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Abstract

We consider properties of revisions to mean square optimal concurrent estimates of unobserved

components, e.g., seasonal adjustments or trends, obtained by ARIMA model-based signal ex-

traction methods like those used by SEATS. Concurrent estimates, i.e., the estimate for the most

recent month (or quarter), are updated whenever future observations become available, and the

difference between the concurrent estimate and the mean square optimal update is called the

revision. It is therefore of interest to measure the variance of the revisions, which generally in-

crease in size as more data becomes available; this is because the signal extraction mean squared

error decreases as more observations are added. In this paper we compute the variance of the

revision based on a finite sample of data, where the revision lead, i.e., the amount of additional

data that becomes available, is potentially infinite. The revision variance for the infinite revision

lead represents the maximal revision variance possible, and is useful as a normalization. Our

focus is on presenting practical, easily coded algorithms for computation of the revision vari-

ances. These make possible a finite sample-based alternative to SEATS’ “percentage reduction

in the standard error of the revision after additional years,” which assumes that estimates are

obtained using an infinite past. We present numerical comparisons between SEATS’ diagnostic

and our finite sample analogue.
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1 Introduction

In the production of economic data at an official statistical agency, such as the U.S. Census

Bureau, “on-line” or contemporaneous publications are inevitably updated as more data becomes

available. But this updating can be encountered in a much wider venue. For example, suppose
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that an analyst produces three-step ahead forecasts of a dynamic variable of interest; one and two

periods into the future the forecast can be updated, reducing its error, and three periods into the

future one knows the actual value, reducing the error to zero. Seasonal adjustment can be viewed

as a signal extraction problem, and contemporaneous (referred to as concurrent) estimates often

involve a higher degree of error, which is typically reduced as more data becomes available. The

current practice at the U.S. Census Bureau is to update initial seasonal adjustment estimates a

year later, when 12 more values have been observed. After a certain point, determined by how

rapidly the signal extraction filter coefficients decay, the revision becomes negligible.

There is a great deal of interest in knowing the variance of the error induced by revising the

estimates, since this quantity indicates the extent to which signal extraction estimates can be

expected to change when new data becomes available. Note that, however, that this revision

variance is often only a small contributor to the overall signal extraction error. Knowledge of the

revision error process can allow one to quantify confidence in the reliability of concurrent filtered

estimates, and also gauge ahead of time exactly how many revisions are necessary to achieve a given

tolerance of error. It is challenging to achieve precise results in a nonparametric framework, but in

a model-based signal extraction scenario, exact mathematical results can be obtained and applied.

While this is the primary advantage of a model-based approach, the corresponding limitation is

that the results are model dependent (and thus are wrong to the extent that the model is wrong).

These results (and how to implement them) are the primary focus of the paper.

As a secondary application, we consider the revision error problem for growth rates of a signal of

interest. The growth rate is typically expressed as the percent change of the signal considered at

two nearby time points, e.g., the signal at the present time compared to the signal at the previous

time point. If we apply a logarithmic transform to the raw data (which is not uncommon for

economic series), this percent change is approximately a difference in the log scale. These growth

rates are perceived by many consumers of seasonally adjusted data to be a valuable characteristic

of the series, and hence it is desirable to quantify uncertainty about these rates. This can be done

by computing revision variances for the growth rates. Below, we show that simple extensions of

the revision error methodology for signal extraction can handle growth rates as well.

Pierce (1980) obtained some of the first results on revision variances, showing that optimal

forecast and backcast extension of the data minimizes mean squared revisions. More recently,

Planas and Depoutot (2002) describe how to construct approximating filters that reduce the length

of the revision period. However, these papers generally assume that a semi-infinite sample of data is

available. We proceed a bit more generally, allowing for a finite sample (which is more realistic) and

obtaining more precise results. We first treat the case of revising with a finite amount of additional
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data; for this purpose, it is natural to follow the matrix based signal extraction theory of Bell and

Hillmer (1988) and McElroy (2005). We also wish to compare these revisions to the “ultimate”

revision, which is theoretically obtained when we have an infinite amount of additional data. In

order to develop the appropriate formulas, we must project onto a semi-infinite sample, and so we

use the approach of Bell and Martin (2004). Section 2 describes the general approach to computing

the revisions, while section 3 describes the requisite algorithms for the semi-infinite sample case

in considerable detail. These methods require the calculation of partial fraction decompositions,

and section 4 discusses some computationally efficient approaches. In section 5 we present some

examples, which serve to illustrate how the revision variances are computed, and what information

they provide. Section 6 concludes.

