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Abstract

The EM algorithm can be used to estimate conditional probabili-
ties for matching field patterns for the Fellegi-Sunter model for record
linkage. The algorithm is based on a latent class model for the record
pairs where one of the classes is the set of true matches. If the number
of true match pairs in the data set is too small, then the EM algo-
rithm cannot detect the correct latent class. We consider methods for
enriching the density of matches in the set of examined record pairs
in order to obtain improved EM algorithm estimates for the record
linkage conditional probability parameters.
Key words: record linkage, EM algorithm

1 Record Linkage Background

Record linkage is a procedure to find pairs of records in two files that represent
the same entity. When the two files are the same file, record linkage can be
used to find duplicate records within a file. If we let A and B be two files,
the set of record pairs A × B can be partitioned into two sets M and U ,

∗This report is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. The views expressed are those of the authors and not
necessarily those of the U. S. Census Bureau.
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where M represents the set of record pairs where both records represent the
same underlying entity (e.g. person), and U is the set of record pairs where
the records represent different entities. The object of record linkage is to
infer which pairs of records belong to M . To do this, we make a set of
k comparisons between the records, which we may express as a comparison
function

f : A×B → Γ

where each element γ of the comparison space Γ is a k-tuple called an agree-
ment pattern. For the sake of simplifying the discussion, we assume that
all of our comparisons are binary, either agreement or disagreement, so that
there are 2k possible agreement patterns in Γ. The Fellegi-Sunter theory of
record linkage [Fellegi, 1969] says that if we know for each agreement pattern
γ, the conditional probabilities Pr (γ|M) and Pr (γ|U), the probability that
a pair of records produces the agreement pattern γ given that the pair is a
match (resp. non-match), then the optimal record linkage rule is formed by
ordering the patterns by their weights

wγ = log

µ
Pr (γ|M)
Pr (γ|U)

¶
,

choosing cutoff values wH > wL, and designating as links (inferred matches)
all pairs with agreement pattern γ with wγ > wH , designating as non-links
(inferred non-matches) all pairs with agreement pattern γ with wγ < wL,
and consigning to the clerical review region all record pairs with agreement
pattern γ with wL ≤ wγ ≤ wH . The record linkage rule is optimal in the
sense that of all the linkage rules that have the same or better false match and
false non-match error rates, this rule produces the minimal clerical review
region.

1.1 Conditional Independence

This ideal record linkage rule can only be approximated since the funda-
mental conditional probabilities are unknown and can only be approximated.
The task of approximating these conditional probabilities is usually simplified
by making the conditional independence assumption, that for each k-tuple
agreement pattern γ = (γl), the conditional probabilities can be computed
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by

Pr (γ|M) =
kY
l=1

Pr (γl|M) (1)

Pr (γ|U) =
kY
l=1

Pr (γl|U)

where Pr (γl|M) ,Pr (γl|U) are the marginal conditional probabilities of the
lth component of γ.
For census person data, we have achieved better conditional independence

results when we use three classes [Winkler, 1995]. Since the individual in-
formation is in categories that either distinguish individuals or household
groups, it is reasonable to partition the non-match class U into

U = U 0 ∪ U 00

where U 0 indicates the class of record pairs reflecting different individuals in
the same household and U 00 indicates the class of record pairs from different
individuals in different households. We can recover our marginal probability
by

Pr (γ|U) = Pr (γ|U 0 ∪ U 00) (2)

=
Pr (γ|U 0) Pr (U 0) + Pr (γ|U 00) Pr (U 00)

Pr (U 0) + Pr (U 00)

1.2 The EM Algorithm

This still leaves the problem of estimating the marginal conditional probabil-
ities. We have found that the EM algorithm can produce effective marginal
probability estimates specific to a given subset S ⊂ A×B directly from the
comparison data of the record pairs in S without the use of training data
or historical parameter values from other data record sets [Winkler, 1988].
The input data is the agreement pattern counts

nj = #
©
(a, b) ∈ S | f (a, b) = γj

ª
,

the number of times a record pair in S produces the agreement pattern γj

for each 1 ≤ j ≤ |Γ|. Under the binary comparison assumption, the number
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of agreement patterns |Γ| = 2k. When we collect this count data, we may
express the likelihood function as

