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Abstract. This paper provides an overview of methods of masking microdata so 
that the data can be placed in public-use files.  It divides the methods according 
to whether they have been demonstrated to provide analytic properties or not.  
For those methods that have been shown to provide one or two sets of analytic 
properties in the masked data, we indicate where the data may have limitations 
for most analyses and how re-identification might or can be performed.  We 
cover several methods for producing synthetic data and possible computational 
extensions for better automating the creation of the underlying statistical mod-
els.  We finish by providing background on analysis-specific and general in-
formation-loss metrics to stimulate research. 

1   Introduction 

This paper presents of an overview of methods for masking microdata.  Statistical 
agencies mask data to create public-use files for analyses that cannot be performed 
with published tables and related results.  In creating the public-use files, the intent is 
to produce data that might allow individuals to approximately reproduce one or two 
analyses that might be performed on the original, confidential microdata.  Masking 
methods are often chosen because they are straightforward to implement rather than 
because they produce analytically valid data.   

   There are several issues related to the production of microdata.  First, if the pub-
lic-use file is created, then the agency should demonstrate that one or more analyses 
are possible with the microdata.  It may be that the best the agency can do is an ad hoc 
justification for a particular analysis.  This may be sufficient to meet the needs of 
users.  Alternatively, the agency may be able to refer to specific justifications that 
have been given for similar methods on similar files in previous papers or research 
reports.  If methods such as global recoding, local suppression, and micro-aggregation 
have never been rigorously justified, then the agency should consider justifying the 
validity of a method.  This is true even if it is in wide-spread use or in readily avail-
able generalized software.  Second, the public-use file should be demonstrated to be 
confidential because it does not allow the re-identification of information associated 
with individual entities.   

   The paper provides background on the validity of masked microdata files and the 
possibility or re-identifying information using public-use files and public, non-



confidential microdata.  Over the years, considerable research has yielded better meth-
ods and models for public-use data that has analytic properties corresponding to the 
original, confidential microdata and for evaluating risk to avoid disclosure of con-
fidential information. In the second section, we provide an elementary framework in 
which we can address the issues.  We list and describe some of the methods that are in 
common use for producing confidential microdata.  In the third section, we go into 
detail about some of the analytic properties of various masking methods.  A method is 
analytically valid if it can produce masked data that can be used for a few analyses 
that roughly correspond to analyses that might have been done with the original, con-
fidential microdata.  A masking method is analytically interesting if it can produce 
files that have a moderate number of variables (say twelve) and allows two or more 
types of analyses on a set of subdomains.  In the fourth section, we give an overview 
of re-identification using methods such as record linkage and link analysis that are 
well-known in the computer science literature.  In the fifth section, we provide an 
overview of research in information-loss metrics model and re-identification methods.  
Although there are some objective information loss metrics (Domingo-Ferrer and 
Mateo-Sanz [16], Domingo-Ferrer [15], Duncan et al. [20], Raghunathan et al. [48]), 
the metrics do not always relate to specific analyses that users may perform on the 
public-use files.  There is substantial need for developing information-loss metrics that 
can be used in a variety of analytic situations.  Key issues with disclosure avoidance 
are the improved methods of re-identification associated with linking administrative 
files and the high quality of information in publicly available files.  In some situations, 
the increased amount of publicly available files means that manual methods (Malin et 
al. [39]) might be used for re-identification.  To further improve disclosure-avoidance 
methods, we need to research some of the key issues in re-identification.  The final 
section consists of concluding remarks. 

2   Background 

This section gives a framework that is often used in disclosure avoidance research 
and brief descriptions of a variety of methods that are in use for masking microdata.  
Other specific issues related to some of the masking procedures are covered in subse-
quent sections. 

