ΣUSTI = Σ̇USTI and ΣC = Σ̈C .

4 Illustration

The formulas of the previous section are the main focus of this paper. In order to demonstrate

how they can be used in practice, we set out a detailed illustration. The goal is to apply the

various methods – one-stage, basic two-stage, SEATS two-stage, truncated two-stage, and iterated

two-stage – for cycle signal extraction. We wish to examine not only the cycle estimates from

these five methods, but more importantly the MSE plots. However, in order to compute the MSE’s

it is necessary to have some knowledge of the DGP; as mentioned in the previous section, these

MSE’s can be calculated by using certain proxies. We choose to illustrate the different MSE’s by

using a simulation, for which the true DGP is known. Even though the model-based filters are

derived from data-dependent parameter estimates, we will treat the filters as if they are fixed for

the purpose of calculating the MSE. Clearly, the quality of the cycle estimates depends upon having

decent models for the components, and having a reliable estimation procedure. In order to provide

a suitable boundary for our study, we will utilize one estimation procedure, which will be applied

to all of the five approaches in the same manner. By keeping the model estimation procedure fixed,

we will be comparing the filter approaches (this assumes that our model estimation procedure does

not inherently favor one filtering approach over another). We utilize the so-called hybrid approach,

which is described below.

The hybrid approach is designed to be a flexible method for modeling either three-component

(S + T + I or C + T + I) or four component (C + S + T + I) models. The idea is simple: if a

cycle is thought to be present, it is given a separate structural model, whereas combinations of the

seasonal, trend, and irregular are given an appropriate SARIMA model (Box and Jenkins, 1976)

specification. For the one-stage benchmark, this means specifying an Airline model for S + T + I,

and a separate ARMA(2, 1) model for C. Then the models for S, T , and I can be obtained by

canonical decomposition (this is why we call the method “hybrid,” being a mixture of decomposition

and structural approaches). For the basic two-stage, we use these same models for the first step.

Then we use a hybrid model for the seasonally adjusted data, utilizing a separate component for

C and another SARIMA model for T + I; the models for T and I can then be found by canonical

decomposition (though this is not necessary for the calculations). In the SEATS approach, we omit
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the cycle model and just use an Airline model on the data, performing a canonical decomposition

on S +TC + I, where the trend-cycle TC is given an appropriate ARIMA model. Then we obtain

implied models for T and C via the method of section 3.3. The fixed cycle filter that we use is

an HP filter with signal-noise ratio set at q = 1/1600. For the truncated two-stage, we again use

canonical decomposition on the Airline model, just as in the SEATS two-stage. Then in the second

step we model the seasonally adjusted data with a C + T + I model, in the same fashion as the

basic two-stage. Finally, the iterated two-stage requires no additional estimation, being directly

implemented from the models obtained from the truncated two-stage. This describes the general

procedure followed; section 4.1 below gives specific information about the models obtained for each

method.

We chose to simulate a time series with cycle, seasonal, and trend behavior. The reason for using

a simulation is two-fold: we are guaranteed that a cycle actually exists in the data (whereas this

may not be obvious in the case of real data), and we have knowledge of the DGP which allows us

to compute the exact MSE’s. Moreover, we can control the relative strength of cyclical, seasonal,

trend, and irregular components in the simulation, which will facilitate estimation of the models.

More details on the simulation are provided in section 4.1; section 4.2 discusses the results, giving

a comparison of the cycle estimates and their MSE’s.