L (S) =
Y

(a,b)∈S
Pr (γ (a, b)) =

2kY
j=1

¡
Pr
¡
γj
¢¢nj ,

where the probabilities Pr (γj) are functions of the marginal conditional prob-
abilities and the latent class proportions. Details of the adaptation of the
EM algorithm to this application are given in [Yancey, 2002].
The EM algorithm is an iterative numerical procedure to compute val-

ues of the parameters that maximize the likelihood function. Dempster,
Laird, and Rubin [Dempster, 1977] prove that this algorithm will converge,
and in this conditional independence context, we have found that the con-
vergence is efficient and fairly insensitive to initial conditions. However,
there is no a priori guarantee that the latent classes C1, C2, C3 determined
by the EM algorithm will correspond to the classesM,U 0, U 00 that we had in
mind. Failure to converge to the desired class parameters happens when the
proportion of one of the classes M,U 0, U 00 is too small to be detected by the
algorithm. In practice, it is the class M of matches that is generally small-
est, and when the proportion of this class drops below 0.05 or so, the EM
algorithm can converge to parameter values that are not relevant to record
linkage calculation.

1.3 Match Enriched Sampling

Our purpose in this paper is to experiment to see whether, in a case where the
matchesM are of so small proportion of the total set S of pairs that the EM
algorithm fails to converge to classes representing M,U 0, U 00, we can select
a sample S0 ⊂ S where the agreement pattern counts {nj} from the subset
S0 produce meaningful EM parameter estimates that can in turn be used for
record linkage on the full set S. The procedure is to modify the agreement
pattern counting procedure so that a record pair is added to the count based
on a calculation of its preliminary matching weight. We choose some initial
marginal probability parameters to compute a preliminary matching weight.
We count all pairs whose weight is high; we select a random sample of lower
weight pairs. In this way we select a subset S0 of record pairs in which the
proportion of matches is relatively high.
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1.4 One-to-One Matching

An important feature of the Census Bureau record linkage program is that
it performs one-to-one matching using a linear sum assignment algorithm
[Winkler, 1994]. Thus if we are comparing m records from one file with n
records from another file, where say m ≤ n, we compute a matching weight
array (wij) , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and the linear sum assignment algorithm
is used to find an optimal permutation σ̂ ∈ Pn such that

mX
i=1

wi,σ̂(i) = max
σ∈Pn

(
mX
i=1

wi,σ(i)

)
.

The output of the one-to-one matching is only the m record pairs
¡
ai, bσ̂(i)

¢
.

In our empirical study, we examined the true and false match distributions of
the output of the one-to-one matcher under different matching parameter in-
puts, not the distributions of all of the pairs (ai, bj). Consequently, whenever
we use valid marginal probability parameters with Pr (γl|M) > Pr (γl|U), we
generally see a high proportion of true matches in the output. Better pa-
rameter choices are evidenced by more effective separation between the true
and false matches.

2 Empirical Results

2.1 Census Test Decks

We considered for our test decks three pairs of Census files that have been
extensively clerically reviewed to determine match status. We chose a light
blocking criterion that would result in the subclass of true match pairs being
a small proportion of all of the pairs considered. Specifically, we blocked on
the last digit of the cluster number, a fairly random blocking scheme that
divides each set into ten subsets, and thus the resulting set of pairs should
be around 10% of all possible pairs. The maximum possible proportion of
the size of the match class in the set of all examined pairs is given by

min {#A,#B}
#Pairs

which corresponds to every record in the smaller file having matched a record
in the larger file. In Table 1, for each test deck, we show the number of
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Test Deck # A # B # Pairs Max Match Prop
STL 15048 12072 18,514,495 0.00065
2021 4539 4859 2,225,132 0.00204
3031 5022 5212 2,766,086 0.00182

Table 1: File Sizes and Blocked Pairs

Test Deck Pr (C1) Pr (C2) Pr (C3)
STL 0.0542 0.4931 0.4527
2021 0.0318 0.5391 0.4291
3031 0.0262 0.4968 0.4771

Table 2: All Pairs Class Proportion Estimates

records in each file, the number of record pairs brought together under our
loose blocking criterion, and the maximum possible proportion of match pairs
in this blocking set. We see in Table 1 that the match class in each of the
three test decks is well below 1% of the pairs considered.
For each test deck, we use ten matching fields for binary comparison,

making a total of 1024 possible matching patterns. The matching fields
are: last name, first name, house number, street, 4 digit phone number, age,
relationship to head of household, marital status, sex, race.