The framework is as follows.  An agency (producer of public-use microdata) may 
begin with data X consisting of both discrete and continuous variables.  The agency 
applies a masking procedure (some are listed below) to produce data Y.  The masking 
procedure is intended to reduce or eliminate re-identification and provide a number of 
the analytic properties that users of the data have indicated that they need.  The agency 
might create data Y and evaluate how well it preserves a few analytic properties and 
then perform a re-identification experiment.  A conservative re-identification experi-
ment might match data Y directly with data X.  Because the data Y correspond almost 
precisely (in respects to be made clearer later), some records in X may be re-
identified.  To avoid disclosure, the agency might apply additional masking proce-
dures to data X to create data Y’.  It might also extrapolate or investigate how well a 



potential intruder could re-identify using data Y’’ that contain a subset of the variables 
in X and that contain minor or major distortions in some of the variables.  After (pos-
sibly) several iterations in which the agency determines that disclosure is avoided and 
some of the analytic properties are preserved, the agency might release the data.  

 
   Global Recoding and Local Suppression are covered by Willenborg and De Waal 

[66].  Global recoding refers to various global aggregations of identifiers so that re-
identification is more difficult.  For instance, the geographic identifiers associated 
with national US data for 50 States might be aggregated into four regions.  Local 
suppression covers the situation when a group of variables might be used in re-
identifying a record.  The values of one of more of the variables would be blanked or 
set to defaults so that the combination of variables cannot be used for re-identification.  
In each situation, the provider of the data might set a default k (say 3 or 4) on the 
minimum number of records that must agree after global recoding and local suppres-
sion. 

  Swapping (Dalenius and Reiss [9], Reiss [49], Schlörer [57]) refers to a method of 
swapping information from one record to another.   In some situations, a subset of the 
variables is swapped.  In variants, information from all records, a purposively chosen 
subset of records, or a randomly selected subset of records may be swapped.  The 
purposively chosen sample of records may be chosen because they are believed to 
have a greater risk of re-identification.  The advantages of swapping are that it is eas-
ily implemented and it is one of the best methods of preserving confidentiality.  Its 
main disadvantage is that, even with a very low swapping rate, it can destroy analytic 
properties, particularly on subdomains. 

  Rank Swapping (Moore [41]) is another easily implemented masking procedure.  
With basic single-variable rank swapping, the values of an individual variable are 
sorted and swapped in a range of k-percent of the total range.  A randomization de-
termines the specific values of variables that are swapped.  Swapping is typically 
without replacement.  The procedure is repeated for each variable until all variables 
have been rank swapped.  If k is relatively small, then analytic distortions on the entire 
file may be small (Domingo-Ferrer and Mateo-Sanz [16], Moore [41]) for simple 
regression analyses.  If k is relatively large, there is an assumption that the re-
identification risk may be reduced.   

   Micro-aggregation (Defays and Answar [12], Domingo-Ferrer and Mateo-Sanz 
[17]) is a method of aggregating values of variables that is intended to reduce re-
identification risk.  For single-ranking micro-aggregation in which each variable is 
aggregated independently of other variables, it is easily implemented.  The values of a 
variable are sorted and divided into groups of size k.  In practice k is taken to be 3 or 4 
to reduce analytic distortions.  In each group, the values of the variable are replaced 
by an aggregate such as the mean or the median.  The micro-aggregation is repeated 
for each of the variables that are considered to be usable for re-identification.  Do-
mingo-Ferrer and Mateo-Sanz [17] provided methods for aggregating several vari-
ables simultaneously.  The methods can be based on multi-variable metrics for cluster-
ing variables into the most similar groups.  They are not as easily implemented be-
cause they can involve sophisticated optimization algorithms.  For computational 
efficiency, the methods are applied to 2-4 variables simultaneously whereas many 



public-use files contain 12 or more variables.  The advantage of the multi-variable 
aggregation method is that it provides better protection against re-identification.  Its 
disadvantage is that analytic properties can be severely compromised, particularly if 
two or three uncorrelated variables are used in the aggregation. The variables that are 
not micro-aggregated may themselves allow re-identification. 