2 Revisions

In this section we develop expressions for the revisions and their variances. In order that the

discussion here be self-contained, we include in section 2.1 some background material on signal

extraction based on a finite sample of data (the case of signal extraction from a semi-infinite

sample is discussed in section 3). Then section 2.2 provides the basic revision variance formulas,

and section 2.3 discusses how these can be calculated in practice. Both these latter sections also

deal with revision variances for growth rates.

2.1 Background on Finite-Sample Signal Extraction

The following material can be found in an expanded form in McElroy (2005). We consider the

additive decomposition of our data vector Y = (Y1, Y2, · · · , Yn)
′
into signal S and noise N :

Y = S + N.

Following Bell (1984), we let Yt be an integrated process such that Wt = δ(B)Yt is stationary, where

B is the backshift operator and δ(z) is a polynomial with all roots located on the unit circle of the

complex plane (also, δ(0) = 1 by convention). This δ(z) is referred to as the differencing operator

of the series, and we assume it can be factored into relatively prime polynomials δS(z) and δN (z)

(i.e., polynomials with no common zeroes), such that the series

Ut = δS(B)St Vt = δN (B)Nt (1)

are stationary, uncorrelated time series. Note that δS = 1 and/or δN = 1 are included as special

cases (in these cases either the signal or the noise or both are stationary). We let d be the order

of δ, and dS and dN are the orders of δS and δN ; since the latter operators are relatively prime,

δ = δS · δN and d = dS + dN .
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As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds for the component

decomposition, and we treat the case of a finite sample with t = 1, 2, · · · , n with n > d. Assumption

A states that the initial d values of Yt, i.e., the variables Y∗ = (Y1, Y2, · · · , Yd), are independent of

{Ut} and {Vt}. For a discussion of the implications of this assumption, see Bell (1984) and Bell

and Hillmer (1988). A further assumption that we make is that {Ut} and {Vt} are uncorrelated

time series.

Now we can write (1) in a matrix form, as follows. Let ∆ be a (n − d) × n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d).

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




The matrices ∆S and ∆N have entries given by the coefficients of δS(z) and δN (z), but are (n −
dS) × n and (n − dN ) × n dimensional respectively. This means that each row of these matrices

consists of the coefficients of the corresponding differencing polynomial, horizontally shifted in an

appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where Y = (Y1, Y2, · · · , Yn)
′
, and W , U , V , S, and N are analogously defined. Then it is possible

to write the estimate Ŝ as a linear matrix operating on Y :

Ŝ = FY

The error covariance matrix, i.e., the covariance matrix of Ŝ − S, is denoted by M ; both F and M

are given in McElroy (2005). The formula for M is needed below:

M =
(
∆
′
SΣ−1

U ∆S + ∆
′
NΣ−1

V ∆N

)−1
(2)

where ΣX denote the covariance matrix for any random vector X.

2.2 Revision Variances

We now derive the formula for the revision variance, displayed in (5) below. For further clarity,

let Ŝt|n1 denote the estimate of St based on data Y1, Y2, · · · , Yn, where 1 ≤ t ≤ n. (It is possible to

extend the discussion to the case t > n as well, using some extensions of the formulas in McElroy

(2005), but this case will not be pursued here.) In our matrix notation, this corresponds to the tth

4



row of the matrix F applied to Y , where F is n-dimensional and Y has n components. Then the

hth revision is defined as

Ŝt|n+h
1

− Ŝt|n1 (3)

for any h > 0. Note that Ŝt|n+h
1

can be written as an n + h-dimensional matrix F acting on

(Y1, · · · , Yn+h)
′
. Now although the process in (3) above has zero mean, its variance depends on t,

so we compute its variance in an indirect manner. Write

Ŝt|n1 − St =
(
Ŝt|n1 − Ŝt|n+h

1

)
+

(
Ŝt|n+h

1
− St

)
(4)

and note that the quantities on the right hand side are uncorrelated with each other, since the first

is a linear combination of the data Y1, Y2, · · · , Yn+h, which is always uncorrelated with the error

process of the minimum mean square error estimate of St based on data up through time n + h.

Therefore,

E
[(

Ŝt|n1 − St

)2
]

= E
[(

Ŝt|n+h
1

− Ŝt|n1
)2

]
+ E

[(
Ŝt|n+h

1
− St

)2
]

.

Denoting the mean square error of Ŝt|n1 by Dt|n1 , we have the revision variance equal to

Rt(h) = Dt|n1 −Dt|n+h
1

, (5)

which is always a positive quantity (this proves, incidentally, that Dt|n+h
1

is a nonincreasing function

in h). Note that Rt(h) also depends on n, but this dependency has been suppressed from the

notation. The square root of this revision variance is the standard error of the revision, and can be

used in conjunction with the data distribution to produce a confidence interval for Ŝt|n+h
1

centered

at Ŝt|n1 . For a normal distribution, an approximate 95 percent interval is given by

Ŝt|n1 ± 2
√

Rt(h).