2.2 Raw EM Estimates

When we run the three class EM algorithm on pattern counts from this full
blocking criterion, we get the estimated class proportions shown in Table 2.
We see that in all cases the smallest estimated latent class proportion, namely
that of class C1, is at least an order of magnitude larger than the actual
proportion of matches. Actually the latent class proportion estimates are
fairly consistent from one test deck to the next, but it is difficult to interpret
what might characterize these classes. Likewise, the marginal conditional
agreement probabilities estimated by the EM algorithm in Tables 3, 4, and 5
do not conform to the values we would expect if the latent classes represent
matches, non-matches within household, and non-matches outside household.
While the resulting parameters do have the necessary property that

Pr (γ|C1) > Pr (γ|C2 ∪ C3)
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Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.6570 0.0641 0.0286 0.0471
first 0.2296 0.0861 0.0534 0.0705
hsnm 0.9975 0.3190 0.0383 0.1846
strt 0.9841 0.3465 0.0035 0.1823
phone 0.6103 0.0160 0.0215 0.0186
age 0.3674 0.3184 0.0577 0.1936
rel 0.2807 0.4321 0.0001 0.2254
marit 0.5426 0.6113 0.0027 0.3200
sex 0.5968 0.5109 0.5458 0.5276
race 0.9767 0.6382 0.5295 0.5862

Table 3: Marginal Probabilities for Deck STL

Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.8685 0.0151 0.0194 0.0170
first 0.3643 0.0061 0.0600 0.0300
hsnm 0.9826 0.6683 0.0005 0.3723
strt 0.9824 0.6317 0.1506 0.4185
phone 0.7272 0.0174 0.0088 0.0136
age 0.4646 0.1114 0.4594 0.2656
rel 0.3395 0.1830 0.4260 0.2907
marit 0.6053 0.4175 0.4741 0.4426
sex 0.6417 0.4945 0.5122 0.5023
race 0.9232 0.6915 0.4104 0.5669

Table 4: Marginal Probabilities for Deck 2021

so that agreement weights will all be positive and disagreement weights will
all be negative, we see that the fields, such as first name and age, that
primarily identify individuals have weak distinguishing power.
If we proceed by identifying the first class with the class of matches

M = C1

and the other two classes with the class of non-matches

U = C2 ∪ C3
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Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.9332 0.0254 0.0142 0.0199
first 0.4108 0.0098 0.0650 0.0369
hsnm 0.9658 0.5140 0.0248 0.2743
strt 0.7121 0.5968 0.0667 0.3371
phone 0.7885 0.0249 0.0037 0.0145
age 0.4904 0.0974 0.4199 0.2554
rel 0.3208 0.1080 0.5086 0.3042
marit 0.5608 0.3206 0.5811 0.4482
sex 0.6419 0.4670 0.5225 0.4942
race 0.9371 0.7082 0.5144 0.6133

Table 5: Marginal Probabilities for Deck 3031

then we can compute for each matching field the agreement weight

A = log
Pr (γ|M)
Pr (γ|U)

the disagreement weight

D = log
1− Pr (γ|M)
1− Pr (γ|U)

and the discriminating power of the field

P = A−D.

The results for these test decks are summarized in Tables 6, 7, and 8.