   Additive Noise was introduced by Kim [32}, [33] and investigated by Fuller [28], 
Kim and Winkler [34], and Yancey et al. [71].  Let X be an n×k data vector consisting 
of n records with k variables (fields).  If we generate random noise X1 with mean 0 
and cov(X1) = cov(X), then we can replace X and use Y = X + ε where cov(ε) = c 
cov(X1) for 0<c<0.5. Further, we can do a linear transform of Y to Z so that the mean 
of Z equals the mean of X, and the correlation of Z equals correlation of X.  Kim [26] 
also showed that it is theoretically possible to recover means and covariances of X on 
arbitrary subdomains. Kim [32], [33] and Fuller [28] both showed that the additive-
noise procedures provide good analytic properties such as regression analyses with 
masked data Z that closely reproduce regression analyses of the unmasked data X.  
Because additive noise can yield files with moderate re-identification rates (Fuller 
[28]], Kim and Winkler [34]), Roque [54] introduced methods that applied mixtures 
of additive noise that reduced re-identification rates by a factor of 10.  Yancey et al. 
[71] provided much simpler computational procedures that eliminated the nonlinear 
optimization procedures of Rogue [54]. One criticism has been the need of specialized 
software for producing and analyzing the data that is (partially) alleviated by high 
quality software that was developed for Yancey et al. [71]. 

   Synthetic Microdata from Probabilistic Models (Fienberg et al. [24], [26], [27], 
Raghunathan et al. [48], Reiter [52], Little and Liu [37], [38], and Polettini [46]) pro-
vide methods for building an accurate statistical model M of data X.  The statistical 
model M is generally based on estimates of joint and conditional distributions of the 
underlying probability densities.  The estimation of densities is simplified because the 
models typically only target one set of analyses.  Artificial or synthetic data Y are 
created by randomly drawing records from the model M.   The intent is that some of 
the analytic properties of M are preserved in the artificial data Y.  It is generally as-
sumed that re-identification is impossible even when a number of analytic restraints 
are placed on the data.  A clear disadvantage of synthetic data is the amount of model-
ing expertise that is needed for developing a reasonable model M of the data with 
suitable analytic properties.  Another disadvantage is that a moderate-to-large amount 
of high quality data may be needed in the modeling.  If there are errors in the original 
data, then there is a possibility that the errors will be approximately reproduced in the 
synthetic data.  An advantage is that the one or two potential analytic uses of the data 
can be clearly described.   

3   Analytic Properties of Microdata 

   There are several issues with regards to the production of microdata with analytic 
properties.  The first issue is whether the analytic properties of the masked data are 
justified.  Does the masked microdata allow a user to approximately reproduce one or 



two analyses that could be performed on the original microdata other than simple 
tabulations (that are often in published tables)?  Is there sufficient detail so that the 
user can be aware of any potential discrepancies that may occur in an analysis that the 
producer has stated can be performed with the masked microdata?  The second issue 
is whether the public-use microdata yield analytic results that differ significantly from 
results that would be obtained using the original microdata.  For instance, in an 
econometric analysis, an economist might not find relationships between certain 
masked variables where relationships exist between the variables in the original mi-
crodata.  Additionally, there may be too many or too few individuals in high income 
categories in comparison with the original microdata. 

   With the exception of additive noise and synthetic microdata, there has seldom 
been much work that describes the analytic properties of the masked microdata.  Gen-
erally, additive noise produces masked microdata that can quite accurately reproduce 
regression analyses (even on arbitrary subdomains that are reasonably large).  If the 
constant c used with additive noise is close to zero, then additive noise will often not 
distort the original data much and allow other statistical analyses.  A deficiency of 
additive noise as suggested by Fuller [28] and shown by Kim and Winkler [34] is that 
small proportions of records (0.5% - 3%) might be re-identified.  Kim and Winkler 
[34] applied additional masking procedures to avoid disclosure and somewhat de-
crease valid analytic properties of the public-use microdata.  We observe that it is 
possible that re-identification rates go up as more analytic restrictions are placed on 
the masked data.  For instance, many users want to do analyses on subdomains.  If the 
microdata have detailed geographic identifiers (Elliot et al. [21], [22]) or subdomains 
associated with sparse age-race-sex categories are created, then re-identification rates 
can increase. 