4.1 Model Estimation

The cycle model that we utilize is the first-order cycle of Harvey and Trimbur (2003), whereas

combinations of the trend, seasonal, and irregular are given various SARIMA models. Our simu-

lation was drawn from the following models:

(1− 2(.9) cos(π/24) B + .92B2)Ct = (1− .9 cos(π/24) B)εC
t

(1−B)(1−B12)(St + Tt + It) = (1− .6B)(1− .6B12)εSTI
t

with εC
t ∼ WN(0, .01) and εSTI

t ∼ WN(0, .001). The cycle innovation variance is 10 times that of

the airline model; this was determined by trial-and-error to give a reasonable balance of cyclical,

seasonal, and trend behavior. (These small values were used so that they would be appropriate for

the choice of initial values used for the airline model simulation.) The parameter ρ = .9 in the cycle

model indicates the persistency (ρ = 1 corresponds to a nonstationary cycle), while the frequency

ω = π/24 corresponds to the peak in the cycle’s spectral density. This frequency corresponds to

a period of 4 years; cycles are thought to have a period of between 2 and 10 years (see Harvey

and Trimbur, 2003 and Kaiser and Maravall, 2005). The Airline model parameters represent

moderate values, appropriate for many U.S. Census Bureau time series. A sample of 480 values

was drawn, using initial values for the seasonal-trend-irregular drawn from a real series (which

were then discarded). The cycle was initialized with a pair of zeroes, but a burn-in period of 120
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observations was used. Figure 1 displays the simulated cycle, simulated seasonal-trend-irregular,

and the simulated series; note that this is a stochastic cycle, and thus appears more “rough” than

the estimated cycle that many are accustomed to seeing.

One-stage We fit the ARMA(2, 1) cycle model plus an airline model to the data, obtaining

(1− 2(.86) cos(.043π) B + .862B2)Ct = (1− .86 cos(.043π) B)εC
t

(1−B)(1−B12)(St + Tt + It) = (1− .52B)(1− .47B12)εSTI
t

U(B)St = (1 + 1.24B + 1.19B2 + 1.03B3 + 0.80B4 + 0.55B5 + 0.31B6

+ 0.08B7 − 0.09B8 − 0.25B9 − 0.34B10 − 0.57B11)εS
t

(1−B)2Tt = (1 + 0.06B − 0.94B2)εT
t ,

where U(z) = 1+z +z2 + · · ·+z11. We have included the models for seasonal, trend, and irregular,

which were obtained by canonical decomposition. The white noise variances are (respectively for

cycle, airline model, seasonal, trend, and irregular):

0.011885 0.000936 0.000065 0.000028 0.000292

All of the estimates seem reasonably good, given the true parameters. The optimal cycle extraction

filter is obtained from the models, and used to produce the cycle estimate and its MSE, as described

in Section 3.1.

Basic two-stage We take the seasonally adjusted component ḞCTI
CSTIY from the one-stage above,

and fit a cycle plus SARIMA(0, 2, 1)(0, 0, 1) model. At first we tried just an ARIMA(0, 2, 2) model

for the trend-irregular, but there tends to be residual “stationary seasonality” in the seasonally

adjusted data, which is adequately modeled by using a seasonal moving average. Moreover the

SARIMA(0, 2, 1)(0, 0, 1) had an admissible decomposition. The estimated models are

(1− 2(.84) cos(.057π) B + .842B2)Ct = (1− .84 cos(.057π) B)εC
t

(1−B)2(Tt + It) = (1− .96B)(1− .65B12)εTI
t ,

with innovation variances for cycle and trend-irregular given by 0.00929 and 0.00154 respectively.

It is not necessary to decompose the trend-irregular, so this is omitted. The cycle estimates are

quite good, considering they are obtained from filtered data. Note that .057π corresponds to a

period of 2.92 years. The cycle estimate and MSE are then determined according to Section 3.2.
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SEATS two-stage The first step is to fit an airline model to the data, ignoring cyclical behavior.

The estimated model is

(1−B)(1−B12)(St + Tt + It) = (1− .09B)(1− .87B12)εSTI
t

U(B)St = (1 + 1.76B + 2.05B2 + 2.10B3 + 1.95B4 + 1.68B5 + 1.35B6

+ 0.99B7 + 0.68B8 + 0.36B9 + 0.17B10 − 0.17B11)εS
t

(1−B)2Tt = (1 + 0.01B − 0.99B2)εT
t ,

with innovation variances given by

0.015869 0.000095 0.002895 0.004090

for seasonal-trend-irregular, seasonal, trend, and irregular respectively. The notation T for trend

is a bit confusing, since we really think of this as trend-cycle in the SEATS two-stage procedure.