2.3 Match Enriched Samples

We now want to recompute our EM parameter estimates using pattern counts
from a subset of the files that should contain a higher proportion of the set of
matches. In order to do this, we can select to count more of the pairs with
higher weights and fewer of the pairs with lower weights, where the matching
weights of the pairs has been determined from an a priori set of marginal
conditional weights. For the record, the initial marginal weights are given
in Table 9. We tried counting all pairs with matching weight above 0, and
randomly selecting 1% of all pairs with matching weight below 0 and above
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Field Pr (γ|M) Pr (γ|U) A D P
last 0.6570 0.0471 2.6354 −1.0218 3.6572
first 0.2296 0.0705 1.1807 −0.1877 1.3685
hsnm 0.9975 0.1846 1.6871 −5.7874 7.4745
strt 0.9894 0.1823 1.6915 −4.3456 6.0371
phone 0.6103 0.0186 3.4908 −0.9236 4.4144
age 0.3674 0.1936 0.6407 −0.2427 0.8834
rel 0.2807 0.2254 0.2194 −0.0741 0.2935
marit 0.5426 0.3200 0.5281 −0.3965 0.9246
sex 0.5968 0.5276 0.1232 −0.1584 0.2816
race 0.9767 0.5862 0.5105 −2.8769 3.3875

Table 6: Matching Weights for Test Deck STL

Field Pr (γ|M) Pr (γ|U) A D P
last 0.8685 0.0170 3.9336 −2.0116 5.9452
first 0.3643 0.0300 2.4968 −0.4226 2.9194
hsnm 0.9826 0.3723 0.9705 −3.5856 4.5561
strt 0.9824 0.4185 0.8533 −3.4977 4.3510
phone 0.7272 0.0136 3.9791 −1.2853 5.2645
age 0.4646 0.2656 0.5592 −0.3160 0.8752
rel 0.3395 0.2907 0.1552 −0.0713 0.2265
marit 0.6053 0.4426 0.3131 −0.3452 0.6582
sex 0.6417 0.5023 0.2449 −0.3286 0.5736
race 0.9232 0.5669 0.4877 −1.7298 2.2174

Table 7: Matching Weights for Test Deck 2021
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Field Pr (γ|M) Pr (γ|U) A D P
last 0.9332 0.0199 3.8479 −2.6860 6.5339
first 0.4108 0.0369 2.4099 −0.4914 2.9013
hsnm 0.9658 0.2743 1.2587 −3.0549 4.3137
strt 0.7121 0.3371 0.7478 −0.8340 1.5819
phone 0.7885 0.0145 3.9960 −1.5389 5.5349
age 0.4904 0.2554 0.6524 −0.3792 1.0316
rel 0.3208 0.3042 0.0531 −0.0242 0.0773
marit 0.5608 0.4482 0.2241 −0.2282 0.4524
sex 0.6419 0.4942 0.2615 −0.3453 0.6068
race 0.9371 0.6133 0.4239 −1.8161 2.2400

Table 8: Matching Weights for Test Deck 3031

Field Pr (γ|M) Pr (γ|U)
last 0.97 0.10
first 0.99 0.01
hsnm 0.95 0.03
strt 0.96 0.16
phone 0.94 0.05
age 0.79 0.02
rel 0.53 0.29
marit 0.89 0.34
sex 0.91 0.45
race 0.97 0.84

Table 9: A Priori Marginal Weights
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Test Deck # Pairs Max Match Prop
STL 71,729 0.1683
2021 16,117 0.2816
3031 13,665 0.3675

Table 10: Reduced Counts of Blocked Pairs

Test Deck Pr (C1) Pr (C2) Pr (C3)
STL 0.1597 0.3981 0.4423
2021 0.2131 0.4951 0.2918
3031 0.2744 0.4746 0.2510

Table 11: Reduced Pairs Class Proportion Estimates

−6, and 0.1% of all pairs with matching weight below −6. We based this
sifting method on a count of pairs from the STL deck. When we binned the
pairs by integer weight values, the number of pairs tended to increase in order
of magnitude at around 0 and −6, hence we chose to discard proportionally
more of them while retaining a sample of the lower weight pairs. This
seemed to work better than our previous approach of simply discarding all
pairs below a cutoff weight. Using such an absolute cutoff may retain all
match pairs, but the included non-match pairs tend to agree on at least a
few fields. This tends to raise some of the marginal probability estimates
conditioned on non-matching and thus degrades the distinguishing power of
some fields. The reduced number of pairs counted in the test decks and
the corresponding maximum proportion of matches is given in Table 10 (cf.
Table 1).