  Creation of synthetic data from valid models is appealing because it potentially 
can preserve some analytic properties.  It is assumed that synthetic data cannot be re-
identified.  An intuitive difficulty of synthetic data, as shown by Reiter [52], [50], is 
that any analytic properties that are not included in the model will not be in the syn-
thetic data.   Reiter [52] has shown that some of the analytic properties that are in the 
model may not be in the synthetic microdata due to problems with the original micro-
data.  For instance, the nature of the random number generation process and sample 
sizes, the type of modeling procedures used, outliers, and errors in the original micro-
data can all affect the quality of the produced microdata.  Additionally, it is not possi-
ble to have greater accuracy for analytic purposes in the masked microdata than in the 
original, confidential microdata. 

Reiter [51], [52] has used standard modeling methods that are often used in the 
multiple imputation literature for creating models for the data. Polettini [46] has used 
maximum entropy methods for creating models of the data.  Muralidhar et al. [42], 
[43] and Sarathy et al. [55] have used copolas to model distributions.  Due to the dif-
ficulty (both theoretically and computationally) of creating models for data, Thi-
baudeau and Winkler [62] have suggested using Bayesian Networks because high 
quality software is available for (semi-)automatically creating models of the data.  The 
Bayesian Network methods can be used only with discrete data or with models in 
which some of the continuous data can be reasonably approximated by a discrete data 
representation.  Although the models are likely to have lower quality than those of 



Reiter [52] and Polettini [46], they are much easier for the statistical agencies to im-
plement.  Dandekar et al. [10], [11] use Latin Hypercube methods for creating syn-
thetic data.  They have demonstrated that the methods can rapidly produce large syn-
thetic data sets with a considerable number of variables.  Further, when the Latin Hy-
percube methods do not produce synthetic data with the desired accuracy for some 
analyses, they have iterative refinement methods for improving the analytic properties. 

   With other masking methods for producing microdata, there is often no justifica-
tion that the masking methods produce masked microdata with one or two of the ana-
lytic properties of the original microdata.  The superficial exceptions are when the 
producers of the masked microdata demonstrate that the masked microdata reproduces 
several of the tabulations of the original microdata.  The producers may also include 
reproduction of tabulations on a few subdomains.  At a minimum, we would hope that 
the masked microdata allow reproducing tabulations on the entire file and on certain 
subdomains.  Fuller [28] and Lambert [35] have indicated that masked microdata 
should preserve the first two moments of the original, confidential microdata and at 
least one other statistical property.  Van Den Hout and Van Der Heijden [64] have 
shown how a few analytic properties can be preserved with the PRAM method (see 
e.g., Willenborg and De Waal [66]) for producing masked, discrete data.  PRAM uses 
a Markovian strategy for swapping values of a variable across various records.  The 
intent is that certain marginal distributions are approximately preserved.  A potential 
intruder can never be certain what values in a given record have been changed. 

4   Re-identification of Microdata 

  The highest standard for estimating the proportion of records that can be re-
identified (Lambert [35], Domingo-Ferrer and Torra [19]) is where record linkage is 
used to match information from public data with the masked microdata.  Alternative 
effective matching methods are the nearest neighbor methods (Domingo-Ferrer and 
Mateo-Sanz [16]) and the clustering algorithms of Bacher et al. [5].  Record linkage 
can also be used in the conservative framework described in section 2 in which a 
masked file of Y data is matched directly with the original, confidential file of X data 
that was used in creating it.  In some situations, it may be possible to accurately match 
0.5-2% of the records in the initial iteration of the potential masked microdata.  In this 
situation, the file is non-confidential and we would apply additional masking proce-
dures to provide disclosure avoidance.  The ability to link public information to pub-
lic-use files has further been compromised by the increased sophistication of record 
linkage (Yancey et al. [71] and link analysis methods (McCallum and Wellner [40], 
Bilenko et al. [7]) and the increased availability of high-quality public data.  Indeed, 
due to the quality of public information, Malin et al. [39] are often able to match pub-
lic information using purely manual methods. 