By plotting this as a function of h, we obtain an envelope that will contain the revised estimate

about 95 percent of the time; this gives an idea of how much the estimate may change in the future.

Note that, since the signal extraction mean squared error formulas only depend on the models that

are assumed for St and Nt, for a given t and n we can calculate Rt(h) for any future horizon h,

without the need for additional data.

As another application, suppose that we are interested in the revision of an estimated growth

rate. For some p > 0, the growth rate at time t could be measured via St − St−p (assume that we

have already log-transformed the data), which would be estimated by

Ŝt|n1 − Ŝt−p|n1 ,

assuming that t− p ≥ 1. Hence the revision, based on h additional data points, is
(
Ŝt|n+h

1
− Ŝt−p|n+h

1

)
−

(
Ŝt|n1 − Ŝt−p|n1

)
.
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Now using a decomposition of the revision similar to (4), the revision variance for the growth rate

is

R̃t(h) = D̃t|n1 − D̃t|n+h
1

where D̃ denotes the variance of the signal extraction error for the growth rate. Explicit formulas

for these quantities are provided in section 2.3 below.

2.3 Implementation of Revision Variance Formulas

Let M (n) denote the n-dimensional covariance matrix of the error process associated with signal

extraction matrix F , as given in (2). Then

Dt|n1 = M
(n)
tt

and it follows that the revision error variance, for finite revision horizon h, is computed via

Rt(h) = Dt|n1 −Dt|n+h
1

= M
(n)
tt −M

(n+h)
tt .

Computation of M involves several matrix inversions, so this procedure is computationally cum-

bersome for large h or large n. One advantage is that revision errors at all filter points t can be

obtained at one time, for fixed n and h.

For the case of growth rates, the revision variance R̃t(h) is also easily obtained. Let ej denote

a vector (of dimension n or n + h depending on the context) with a 1 in the jth component, and

zeroes elsewhere. Then the growth rate estimate can be written as

(et − et−p)
′
FY,

where F and Y have dimension n or n + h as the case may be. It follows that the mean squared

signal extraction error, where the “signal” is now the growth rate, is given by

(et − et−p)
′
M(et − et−p) = Mtt + Mt−p,t−p − 2Mt,t−p.

The above formula gives D̃t|n1 and D̃t|n+h
1

, so that

R̃t(h) = M
(n)
tt + M

(n)
t−p,t−p − 2M

(n)
t,t−p −M

(n+h)
tt −M

(n+h)
t−p,t−p + 2M

(n+h)
t,t−p .

We should also consider the case that h = ∞, when an infinite amount of future data is available

to perform revisions. This is only an ideal situation, but the corresponding revision error Rt(∞)

yields the maximal limiting value of this increasing function of h, and thus serves as a suitable

benchmark for the finite-lead revisions. In the seasonal adjustment program SEATS (Gómez and

Maravall, 1997), the following measure is used:

1−
√

1−Rt(h)/Rt(∞) (6)
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The interpretation of this is given as follows: suppose that (6) exceeds some threshold 1− α; this

implies that

√
Rt(∞)−Rt(h) < α

√
Rt(∞) ⇔

√
Dt|n+h

1
−Dt|∞1 < α

√
Dt|n1 −Dt|∞1 .

Now the quantity Dt|n+h
1

− Dt|∞1 is the variance of the revision obtained when we have data up

through time n + h and we get infinitely more data; whereas Dt|n1 − Dt|∞1 is the variance of the

revision obtained when we have data up through time n and we get infinitely more data. The former

quantity is that portion of the revision variance Rt(∞) that remains after we have accounted for

the revision variance Rt(h); thus

Dt|n+h
1

−Dt|∞1
Dt|n1 −Dt|∞1

=
Rt(∞)−Rt(h)

Rt(∞)

is the proportion of the infinite lead revision variance Rt(∞) that remains after accounting for

the finite lead revision variance Rt(h). If the square root of this ratio is less than α, then most

of the revisions have already occurred, and there is little additional benefit in revising previous

filter estimates. The calculation of Rt(∞) is theoretically more complicated than the finite-lead

revision variances, since it cannot be accomplished with filter matrices. The next section discusses

various mathematical details needed to compute this infinite-lead revision variances, following and

adapting the exposition of Bell and Martin (2004).