2.4 Enriched EM Estimates

When we run the three class EM algorithm using these reduced counts for
data, we get the estimated class shown in Table 11 (cf. Table 2). Here we see
that the estimated size of class C1 more reasonably corresponds to a possible
proportion of the match class M . The corresponding marginal probability
estimates from the EM algorithm are given in Tables 12, 13, and 14 (cf.
Tables 3, 4, and 5).
Since we want to extend the conditional probability estimates from sample

S0 to the full set S, in order to compute Pr (γ|C2 ∪ C3) using (2), we need to
re-estimate the class proportions Pr (C2) and Pr (C3). Essentially we assume
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Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.9341 0.7571 0.0038 0.0050
first 0.9885 0.0490 0.0267 0.0268
hsnm 0.9506 0.9874 0.1640 0.1653
strt 0.9650 0.9874 0.2587 0.2598
phone 0.6749 0.6312 0.0001 0.0011
age 0.9024 0.2659 0.1091 0.1093
rel 0.4847 0.2985 0.1373 0.1375
marit 0.8642 0.6044 0.3074 0.3078
sex 0.9836 0.5341 0.4346 0.4347
race 0.9746 0.9649 0.5063 0.5070

Table 12: Marginal Probabilities for Deck STL

Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.9479 0.7074 0.0135 0.0160
first 0.9769 0.0522 0.0450 0.0451
hsnm 0.9332 0.9888 0.0386 0.0420
strt 0.9507 0.9948 0.4203 0.4224
phone 0.6721 0.6216 0.0015 0.0037
age 0.8847 0.2608 0.2758 0.2758
rel 0.4862 0.2727 0.2255 0.2257
marit 0.8513 0.5158 0.4886 0.4887
sex 0.9753 0.5190 0.6040 0.6037
race 0.9226 0.8990 0.6755 0.6764

Table 13: Marginal Probabilities for Deck 2021
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Field Pr (γ|C1) Pr (γ|C2) Pr (γ|C3) Pr (γ|C2 ∪ C3)
last 0.9327 0.6783 0.0071 0.0087
first 0.9616 0.0645 0.0284 0.0284
hsnm 0.9280 0.9890 0.0218 0.0241
strt 0.6422 0.8693 0.1133 0.1150
phone 0.6786 0.5996 0.0000 0.0014
age 0.8645 0.3029 0.1757 0.1760
rel 0.4521 0.2142 0.1282 0.1284
marit 0.7686 0.4941 0.3540 0.3543
sex 0.9827 0.5076 0.5721 0.5720
race 0.9295 0.8961 0.5297 0.5306

Table 14: Marginal Probabilities for Deck 3031

that all of the uncounted pairs from S are in class C3, which probably is not
quite the case, but the class C3 in S should be by far the largest. Specifically,
we estimate the class proportions in S by

Pr (C2)S =
|S0|Pr (C2)

|S|
Pr (C3)S =

|S0|Pr (C3) + |S − S0|
|S|

2.5 Comparison of Match Results

We see in Tables 15, 16, and 17 that the discriminating power of the variables,
especially the individual matching variables like first name and age has been
increased over the values derived from the full file parameter estimates as
shown in Tables 6, 7, and 8.
The sampled pair counts have produced significantly different marginal

probability estimates for some of the fields, but we want to see what effect the
new parameter estimates have on the matching output. One effect is that
by generally increasing the discriminating power, the range of possible pair
weights from total agreement to total disagreement widens. Thus in order
to compare the outputs of the matcher using different marginal probability
parameters, we rescale the output weight to a score s, where

s =
w − wmin

wmax − wmin
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Field Pr (γ|M) Pr (γ|U) A D P
last 0.9341 0.0050 5.2302 −2.7146 7.9448
first 0.9885 0.0268 3.6078 −4.4382 8.0460
hsnm 0.9506 0.1653 1.7493 −2.8271 4.5765
strt 0.9650 0.2598 1.3122 −3.0516 4.3638
phone 0.6749 0.0011 6.4193 −1.1225 7.5418
age 0.9024 0.1093 2.1110 −2.2111 4.3221
rel 0.4847 0.1375 1.2599 −0.5151 1.7750
marit 0.8642 0.3078 1.0324 −1.6287 2.6611
sex 0.9836 0.4347 0.8166 −3.5401 4.3566
race 0.9746 0.5070 0.6535 −2.9658 3.6193