   Re-identification of microdata refers to the ability to use publicly available in-
formation to attach names, addresses, and other (semi-)unique identifiers to individual 
records in a public-use file.  An identifier is semi-unique if it cannot exactly identify a 
linkage between two records using the identifier by itself but can allow a re-



identification in combination with other variables.  For instance, in a file where there 
are many individuals with the name “John Smith”, “John Smith” is a semi-unique 
identifier.  US Postal ZIP code and income may be other semi-unique identifiers for 
an individual.  When the semi-unique identifiers such as name “John Smith”, ZIP 
code, and income are used in combination, they may uniquely determine a linkage 
between two records.  Among the records having name “John Smith” and ZIP code 
“98100,” we may define a metric that allows the income to be matched if the incomes 
are within 5% of each other.  The deviation in the metrics can often be modified ac-
cording to the types of files being matched, the amount of redundant information that 
is available for matching, and the stated analytic properties of the public-use micro-
data.  For instance, if we had an additional variable such as profession, it is likely we 
could re-identify even when the metrics allow significantly larger deviations in income 
and other characteristics between matching records.  

   In record linkage (Winkler [67], [68]) and in re-identification experiments 
(Yancey et al. [71]), the software is designed to deal with both minor and major errors 
in a subset of the variables used in matching.  In most realistic real-world settings, 
some of the continuous variables are available in external files and can be used in 
matching.  Further, it is straightforward (Scheuren and Winkler [56]) to define new 
metrics based on relationships between two correlated or related variables to improve 
matching accuracy significantly.  For instance, we might consider the situation of 
linking two administrative lists of companies in which name and address information 
are sufficiently poor so most companies in one file might be associated with upwards 
of fifteen companies in another file.  If we also have income on one file, receipts on 
another file, and a crude function ‘f(income) = receipts’ that relates income to re-
ceipts, then we may be able to significantly increase high quality match rates with the 
extra, non-name-and-address information.  In the situation with a masked file Y, we 
may have a file Y' that only has a subset of the variables that in the Y file and the 
subset of Y'-variables is not sufficient for accurate matching.  If we can find an extra 
file Z in which the Z values can be used to predict the Y variables that are missing 
from the Y' file, then we may have sufficient extra information for significantly im-
proving the matching (and possible re-identification) [69]. 

   Because many individuals are unable to perform sophisticated or elementary re-
cord linkage, a number of other re-identification risk measures have been defined.  
The first measure is the number or proportion of population uniques in a file.  The 
measure appears to be based on elementary ideas in survey sampling for which 
sort/merge utilities can be used to determine matches on an exact character-by-
character basis.  A unique is a record with identifying information that distinguishes it 
from other records.  If records are tabulated according to their identifying information, 
then uniques are those records that have frequency one.  There are elementary models 
that use the frequency distribution of the identifying characteristics in the sample to 
obtain estimates of the number of the population uniques in the sample.  The intuition 
is that each population unique might be identified using elementary sort/merge meth-
ods.  A key observation (Elliot et al. [21], [22]) is that a sizable proportion of popula-
tion uniques in a file with twelve or more variables may be uniquely determined by 
three, four, or five variables in the records associated with the uniques.  These special 



uniques may be more easily re-identified because the intruder may be more likely to 
have the smaller number of variables in an external file.    

There is a class of risk-estimation measures that are based on statistical models in 
which the number of uniques in the public-use sample is used to provide an estimate 
of the number of uniques in the original population file.  The methods apply quite 
sophisticated models that relate the distribution of the sample uniques to the distribu-
tion of the population uniques.  Early papers with these statistical risk measures are by 
Bethlehem et al. [6], Fienberg and Makov [25], Benedetti and Franconi [5] and Skin-
ner and Holmes [59].  Later papers with enhanced methods are due to Skinner and 
Elliot [58], Rinott [53], and Polettini and Stander [47].  The apparent intent is to pro-
vide a straightforward, rapid method of estimating the proportion of sample uniques 
that are also population uniques.  We will refer to these methods as sample-unique-
population-unique (SUPU) methods. 