3 Filtering From a Semi-Infinite Sample

We first set out carefully the mathematics behind two-component partial fraction decompositions

for power series. The basic context is a signal-noise component model given by

φ(F )Yt = θ(F )εt

φS(F )St = θS(F )ξt

φN (F )Nt = θN (F )ηt

where the φ polynomials combine AR operators and differencing operators necessary to produce

a stationary time series model. The θ polynomials are MA operators, acting on the white noise

sequences ε, ξ, and η. Although it is unusual to write ARIMA models in terms of the forward

shift operator F = B−1, this is the form that is most convenient for stating the mathematical

results that follow (see Box and Jenkins, 1976 for material on “backwards models”). Later on

we present some results for the more conventional ARIMA equations, where F is replaced by

B. Now the asymmetric signal extraction filters are computed from various combinations of these

model operators. Letting π(z) = φ(z)/θ(z), the optimal signal extraction filter that uses m past
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observations and an infinite number of future observations is

α
(m)
S (F ) =

Bm

σ2
ε

π(F )[π(B)γS(F )Fm]+ (7)

where [·]+ indicates to take only non-negative powers of F and γS(z) is the pseudo-autocovariance

generating function for the signal. The formula (7) is analogous to a result cited in Bell and Martin

(2004, eq. (10)), but they consider an infinite number of past observations and a finite number

m of future ones; the modification to our case is trivial (later we will see that the corresponding

error process is uncorrelated with all linear functions of the data, which is a verification that (7) is

indeed the minimum mean square error signal extraction filter given Assumption A of Bell (1984)).

Now we have the following simplification, which is analogous to Bell and Martin (2004, eq. (12)):

π(B)γS(F )Fm =
φS(B)φN (B)

θ(B)
θS(F )θS(B)
φS(F )φS(B)

Fmσ2
ξ

=
φN (B)θS(F )θS(B)

θ(B)φS(F )
Fmσ2

ξ

= σ2
ξ

(
d(F )
φS(F )

+
c(B)
θ(B)

)

for appropriate polynomials d and c. This last equality above is the partial fraction decomposition,

which is explored in section 4 below. It turns out that the polynomial c(z) satisfies c0 = c(0) = 0,

i.e., there is no order zero coefficient. This implies that the last term involves only negative powers

of F . Hence

[π(B)γS(F )Fm]+ = σ2
ξ

d
(m)
S (F )
φS(F )

where d(F ) = d
(m)
S (F ) is given the subscript S to denote the signal, and the superscript m for the

number of past observations required. Substituting into (7) yields

α
(m)
S (F ) =

σ2
ξ

σ2
ε

φN (F )d(m)
S (F )

θ(F )
Bm,

which is analogous to Bell and Martin (2004, eq. (14)). This is for the signal; similar calculations

yield for the noise

α
(m)
N (F ) =

σ2
η

σ2
ε

φS(F )d(m)
N (F )

θ(F )
Bm.

Essentially the main challenge is to produce the polynomials d
(m)
S and d

(m)
N , which is described in

great detail in section 4 below.

Now for t within the data span, the error process for signal extraction is given by

St − α
(m)
S (F )Yt = −α

(m)
S (F )Nt + (1− α

(m)
S (F ))St

= −α
(m)
S (F )Nt + α

(m)
N (F )St

= −σ2
ξ

σ2
ε

d
(m)
S (F )θN (B)

θ(F )
Bmηt +

σ2
η

σ2
ε

d
(m)
N (F )θS(B)

θ(F )
Bmξt.
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The processes given above are stationary, being ARMA filters of white noise. The autocovariance

generating function is then given by (cf. Bell and Martin, 2004, eq. (30))

σ2
ξσ

2
η

σ4
ε θ(B)θ(F )

[
σ2

ηd
(m)
N (B)d(m)

N (F )θS(B)θS(F ) + σ2
ξd

(m)
S (B)d(m)

S (F )θN (B)θN (F )
]
. (8)

We are interested in the coefficient of F 0, which is the mean squared error of the signal extraction

estimate. But this mean squared error can be expressed as the sum of the variances of the following

two ARIMA processes:

θ(B)Ut =
(
d

(m)
N (B)/(d(m)

N )0
)

θS(B)ζt

ζt ∼ WN(0, (d(m)
N )

2

0σ
4
ησ

2
ξ/σ4

ε )

θ(B)Vt =
(
d

(m)
S (B)/(d(m)

S )0
)

θN (B)χt

χt ∼ WN(0, (d(m)
S )

2

0σ
4
ξσ

2
η/σ4

ε )

Here (d(m)
N )0 = d

(m)
N (0) is the leading coefficient of the polynomial. The autocovariances of such

ARIMA processes can be determined using standard algorithms (see Tunnicliffe-Wilson, 1979).

Next, we show that the stated signal extraction filters yield the minimum mean squared error

linear estimates. Following Bell and Martin (2004), we have

et|∞t−m
= Ŝt|∞t−m

− St

=
(
Ŝt|∞−∞ − St

)
+

(
Ŝt|∞t−m

− Ŝt|∞−∞
)

= et|∞−∞ +
(
α

(m)
S (F )− α

(∞)
S (F )

)
Yt.