Table 15: Matching Weights for Test Deck STL

Field Pr (γ|M) Pr (γ|U) A D P
last 0.9479 0.0160 4.0820 −2.9388 7.0208
first 0.9769 0.0451 3.0761 −3.7204 6.7965
hsnm 0.9332 0.0420 3.1001 −2.6625 5.7626
strt 0.9507 0.4224 0.8112 −2.4602 3.2715
phone 0.6721 0.0037 5.2014 −1.1112 6.3126
age 0.8847 0.2758 1.1657 −1.8373 3.0030
rel 0.4862 0.2257 0.7674 −0.4101 1.1775
marit 0.8513 0.4887 0.5550 −1.2348 1.7897
sex 0.9753 0.6037 0.4796 −2.7753 3.2549
race 0.9226 0.6764 0.3105 −1.4307 1.7412

Table 16: Matching Weights for Test Deck 2021
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Field Pr (γ|M) Pr (γ|U) A D P
last 0.9327 0.0087 4.6809 −2.6899 7.3708
first 0.9616 0.0284 3.5208 −3.2319 6.7527
hsnm 0.9280 0.0241 3.6516 −2.6073 6.2589
strt 0.6422 0.1150 1.7198 −0.9057 2.6255
phone 0.6786 0.0014 6.1781 −1.1335 7.3116
age 0.8645 0.1760 1.5918 −1.8052 3.3971
rel 0.4521 0.1284 1.2588 −0.4642 1.7230
marit 0.7686 0.3543 0.7745 −1.0264 1.8009
sex 0.9827 0.5720 0.5412 −3.2066 3.7478
race 0.9295 0.5306 0.5607 −1.8956 2.4563

Table 17: Matching Weights for Test Deck 3031

where w is the pair’s output weight by the matcher and wmax and wmin are the
maximum and minimum weights output by the matcher respectively. Thus
we can compare the outputs of all matching runs on a scale of 0 to 1. Graphs
of the output distributions of the matches and non-matches can be seen in
[Yancey, 2002].
To get an indication of the improved separation between matches and

non-matches, we can consider drawing comparable cutoff level scores for links
and clerical regions for the deck. For example, we can see in Table 18 that
if we designate as links pairs with a score above 0.55 (actually, since the bar
graphs are centered at midpoints, this cutoff score is 0.525), the enriched
EM parameters produce a set of links with some more true matches and a
lot lower false match rate. If we designate the clerical region by the pairs
included in bars with scores between 0.35 and 0.55, while the enriched EM
distribution contains somewhat more pairs to consider, the clerical region has
a much higher ratio of matches to non-matches. For the other two test decks,
we set the cutoff levels slightly higher. Compare Figures 1 and 2. For test
decks 2021 and 3031, if we take the designated links to be contained in the
frequency bars with score 0.6 and above and the clerical region to be in the
bars with scores from 0.4 up to 0.6, then for both cases, the enriched EM
matching provides more true matches with a lower false match rate in the
designated links and a clerical region with fewer pairs, more matches, and
a lower false match rate, as seen in Tables 19 and 20 respectively. See also
Figures 3 and 4, 5 and 6.
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Score Region Raw EM Enrich EM
s > 0.55

Total Pairs 9914 9525
#True Matches 9425 9452
False Match Rate 4.93% 0.77%

0.35 < s < 0.55
Total Pairs 544 589
#True Matches 127 419
False Match Rate 76.65% 28.86%

Table 18: STL Sample Linkage Rule Comparison

Score Region Raw EM Enrich EM
s > 0.6

Total Pairs 3602 3584
#True Matches 3509 3522
False Match Rate 2.58% 1.73%

0.4 < s < 0.6
Total Pairs 313 259
#True Matches 55 62
False Match Rate 82.42% 76.06%