   There are four obvious criticisms of these SUPU methods.  The first criticism is 
that it is straightforward for the statistical agency to determine the risk of disclosure by 
directly comparing the sample file with the population file from which it is produced.  
Indeed, determining the number of population uniques that are also in the sample file 
can be part of the sampling procedure.  The second criticism is that a public-use file 
will typically contain ten or more variables, both discrete and continuous.  Even if the 
continuous variables are broken into a large number of discrete ranges, it is likely that 
all or almost all of the records in the sample and many or most of the original popula-
tion records will be unique.  The methods that have typically been applied only use a 
few discrete variables under the assumption that the intruder will only have access to a 
few discrete variables.  This assumption appears to be naïve given the amount of in-
formation that is available from Internet and other sources (Sweeney [60], [61]).  
Because most, if not all, public-use data files contain continuous variables, it is unreal-
istic not to include them in the statistical models of disclosure risk.  The third criticism 
is that the statistical models only provide an estimate of the proportion of sample 
uniques that are also population uniques.  The methods do not determine which of the 
sample uniques can be re-identified as would happen in a record linkage experiment 
(Kim and Winkler [34], Sweeney [60], Winkler [68], Domingo-Ferrer and Torra 
[19]).  The fourth criticism is that the models are often severely biased with the bias 
varying according to the data source.  For instance, if we were to produce a public-use 
file according to the following two procedures, we would obtain severely biased an-
swers from all of the SUPU models.  In the first situation, we could sample only from 
population uniques in producing public-use file D1.  In the second situation, we would 
sample only from population records that are not unique (occurring two or more times 
according to identifying information) in such a manner that every record in the public-
use file D2 is a sample unique.  In each of these situations, every SUPU model would 
give very biased estimates of the re-identification risk.  In general situations where 
different sampling procedures might be used, we would still likely have subsets of the 
public-use file where the biases could approach the two extreme situations previously 
described. 

   A second metric associated with re-identification (disclosure) risk for a one-
variable situation is the multiplicative inverse of the Var (X1)  (Duncan et al. [20]) 
where the variance is that of an intruder with weak knowledge of the target variable 



X1.  For instance, if data are micro-aggregated into a group on n items and each item is 
given the average value x , the re-identification risk is σ)1/( −nn  where σ  is the 
variance of the original x-values.  Trottini and Fienberg [63] have extended this metric 
to a few two-dimensional situations and have noted that the metric is different from 
many of the other metrics that are commonly in use.   

   In addition to using methods such as record linkage or nearest-neighbor match-
ing, Lambert [35] and Palley and Simonoff [45] have shown how knowledge of the 
analytic properties (such as regression parameters) of a masked data file can allow re-
identification.  De Waal and Willenborg [13], [14] show how knowledge of sampling 
weights can allow re-identification.  If we have detailed information about the survey 
frame, the sampling design, and the valid uses of the sampled data, then the sampling 
weights give us useful information about subdomains in which a record may occur.  If 
the sampling weights are combined with the original sampled data or with masked 
data, we may have sufficient information to allow some re-identifications. 

There are several research questions.  In many instances, can methods such as re-
cord linkage, nearest neighbor, or clustering be used for re-identification?  What data 
will be available on public sources such as the Internet and can be used for re-
identification?  Can the ideas of constructing functional relationships be substantially 
extended to allow re-identification in many situations?  How can advanced methods 
such as link analysis be applied for re-identification?  

5   Discussion of Information Loss Metrics 

   The best situation for the producer of public-use microdata is when there is one 
set of users of the microdata with explicitly stated analytic needs.  The key point is 
that, if there is a set of clearly defined users, the data provider can use ad hoc proce-
dures that are specific to a small set of required types of analyses.  Generally, indi-
viduals have desired more objective information loss metrics that allow comparison of 
results across several types of analyses or types of files.  Before describing some of 
the attempts at objective information-loss metrics, we describe the situation with 
clearly user-defined needs. 