Now the error et|∞−∞ is the symmetric bi-infinite Wiener-Kolmogorov signal extraction error, and

hence is orthogonal to any linear combination of the data, at all times. The corresponding filter is

α
(∞)
S (F ) = π(F )π(B)γS(F )/σ2

ε , and hence

α
(m)
S (F )− α

(∞)
S (F ) = − 1

σ2
ε

Bmπ(F )[π(B)γS(F )Fm]−

= − 1
σ2

ε

Bmπ(F )
c
(m)
S (B)
θ(B)

σ2
ξ

where [·]− means to take only negative powers of F . Here c
(m)
S corresponds to the polynomial c used

earlier, but we use subscripts and superscripts to call attention to its dependence on the signal and

m. Now the second equality follows because c
(m)
S (0) = 0. Hence in analogy with Bell and Martin

(2004, eq. (36))

et|∞t−m
= et|∞−∞ −

σ2
ξ

σ2
ε

c
(m)
S (B)
θ(B)

εt−m,

so that the second term only depends on the innovations εs at times before t − m. Now letting

Wt = δ(F )Yt be the differenced observed process, it follows that εt|∞t−m
is uncorrelated with Ws
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for s ≥ t −m. By Assumption A, the initial values Y∗ are orthogonal to {Wt} and hence to {εt},
and therefore the error process is orthogonal to the observations Yt−m, Yt−m+1, · · · . This shows

optimality of the filter.

Next, suppose that we have more conventional models for the components:

φ(B)Yt = θ(B)εt (9)

φS(B)St = θS(B)ξt

φN (B)Nt = θN (B)ηt

This can be recast into the previous “backwards model” framework by letting g̃(z) = zbg(z−1) for

any polynomial g of order b (this has the effect of reversing the coefficients). Using this device,

(9) can be written as a backwards model by reversing the coefficients of all the polynomials and

redefining new innovation sequences if necessary. Then the optimal signal extraction filter for (9),

denoted by α̃
(m)
S (F ), is given by

α̃
(m)
S (F ) =

σ2
ξ

σ2
ε

φ̃N (F )d̃(m)
S (F )

θ̃(F )
Bm.

Here φ̃N and θ̃ are the reverse polynomials of φN and θ respectively, and d̃
(m)
S is obtained by solving

the corresponding system of equations as in the backwards model case. It can be seen that d̃
(m)
S

is also the reverse polynomial of d
(m)
S . If we now compute the error process corresponding to the

filter α̃
(m)
S , we see that its autocovariance generating function is also given by (8); this uses the

fact that g̃(B)g̃(F ) = g(B)g(F ) for any polynomial g. In summary, the spectrum of the error

process corresponding to the optimal signal extraction filter for the conventional model (9) is the

same as the error spectrum in the backwards model, and (8) can therefore be used to compute

autocovariances of the error process. In particular, the signal extraction mean squared error Dt|∞1
is the lag zero term of (8) with the choice of m = t− 1.

The autocovariance generating function (8) can also be applied to the revision variance for growth

rates. It is required to compute the variance

D̃t|∞1 = E
[(

(Ŝt|∞1 − St)− (Ŝt−p|∞1 − St−p)
)2

]

= V ar(Ŝt|∞1 − St) + V ar(Ŝt−p|∞1 − St−p)− 2E
[
(Ŝt|∞1 − St)(Ŝt−p|∞1 − St−p)

]
.

Now the covariance term is equal to

E
[
(Ŝt|∞p+1

− St)(Ŝt−p|∞1 − St−p)
]
, (10)

which is true because the difference between them is equal to the covariance of Ŝt−p|∞1 − St−p with

Ŝt|∞1 − Ŝt|∞p+1
, and this latter term is a linear function of Y1, Y2, · · · . Now the covariance in (10) is
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seen to be the lag p autocovariance of the signal extraction error process with the filter α
(t−p−1)
S (F ),

and this can be extracted from (8) as well. If we denote the autocovariance function corresponding

to the signal extraction error process for the filter α
(m)
S (F ) by γ

(m)
ε , then we have

D̃t|∞1 = γ(t−1)
ε (0) + γ(t−p−1)

ε (0)− 2γ(t−p−1)
ε (p).

Since D̃t|n1 would be computed with matrices, as described in section 2, we can now obtain the

growth rate revision variance R̃t(∞).