Table 19: 2021 Sample Linkage Rule Comparison

Score Region Raw EM Enrich EM
s > 0.6

Total Pairs 3583 3552
#True Matches 3488 3503
False Match Rate 2.65% 1.38%

0.4 < s < 0.6
Total Pairs 375 263
#True Matches 75 82
False Match Rate 80% 68.8%

Table 20: 3031 Sample Linkage Rule Comparison
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Figure 1: STL Raw EM Matcher T/F Distributions
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Figure 2: STL Enriched EM Matcher T/F Distributions
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Figure 3: 2021 Raw EM Matcher T/F Distributions
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Figure 4: 2021 Enriched EM Matcher T/F Distributions
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Figure 5: 3031 Raw EM Matcher T/F Distributions
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Figure 6: 3031 Enriched EM Matcher T/F Distributions
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3 Conclusions

The EM algorithm can be an effective unsupervised learning technique for
estimating parameters for record linkage. When the class of match pairs is
too sparse for the algorithm to conform to the appropriate classes, it is possi-
ble to sample the pairs to obtain a match-enriched subset, obtain reasonable
EM parameter estimates, and extend these estimates for use in record linkage
for the entire file. The sample can be taken without clerical input, using
default parameters, and examining the default matching weight statistics of
the output. The use of these sample-based EM parameters can result in im-
proved separation of matches and non-matches in a record linkage program.
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A EM Algorithm Details

The assumption of the model is that the probability distribution Pr (γj) of
patterns is a mixture of several latent class components. For a three class
model, we assume there are three classes C1, C2, C3 where

Pr
¡
γj
¢
= Pr

¡
γj|C1

¢
Pr (C1) + Pr

¡
γj|C2

¢
Pr (C2) + Pr

¡
γj|C3

¢
Pr (C3)

for which the conditional independence assumption holds

Pr (γ|Ci) =
kY
l=1

Pr (γl|Ci)

for i = 1, 2, 3. Under the binary comparison assumption, so that

Pr (γl = 0|Ci) = 1− Pr (γl = 1|C i)

this makes 3k marginal conditional probability parameters Pr (γl = 1|Ci) to
be estimated along with 2 independent class proportion Pr (Ci) parameters,
since

Pr (C1) + Pr (C2) + Pr (C3) = 1.

Finding the parameters that maximize the likelihood function in this mixture
form is difficult, so the EM algorithm approach is to assume that in addition
to the actual count data {nj}, we have the additional data {zij}, i = 1, 2, 3,
j = 1, 2, . . . , 2k, where zij is the proportion of the record pairs with agreement
pattern γj which come from class Ci. If we take as the complete data
{nj, zij}, wee may express

Pr
¡
γj
¢nj = ³¡Pr ¡γj|C1¢Pr (C1)¢z1j ¡Pr ¡γj|C2¢Pr (C2)¢z2j ¡Pr ¡γj|C3¢Pr (C3)¢z3j´nj

and by substituting this form along with the conditional independence as-
sumption into the complete data likelihood function, the function is multi-
plicative, hence its logarithm is additive, and the maximizing parameters are
easily solved.
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Of course we do not actually know the “data” values {zij}, but given
current estimates of the parameters, we can estimate them. Then treating
these estimated data elements as data, we can get new parameter estimates.
This iterative procedure is the EM algorithm. Specifically we begin with
some initial estimates for the unknown marginal probability parameters and
class proportions. We perform the E step of the EM algorithm by estimating
the auxiliary data by

ẑij = E [zij]

= Pr
¡
Ci|γj

¢
=

Pr (γj|Ci) Pr (Ci)

Pr (γj|C1) Pr (C1) + Pr (γj|C2) Pr (C2) + Pr (γj|C3) Pr (C3)
Given these data estimates, we perform the M step by directly computing
the maximizing values of the complete data log likelihood function by

Pr (Ci) =
1

|S|
2kX
j=1

nj ẑij

Pr (γl = 1|Ci) =

P2k

j=1 nj ẑijγ
j
lP2k

j=1 nj ẑij

where γjl is the l
th component of the jth agreement pattern, which is either 0

or 1. We iterate the procedure by using the new parameters to re-estimate
the {zij}, then use these estimates to compute new likelihood maximizing
parameters until we reach numerical convergence.
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