  Kim and Winkler [34] needed to produce masked data that preserved analyses in a 
clearly defined set of subdomains determined by age, race, sex, and one other vari-
able.  In their situations, they, as producers of the data, were able to iteratively negoti-
ate the potential analytic uses.    Because some of the initial domains were too small, 
they were able to get users to agree to some collapsing of ages into age ranges and 
some of the subdomains determined race-age-sex categories.  Based on the consulta-
tion with users, they initially created subdomains that had a sufficient number of re-
cords.  They then applied additive noise with various levels of noise to determine the 
analytic degradations due to increased noise and determined a noise-level at the user-
specified level of accuracy.  Finally, they applied a swapping strategy for the most 
easily re-identified records.  The swapping strategy was designed to preserve regres-
sion properties in the user-specified subdomains.  After completion of the masking 
procedures, they provided information about analytic degradations in some subdo-



mains that were not considered as important as the main set of subdomains and de-
scribed specifics of the testing to determine that disclosure was avoided.  

    Willenborg and De Waal [66] have suggested using entropy with discrete data.  
The possible intuition is that the masked data may have decreased entropy and be less 
useful.  We observe, however, if X = (x1, …., xn) is discrete data, then a collapsing 
strategy may produce masked data Y = (y1, …, ym) where the sum of the counts in the 
y-cells exceeds a lower bound (say 3) and where the sum of the counts agrees the sum 
of the counts of the x-cells.  Each of the y-variables is obtained by aggregating x-
variables.  Although entropy clearly decreases, it is not clear how a loglinear analysis 
might be affected.  In the best situation, the collapsing may account for the sufficient 
statistics in original x-variables and the y-variables allow reproduction of an analysis.  
Domingo-Ferrer and Torra [18] have observed additional difficulties with the use of 
entropy.  In other situations, a loglinear analysis that is possible on the x-variables is 
impossible on the y-variables.  In other words, entropy is unlikely to provide useful 
information about possible degradations in analyses.  Iyengar [30] provides an exam-
ple of a collapsing strategy that allows a classification problem to be (approximately 
and accurately) reproduced.  Sweeney [60], [61] provides additional details on col-
lapsing methods and strategies for producing k-anonymity.  A file is k-anonymous if 
the identifiers agree exactly with the identifiers in at least k-1 other records. 

  Willenborg and De Waal [66] have suggested using as an information loss metric 
a statistic that they refer to as the variance inflation statistic 

)|ˆ(/)|ˆ( 0 DVarDVar θθ  where θ̂  is a univariate statistic, D0 is the original data, 

and D  is the masked data.  We observe that if the data are masked via micro-
aggregation, then this statistic increases.  If the data are masked by additive noise, then 
this statistic decreases. 

   Duncan et al. [20] have suggested using as information loss metric the statistic 
1/DS where DS is the utility of a univariate statistic.  For instance, if a file containing 
one variable X = (x1, …., xn) is masked by replacing the original values xi in each of 
the records with the average x , then the variance 2σ   of the data is the utility D.  If 
the variance increases, then the utility decreases.  The ideas of Duncan et al. [20] are 
intended to cover both information loss and disclosure risk for a file containing one 
variable.  Trotini and Fienberg [63] have shown how to extend their ideas to a few 
two-dimensional situations with multivariate normal data. 

Agrawal and Aggarwal [2] provide a measure of information loss that may be suit-
able for further research.  Let )(ˆ xf X be the density estimated from the masked data 

Y.  Let )(xf X be the density from the original data X.  Agrawal and Aggarwal [2] 

estimate )(ˆ xf X  in the one-dimensional privacy-preserving situation of Agrawal and 
Srikant [3] in which a simple type additive noise used for masking.  In more general 
situations, the densities could be associated with multivariate data that has been 
masked via other methods.  Then the information loss in the masked data is given by 
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This metric equals half the expected value of the L1-norm between the original dis-

tribution )(xf X  and the estimate )(ˆ xf X .  The information loss )ˆ,( XX ffI  takes 

values between 0 and 1.   If )ˆ,( XX ffI =0, then the estimate )(ˆ xf X perfectly recon-

structs )(xf X .  An issue with reconstructing the density )(xf X  is the amount of data 

needed and the accuracy of the estimate )(ˆ xf X .  It may be more difficult to obtain 

the estimate )(ˆ xf X  than to do a direct comparison, say, of two regression analyses 
using the masked and original data.  This concern applies to all of the information-loss 
situations involving synthetic data (given below). 