The estimates are reasonable; note that the higher innovation variance for seasonal-trend-irregular

is due to the fact that it must absorb the contributions to the variance due to the cycle. Now the

implied model for the cycle, using the results of McElroy (2006b) and the discussion in Section 3.1,

works out to be

(1− 1.777091B + .7994438B2)C̃t = (1 + 0.01B − 0.99B2)εC̃
t

with innovation variance 0.002895. The AR(2) polynomial comes from the HP filter with signal-

noise ratio 1/1600; this choice of q is a popular ad hoc value, and corresponds to a cycle period of

4.688 years (McElroy, 2006b). (The actual value of q corresponding to the given frequency π/24 is

q = .0018.) Then we can compute the cycle extraction filter directly from the formula Σ̃C∆
′
Σ̇−1

W ∆,

so it is not necessary to actually apply two filters. The MSE is also calculated as described in

Section 3.3.

Truncated and Iterated two-stage We start with the same airline model as in the SEATS

two-stage, and we compute the seasonally adjusted component. Then an ARMA(2, 1) cycle and

SARIMA(0, 2, 1)(0, 0, 1) trend-irregular is fitted to the seasonally adjusted data, resulting in the

models

(1− 2(.83) cos(.044π) B + .832B2)Ct = (1− .83 cos(.044π) B)εC
t

(1−B)2(Tt + It) = (1− .96B)(1− .64B12)εTI
t ,

with innovation variances for cycle and trend-irregular given by 0.00976 and 0.00134 respectively.

The cycle model is encouraging, being even closer than the second-stage estimate in the basic

approach. With these models, both the truncated and iterated estimates could be computed as

described in Section 3.4.
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4.2 Results and Summary

In Figure 2 we plot the one-stage and SEATS method cycle estimate against the true component,

while Figure 3 compares the other estimates to the cycle. The one-stage and SEATS methods

most closely reproduced the true underlying cycle. The other methods do not seem to match the

true component’s movements, which is perhaps not surprising. These two-stage methods attempt

to estimate the cycle from seasonally adjusted data; the cycle dynamics may be distorted by the

seasonal adjustment procedure. It is interesting that the SEATS method seems to do a better job

than the others, which may be because it can be reinterpreted as a one-stage method using the

implied models for cycle and trend. The basic two-stage, truncated, and iterated methods capture

very few of the cyclical movements, and in addition their variance is too small. Of course, this only

represents one example.

The MSE’s are compared in Figure 4. As expected, the one-stage method does the best. These

are “true” MSE’s in the sense that the true DGP autocovariances were used rather than the proxies

that would be used for real data. Some of the error represented here is due to model estimation

error, since if the model estimates were exact there would be simplifications in the MSE formulas,

resulting in a lower MSE plot. We chose to present these results, which represent the true error when

the following methods are applied (viewing the filters as fixed, rather than being data-dependent).

The SEATS method is superior to the other two-stage approaches. The iterated and truncated

do a little better than the basic; it is surprising that the truncated is superior to the iterated in

this case. In any event, this figure gives some idea of the scale of the additional error induced by

two-stage methods.

Some comments on the implementation and computational time are in order. The code that

performed the model estimation and signal extraction was written in the econometrics language

Ox, utilizing some functions from SsfPack (Koopman, Shephard, Doornik, 1999). Although many

matrix inversions of size 480 were required, the whole procedure was completed in a couple of

minutes. While prohibitive for mass production, this is quite tolerable for individual data analysis.

Whereas matrix-based approaches to signal extraction are slower than the state space smoother,

they tend to be easier to implement; moreover, the MSE formulas needed in this work cannot be

obtained from state space methods.