4 Partial Fraction Implementation

We are primarily interested in obtaining the autocovariance functions γ
(m)
ε from the autocovari-

ance generating function (8), and the polynomials d
(m)
S (F ) and d

(m)
N (F ) are obtained by the use of

partial fraction decomposition methods. We now describe two alternative algorithms to accomplish

this: the first algorithm safely handles the case where the number of past observations m À 0;

the second algorithm handles the opposite case. Now we introduce the following notation for the

degrees of model polynomials: based on (9), the model AR polynomial φ(z) has degree p, and

is the product of the signal AR polynomial φS(z) with degree pS and the noise AR polynomial

φN (z) with degree pN . (Of course these are generalized AR polynomials, in that they may include

differencing operators with unit roots.) The model MA polynomial θ(z) has degree q, where the

signal and noise polynomials θS(z) and θN (z) have degrees qS and qN respectively, and where γS(z)

represents the signal autocovariance generating function. With this notation in hand, we discuss

the two partial fraction decomposition algorithms below, and also describe a useful iterative proce-

dure for determining d
(m+1)
S (F ) from d

(m)
S (F ). For ease of exposition, we restrict ourselves to the

case of the signal St.

11



4.1 First Partial Fraction Decomposition

An alternative partial fraction decomposition to the one discussed in section 3, for m ≥ pN + qS ,

is as follows

π(B)γS(F )Fm = σ2
ξ

φS(B)φN (B)θS(F )θS(B)
θ(B)φS(F )φS(B)

Fm

= σ2
ξ

θS(F )
[
F pN φN (B)

] [
F qSθS(B)

]
Fm−pN−qS

φS(F )θ(B)

= σ2
ξ

g(F ) [F qθ(B)] + k(F )
φS(F )θ(B)

= σ2
ξ

g(F )F q

φS(F )
+

k(F )
φS(F )θ(B)

= σ2
ξ

g(F )F q

φS(F )
+

b(F )
φS(F )

+
c(B)
θ(B)

= σ2
ξ

g(F )F q + b(F )
φS(F )

+
c(B)
θ(B)

= σ2
ξ

d
(m)
S (F )
φS(F )

+
c(B)
θ(B)

where the g(F ) polynomial (with degree max{m+qS−q, 0}) and the k(F ) polynomial (with degree

at most q − 1) are found using polynomial division. That is,

θS(F )
[
F pN φN (B)

] [
F qSθS(B)

]
Fm−pN−qS

[F qθ(B)]
= g(F ) +

k(F )
[F qθ(B)]

.

Also, the b(F ) polynomial has degree max{q−1, pS} and the c(B) polynomial has degree q in order

to satisfy

k(F ) = θ(B)b(F ) + φS(F )c(B). (11)

The polynomial d
(m)
S (F ) is given by

d
(m)
S (F ) = g(F )F q + b(F ) (12)

and has degree max{m + qS , q, ps} (again, suppose m is so large such that this holds). Now the

polynomial equation (11) for k(F ) in terms of unknown polynomials b(F ) and c(B) represents a

system of max{q − 1, pS}+ q + 1 equations with max{q − 1, pS}+ 1 unknown coefficients in b(F )

and with q + 1 unknown coefficients in c(B). Hence the number of unknown coefficients is one

greater than the number of equations, so that the coefficient c0 = c(0) is chosen such that c0 = 0.

The unknown polynomial coefficients are found by solving the following system of equations (in

12



this case assuming pS > q)



0−q

...

0−1

k0

...

kq−1

...

0pS




=




φS
0 · · · 0 θq · · · 0 · · · 0
...

. . .
...

...
. . .

...
...

...

φS
q−1 · · · φS

0 θ1 · · · θq · · · 0

φS
q · · · φS

1 θ0 · · · θq−1 · · · 0
...

...
...

...
...

...
. . .

...

φS
2q−1 · · · φS

q 0 · · · θ0 · · · θpS−q+1

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · θ0







cq

...

c1

b0

...

bq−1

...

bpS




. (13)

Here bj , j = 0, . . . , pS , denotes the coefficients of b(F ) and cj , j = 1, . . . , q, denotes the coefficients

of c(B). Also θj , j = 0, . . . , q, denotes the coefficients of θ(B) and θj = 0 for j > q, whereas φS
j ,

j = 0, . . . , pS , denotes the coefficients of φS(F ) and φS
j = 0 for j > pS . Since φS(z) and θ(z) can

have no common zeroes by assumption, the above matrix is invertible by application of the Lemma

on page 25 of Bell and Martin (2002). Hence, we can proceed as follows:

1. Determine g(z) and k(z) by the Euclidean division algorithm

2. Solve (13) for b(z)

3. Determine d
(m)
S (z) using (12)

4.2 Second Partial Fraction Decomposition

An alternative partial fraction decomposition for m < pN + qS is given by

π(B)γS(F )Fm =
σ2

ξ

[
θS(F )Fm

] [
φN (B)θS(B)

]

φS(F )θ(B)

=
r(F, B)

φS(F )θ(B)
=

d(F )
φS(F )

+
c(B)
θ(B)

where r(F, B) has degree pr = m + qS in F and degree qr = pN + qS in B. Here d(F ) = d
(m)
S (F )

has degree pd = max{m+ qS , pS} and c(B) has degree qc = max{pN + qS , q}, and are defined such

that they satisfy

r(F, B) = θ(B)d(F ) + φS(F )c(B).