Gomatam and Karr [29] provide a review and empirical comparison of six informa-
tion-loss metrics for discrete data from the statistical and other literature.  In the fol-
lowing f and g are two discrete distributions where the first might be associated with 
the unmasked data X and the second with the masked data Y.  They use Hellinger 
distance whose definition is  
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They use the discrete analog of the distance metric of Agarawal and Aggarwal [2] that 
they refer to as total variation.  They use change in entropy that has been used by 
Willenborg and De Waal [66] and Domingo-Ferrer and Mateo-Sanz [18].  They use 
Cramer’s V measure of association on the 2χ statistic for an m×n contingency table 
that is defined as 
 

,))1,1min(/(( 2/12 −−= nmNV χ  
 

where 2χ is the usual test of independence.  They also use Pearson’s contingency 
coefficient C that is defined as 
 

.))/(( 2/122 NC += χχ  
 
In the empirical work, Gomatam and Karr [29] apply the information loss metrics 

to data in which swapping has been performed (Dalenius and Reiss [9]).  Willenborg 
and De Waal [66] define a data swap of 2k elements in terms of k elementary swaps.  
In an elementary swap we first make a random selection of two records i and j from 
and then interchange of the values of the variables being swapped for these two re-
cords.  The swap proportion or rate is defined as 2k/N where N is the number of re-
cords.  Gomatam and Karr observe that each of the metrics generally increases with 
the increase in the swap rate and that they are quite correlated.   



   Within the multiple-imputation framework of Raghunathan et al. [48], Little and 
Liu [37], [38] have also considered an information loss metric for univariate statistics.  
Before giving the statistic, we need to define some terms.  We are interested in the 
scalar parameterφ .   For any completed data set ),,1( Ddd L==  among D cop-

ies of the data obtained from randomly drawing from the model, let dφ̂  denote an 

estimate of φ  and dV  an estimate of the variance of dφ̂ .   The MI estimate of φ  is 
given by 
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loss associated with the scalar  φ  is given by TDB )/(=γ .  Since B and T are 
likely to be bounded, the information loss γ  goes to zero as the number of replicates 
D increases.  The metric γ  is appealing.  If the analysis is based on a highly accurate 
model M, then the model M provides estimates of scalars for which information loss 
can go to zero.  As MI is a general framework, it would be useful to extend the infor-
mation loss to multivariate situations and provide a number of examples. 

   Because of the difficulties in creating detailed models M, Little and Liu [38] and 
Reiter [51] only develop partial models that are applied to a subset of the variables in 
a data file.  Alternatively, Kennickell [31] creates a MI model for data and iteratively 
blanks and fills values of variables to create a file of synthetic data.  The iterative 
cycling between blanking data and filling in data stops when the data are believed to 
have converged or sufficient cycles have taken place. The ideas of Kennickell have 
been adapted and extended by Abowd and Woodcock [1]. 

The research questions for information loss are particularly difficult?  Is it possible 
to create models that represent data in a form that allows or account for several analy-
ses?  With different models, is it possible to have metrics for information loss that 
relate to several analyses?  How does a statistical agency create public-use files that 
preserve analytic properties and provide statistical justifications of the limitations of 
the public-use data?  

6   Concluding Remarks 

   This paper provides an overview of a number of methods that are in common use 
for the production of public-use microdata.  It covers analytic uses of the microdata 
and some of the research problems in information-loss metrics.  It also covers methods 
of evaluating re-identification risk. 
 
Disclaimer: This report is released to inform interested parties of research and to encourage 
discussion. The views expressed are those of the author and not necessarily those of the U. S. 



Census Bureau.  The author thanks Nancy Gordon, Cynthia Clark, and two reviewers for com-
ments leading to improved wording and explanation and several additional references.   
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