Returning to the original questions raised in this paper, we see that the error for two-stage

methods can indeed be quantified. The SEATS and truncated two-stage procedures correspond

most closely with current cycle estimation practice, and the latter can be corrected with the iterated

procedure to handle nonstationary cycles. For the basic, truncated, and iterated procedures, a

knowledge of the models used in both stages is necessary. The limited analysis of a single simulation
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supports the idea that direct cycle estimation given by the one-stage procedure is the best (we note

that for this simulation, excellent model estimates for all of the dynamics were obtained). However,

this is only possible if the original data is made available to cycle analysts. Since the one-stage

approach is often not practicable, the SEATS method seems to be the next best alternative.

5 Appendix

Proof of Theorem 1. First we note that Fα
αβγ + F β

αβγ + F γ
αβγ = 1 implies that Fα

αβγ + F β
αβγ =

1 − F γ
αβγ = Fαβ

αβγ . Now the theorem results from a commutativity property of the extraction

matrices:

Fα
αβFαβ

αβγ = (1− F β
αβ)Fα

αβγ + Fα
αβF β

αβγ = Fα
αβγ +

(
Fα

αβF β
αβγ − F β

αβFα
αβγ

)

which uses Fα
αβ + F β

αβ = 1. The expression in parentheses is similar to a commutator for the

matrices; below we show that it is zero, which will prove the theorem. Let the matrices ∆αβ,

∆αγ , and ∆βγ be defined similarly to ∆T and ∆S , but with coefficients of δαδβ, δαδγ , and δβδγ

respectively, and with appropriate dimensions such that, similar to (4),

∆αβ∆γ = ∆αγ∆β = ∆βγ∆α = ∆

is satisfied. Following McElroy (2005), the filter formulas are given by

Fα
αβ =

(
∆
′
αΣ−1

Uα∆α + ∆
′
βΣ−1

Uβ∆β

)−1
∆
′
βΣ−1

Uβ∆β

∆βF β
αβγ = ΣUβ∆

′
αγΣ−1

W ∆.

Therefore Fα
αβF β

αβγ =
(
∆
′
αΣ−1

Uα∆α + ∆
′
βΣ−1

Uβ∆β

)−1
∆
′
Σ−1

W ∆. Similarly,

F β
αβ =

(
∆
′
αΣ−1

Uα∆α + ∆
′
βΣ−1

Uβ∆β

)−1
∆
′
αΣ−1

Uα∆α

∆αFα
αβγ = ΣUα∆

′
βγΣ−1

W ∆

which produces F β
αβFα

αβγ =
(
∆
′
αΣ−1

Uα∆α + ∆
′
βΣ−1

Uβ∆β

)−1
∆
′
Σ−1

W ∆. This concludes the proof. 2

Proof of Theorem 2. We prove the first line of (6). To show the invertibility of 1−Fα
αγF β

βγ , we

compute

1− Fα
αγF β

βγ = 1− Fα
αγ(1− F γ

βγ) = F γ
αγ + Fα

αγF γ
βγ .

We need to define some additional differencing matrices. Let ∆β and ∆γ be defined similarly to

the matrices in the proof of Theorem 1 above. Also, the matrix ∆βγ does δβδγ differencing, but is

n − (dβ + dγ) × n dimensional. Then we have the relation ∆βγ = ∆β∆γ = ∆γ∆β as in (4). Let

Uβγ denote the differenced β + γ component:

Uβγ = ∆βγ(β + γ) = ∆γUβ + ∆βUγ
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Then the following formulas hold:

Fα
αγ =

(
∆
′
αΣ−1

Uα∆α + ∆
′
γΣ−1

Uγ∆γ

)−1
∆
′
γΣ−1

Uγ∆γ

F γ
αγ =

(
∆
′
αΣ−1

Uα∆α + ∆
′
γΣ−1

Uγ∆γ

)−1
∆
′
αΣ−1

Uα∆α

∆γF γ
βγ = ΣUγ∆

′
βΣ−1

Uβγ∆βγ

Fα
αγF γ

βγ =
(
∆
′
αΣ−1

Uα∆α + ∆
′
γΣ−1

Uγ∆γ

)−1
∆
′
βγΣ−1

Uβγ∆βγ

F γ
αγ + Fα

αγF γ
βγ =

(
∆
′
αΣ−1

Uα∆α + ∆
′
γΣ−1

Uγ∆γ

)−1 [
∆
′
αΣ−1

Uα∆α + ∆
′
βγΣ−1

Uβγ∆βγ

]