The above polynomial equation for r(F, B) represents a system of pd + qc + 1 equations in pd + 1

unknown coefficients for d(F ) and qc+1 unknown coefficients for c(B). Consequently, the coefficient

c0 = c(0) is chosen such that c0 = 0. The unknown coefficients for d(F ) and c(B) are found by

13



solving the following system of equations



r−qc

r−qc+1

...

r−1

r0

...

rpc−1

rpc




=




φS
0 0 · · · 0 θqc 0 · · · 0

φS
1 φS

0 · · · 0 θqc−1 θqc · · · 0
...

...
. . .

...
...

...
. . .

...

φS
qc−1 φS

qc−2 · · · φS
0 θ1 θ2 · · · θpd+1

φS
qc

φS
qc−1 · · · φS

1 θ0 θ1 · · · θpd

...
...

...
...

...
...

0 0 · · · φS
pd

0 0 · · · θ1

0 0 · · · 0 0 0 · · · θ0







cqc

cqc−1

...

c−1

d0

...

dpd−1

dpd




. (14)

Here rj , j = 0, . . . , pr, denotes the coefficients of r(F, B) in F and rj = 0 for j > pr, whereas r−j ,

j = 1, . . . , qr, denotes the coefficients of r(F, B) in B and r−j = 0 for j > qr. Since the matrix is

invertible, we can proceed as follows:

1. Write down r(F,B)

2. Solve (14) for d(z)

Note that this second alternative partial fraction decomposition can also be used to handle m ≥
pN + qS ; however, the first alternative partial fraction decomposition is faster in terms of software

speed. As noted in Bell and Martin (2004), a direct partial fraction decomposition method that

avoids solving linear systems will be more efficient.

4.3 Sequential Partial Fraction Decomposition

Given that d
(m)
S (F ) has been calculated via either of the two previous partial fraction decom-

positions, it is possible to sequentially calculate d
(m+1)
S (F ). Let d

(m)
S (F ) and c(m)(B) denote the

polynomials obtained via partial fraction decomposition for the filter α
(m)
S . Then we have

π(B)γS(F )Fm+1 = [π(B)γS(F )Fm] F

=

[
d

(m)
S (F )
φS(F )

+
c(m)(B)
θ(B)

]
F

=
d

(m)
S (F )F
φS(F )

+
c(m)(B)F

θ(B)

=
d

(m)
S (F )F + c

(m)
1 φS(F )

φS(F )
+

c(m)(B)F − c
(m)
1 θ(B)

θ(B)

=
d

(m+1)
S (F )
φS(F )

+
c(m+1)(B)

θ(B)
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where c
(m)
1 is the coefficient associated with B1 in c(m)(B). So we have the definitions

d
(m+1)
S (F ) = d

(m)
S (F )F + c

(m)
1 φS(F )

c(m+1)(B) = c(m)(B)F − c
(m)
1 θ(B),

from which it follows, together with c(m)(0) = 0 and θ(0) = 1, that

c(m+1)(0) = 0.

In this manner, d
(m+1)
S can be obtained from d

(m)
S . Using the above sequential decomposition, it is

possible to calculate d
(m+k)
S (F ) from the partial fraction decomposition associated with d

(m)
S (F ),

by sequentially calculating the partial fraction decomposition associated with d
(m+j)
S (F ) for each

j = 1, . . . , k.

5 Empirical Illustrations of Revision Variances

This paper has so far discussed a method for computing revision variances, where the revision is

defined by (3). This expression describes changes in the estimate of St when our sample expands

from Y1, · · · , Yn to Y1, · · · , Yn+h. However, a different (and less exact) approach is adopted in

the ARIMA-model based seasonal adjustment program SEATS (see Gómez and Maravall, 1997).

Following the work of Pierce (1980) and Maravall (1986), SEATS utilizes a method for computing

revision variances that is appropriate when there is an infinite amount of past data. In terms of

our notation, SEATS computes the variance of Ŝt|n+h
−∞

− Ŝt|n−∞ , where 0 < h ≤ ∞ (note that this

variance will not depend on n). The assumption that an infinite amount of past data is available

allows for the mathematical development of SEATS’ approach to revision variances; however, it is

an unrealistic assumption in practice. One motivation for the present work is to update the revision

variance calculations of SEATS to handle finite samples.