The expression in square brackets is invertible, since it is the sum of two non-negative definite

matrices whose null spaces’ intersection is the zero vector, due to the fact that δα and δβδγ are

relatively prime – see Lemma 2 of McElroy and Sutcliffe (2006). This establishes the invertibility

of 1− Fα
αγF β

βγ , and gives an expression for its inverse. Finally, we compute the result (6):

(
1− Fα

αγF β
βγ

)−1
Fα

αγ(1− F β
βγ)

=
[
∆
′
αΣ−1

Uα∆α + ∆
′
βγΣ−1

Uβγ∆βγ

]−1
∆
′
γΣ−1

Uγ∆γF γ
βγ

=
[
∆
′
αΣ−1

Uα∆α + ∆
′
βγΣ−1

Uβγ∆βγ

]−1
∆
′
γ∆

′
βΣ−1

Uβγ∆βγ = Fα
αβγ . 2

Proof of Theorem 3. Using the notations of the proof of Theorem 1, we have

F̈α
αβḞαβ

αβγ = F̈α
αβḞα

αβγ + F̈α
αβḞ β

αβγ

= Ḟα
αβγ − F̈ β

αβḞα
αβγ + F̈α

αβḞ β
αβγ

= Ḟα
αβγ −

(
∆
′
βΣ̈−1

Uβ∆β + ∆
′
αΣ̈−1

Uα∆α

)−1
∆
′
αΣ̈−1

UαΣ̇Uα∆
′
βγΣ̇−1

W ∆

+
(
∆
′
βΣ̈−1

Uβ∆β + ∆
′
αΣ̈−1

Uα∆α

)−1
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
αγΣ̇−1

W ∆

= Ḟα
αβγ + M−1P Σ̇−1

W ∆.

Next, the error process can be expressed as

F̈α
αβḞαβ

αβγY − α = (Ḟα
αβγ − 1)α + Ḟα

αβγ(β + γ) + M−1P Σ̇−1
W ∆Y (14)

= −Q−1∆
′
αΣ̇−1

UαUα + Q−1∆
′
βγΣ̇−1

UβγUβγ + M−1P Σ̇−1
W W.

Since W = ∆βγUα + ∆αUβγ , we can easily compute the following covariances:

E[UαUβγ ′] = 0 E[UβγW ′] = ΣUβγ∆α

′
E[UαW

′
] = ΣUα∆βγ

′

Using these in (14) yields the stated expression for the error covariance matrix. 2
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Proof of Theorem 4. We start with (11), to which we left-multiply the inverse of

1− F̈α
αβḞ γ

βγ = 1− F̈α
αβ + F̈α

αβḞ β
βγ

=
(
∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ∆β

)−1 [
∆
′
αΣ̈−1

Uα∆α + ∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγ

]
,

which again uses (11). Under the compatibility condition (13) the matrix in square brackets is

invertible, and we at once obtain the formula for
(
1− F̈α

αβḞ γ
βγ

)−1
F̈α

αβḞ β
βγ by inverting the above

expression. The error process (defining M as in Theorem 4) is

M−1∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

Uβγ∆βγY − α = M−1
(
∆
′
βΣ̈−1

Uβ Σ̇Uβ∆
′
γΣ̇−1

UβγUβγ −∆
′
αΣ̈−1

UαUα
)

,

from which the stated MSE formula follows at once. 2
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Figure 1: Simulated Cycle, Simulated Seasonal-Trend-Irregular, and their sum.
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Figure 2: One-stage and SEATS two-stage cycle estimates, together with the true cycle.
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Figure 3: Basic, truncated, and iterated two-stage cycle estimates, together with the true cycle.
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Figure 4: MSE plots for one-stage, SEATS two-stage, basic, truncated, and iterated two-stage

methods.
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