The next pertinent question is: how much do SEATS’ revision variances differ from the exact

revision variances? If there is little discrepancy and the exact revision variances require much

more computational time, SEATS users may prefer the current (incorrect) output. The following

empirical illustrations demonstrate how the two approaches generate divergent revision variances,

and show how these discrepancies can depend upon sample size n, the model parameters, and the

revision lead h. In order to fix ideas, we will consider the Airline Model (Box and Jenkins, 1976)

for monthly data, with a signal-noise decomposition into nonseasonal Nt (or “seasonally adjusted”)

and seasonal St.

(1−B)(1−B12)Yt = (1− θB)(1−ΘB12)εt

(1−B)2Nt = θN (B)ηt

(1 + B + · · ·+ B11)St = θS(B)ξt
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for independent white noise sequences εt, ξt, and ηt. These component models will be obtained via

the method of canonical decomposition (Hillmer and Tiao, 1982). Now because Θ is associated with

B12, it will have a more enduring impact than θ on signal extraction filter coefficients, so we focus

on how the revision variances are affected by various values of Θ. In our study we consider samples

of 5 through 11 years, where θ = .9 and Θ takes on the values .6, .7, .8, and .9 (note that all the

calculations are purely derived from the model, and thus it is not necessary to consider simulations).

We are interested in the relative revision variance measure given by (6) for h ranging from 1 to 5

years (for most cases, revision variances had essentially converged beyond 5 years revision lead).

We can expect revisions to be greatest for the concurrent filter, so we let t = n. The results are

displayed in the Tables below.

Table 1. Revision Measure for (.9, .6) Airline Model.

Finite-Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .4015 .4006 .4001 .3999 .3999 .3999 .3999 .3999

2 .6412 .6404 .6401 .6399 .6399 .6399 .6399 .6399

3 .7848 .7842 .7840 .7840 .7839 .7839 .7839 .7839

4 .8709 .8705 .8704 .8703 .8703 .8703 .8703 .8703

5 .9225 .9223 .9223 .9222 .9222 .9222 .9222 .9222

Table 2. Revision Measure for (.9, .7) Airline Model.

Finite-Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .3059 .3028 .3013 .3006 .3003 .3001 .3000 .2999

2 .5162 .5129 .5114 .5107 .5103 .5101 .5100 .5099

3 .6620 .6594 .6581 .6575 .6572 .6571 .6570 .6570

4 .7636 .7617 .7608 .7603 .7601 .7600 .7600 .7599

5 .8346 .8332 .8325 .8322 .8321 .8320 .8320 .8319
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Table 3. Revision Measure for (.9, .8) Airline Model.

Finite-Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .2180 .2111 .2069 .2044 .2027 .2017 .2011 .2000

2 .3831 .3744 .3690 .3657 .3636 .3623 .3615 .3600

3 .5108 .5022 .4970 .4937 .4916 .4903 .4895 .4880

4 .6108 .6032 .5985 .5955 .5937 .5925 .5917 .5904

5 .6897 .6832 .6792 .6767 .6751 .6741 .6735 .6723

Table 4. Revision Measure for (.9, .9) Airline Model.

Finite-Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .1441 .1328 .1250 .1193 .1150 .1118 .1094 .1000

2 .2578 .2412 .2293 .2206 .2140 .2090 .2051 .1900

3 .3506 .3317 .3180 .3078 .3000 .2940 .2893 .2710

4 .4280 .4086 .3943 .3835 .3752 .3688 .3638 .3439

5 .4938 .4748 .4605 .4497 .4414 .4349 .4298 .4095

Reading across the rows, we see that the measure (6) decreases in n, and gets fairly close to the

SEATS value. This approximation is even tighter for higher revision leads when Θ = .6 and .7.

Reading down the columns, we see the expected behavior that most of the revisions have occurred

by the fourth or fifth year; however, for larger values of Θ this convergence is considerably slowed.

For Θ = .9, all the values are under 50 percent. The largest discrepancies between SEATS and

the finite-sample approach occur for large Θ and small sample size; for Θ = .9 and h = 5 years,

the discrepancy can be almost 9 percent. Thus in general, the SEATS revision variances are too

small, and the offset can be considerable when Θ is large or the sample size is small.

6 Conclusion

This paper discusses the problem of revising concurrent signal extraction estimates, and how

to explicitly compute the variance of the revisions. In the case that there is only a finite number

h of additional data points, the procedure is a straightforward application of finite-sample signal

extraction formulas. When there is an infinite amount of additional data, it is necessary to compute

the variance of the corresponding error process. In order to compute the filter coefficients, it is
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necessary to perform a partial fraction decomposition and arrange the information appropriately.

This semi-infinite sample revision error forms a normalization for the h-step ahead revision error,

allowing one to gauge the ultimate stability of signal extraction estimates. We have seen that in

some cases there can be a considerable discrepancy between our exact method and that of SEATS;

this justifies the additional computation time required to compute M in (2).
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