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Donald Malec

Abstract

A multivariate binomial/multinomial model is proposed for estimating
poverty and housing-unit characteristics of small areas. It is demon-
strated that the model is in concordance with the design in that the
model can reproduce within small area design-based estimates of vari-
ance. The methodology for producing estimates is presented, along
with several evaluations using data from the American Community
Survey. It is concluded that this approach can be a viable way to make
small area estimates without needing to assume that the design-based
estimates of variance are fixed (as in most area-level models).

Keywords: Hierarchical Model, Logistic parameterization, Unit level
Small Area Model, Full Bayesian Analysis

1 Introduction

In an effort to provide accurate estimates for census-type aggregations such
as tracts, on a yearly basis from the American Community Survey (ACS),
small area methods can be employed. A hierarchical logistic model of both
persons and housing units within tracts is proposed for making tract level
estimates. This approach directly accounts for the uncertainty of within tract
variability, a component whose estimate is often regarded as fixed in other
small area estimation methods. Since within-tract variability is a component
that affects borrowing strength, this approach automatically accounts for the
additional uncertainty of unknown within-tract variability in the magnitude
of borrowing strength.

A typical assumption used in small area estimation is that the direct
small area estimates are normally distributed with unknown mean but with
the corresponding estimated variance treated as fixed and known (e.g. see
Rao (1999), eq 2.2). A model linking the unknown small area means together
is then used to produce final estimates. Due to small sample sizes in a small
area, variance estimates of the direct estimates may be imprecise and, in that
case, should not be treated as known. In addition, the direct estimates may
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not have a distribution near normality. The effect of these assumptions on
small area estimates has been of interest for a while. For example, the effect
of mis-specification of composite estimator weights (which can be functions of
variance components) was empirically evaluated by Schaible (1979). There,
it was demonstrated that mean squared error was fairly robust to misspeci-
fication of the composite estimator weights. The effects of mis-specification
of weights on estimates of variance was not evaluated, however. In order to
reduce the variability of the within small area estimated variances, Isaki et
Al. (1999) used models across small areas to reduce the variance. Variabil-
ity of the actual variances across small areas was not accounted for in the
model. By assuming the estimated within small area covariance matrices
are distributed approximately Wishart and assuming that some of the pa-
rameters of the model can be estimated with negligible error, Otto and Bell
(1995) smooth the small area variances using a model that includes a term
accounting for small area variability of the true covariance.

The model to be used is a unit level model of both individual and housing
unit characteristics. This type of model avoids the need to assume that
within tract variance estimates are measured without error. This model also
avoids making assumptions that tract-level summary statistics are Normally
distributed. In addition, this model automatically incorporates the ACS
sample selection mechanism.

Estimates, and their estimated precision, are produced using Monte Carlo
Markov Chain methods via a non-subjective Bayesian approach. The aim
of this work is to use a unit-level model to produce a small area estimation
method that acknowledges the fact that within tract-level sampling error
is unknown and incorporates this extra source of error into the inferential
framework. A secondary aim is to provide an approximate method that is not
as computationally intensive to use. To this end, the difference between these
estimates and estimates based on an approximation of a directly comparable
aggregate-level model are assessed.

A hierarchical model of persons within housing units within tracts is pro-
posed for making tract level estimates. Unlike Chand and Malec (2001),
where hierarchical models based on the arcsin square-root transformation
are used, logistic transformations are used here. It is shown that the model
can provide estimates for within tract variances comparable to a standard
jack-knife approach while additionally accounting for the model-based vari-
ability of these estimates. Estimates of tract-level poverty rate, persons per
housing unit and occupancy rate are made from the model. In addition, these
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estimates are contrasted with estimates arising from a comparable aggregate-
level model. This comparison will document the effects of assuming large
sample Normality of transformed proportions and using Taylor series linear
approximations. Unlike Chand and Malec, where the competing aggregate-
level model consisted of a tract-level aggregate with the estimated within-
tract level variance treated as known, the aggregate model used here is picked
to be close to the unit-level model. This aggregate level model does not sub-
stitute estimated variances as fixed numbers. Instead, variance stabilizing
transformations relevant to the assumed model are used.

The model used here accounts for possibly different poverty rates for
family members in a housing unit (who are either all in poverty or not)
and unrelated persons (who have an individual poverty index) living in the
same housing unit. The model includes a provision that the poverty status
of unrelated individuals may depend on the poverty status of the housing
unit’s family. In order to account for the sampling variability and to make
estimates at the tract level, a hierarchical multinomial model of housing unit
characteristics is used. Both the arc-sine square root based model of Chand
and Malec and the logistic-based model, used here, are generalizations of the
model used by Chand and Alexander (1995) for making tract-level estimates
of the percent of persons in poverty. The same data set, as used by Chand and
Alexander, will be used here. It consists of a sample containing 163 Oregon
census tracts, collected in 1996. A sampling fraction of 15% was used for
this sample. The distribution of the number of sampled housing units varied
considerably across tracts. The median sample size is 192 housing units.
About 5% of the sampled tracts have 47, or fewer, housing units in sample
and about 95% have at least 351.

2 The Population Model

The American Community Survey is a systematic sample of housing units. It
is assumed that the sample of housing units can adequately be approximated
by a simple random sample. There may be a selection bias within housing
units; e.g. persons within a housing unit may have correlated responses. An
extreme example of this is in measuring poverty because poverty is assigned
to an entire family, resulting in a perfect correlation among persons in the
same family.

Since person characteristics tend to cluster within household, a model
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that treats individuals as independent observations is inappropriate. A model
that can account for some degree of within housing unit correlation will be
used, here, to circumvent this problem. Since borrowing strength is directly
related to the amount of within and between variance, not accounting for
this error could bias the results. The housing unit model will automatically
adjust borrowing based on the uncertainty of the variance estimates.

Within a State, a two-stage model is employed. A model of housing unit
characteristics is postulated. Then, within a housing unit, a model of indi-
vidual characteristics within a housing unit is provided. In this preliminary
development, housing unit size and composition into family members and
unrelated housing unit residents are modeled. Subfamilies are considered as
part of the family and share family characteristics. In this application per-
sons below poverty are of interest. Here, the salient feature of the model
is that all members of a family are either in or out of poverty. Unrelated
individuals will have their own unique poverty status. However, a model is
employed which will account for possible correlation between family poverty
status and the poverty status of unrelated individuals within the same hous-
ing unit. Further modeling of family characteristics as a function of housing
size, demographic characteristics, etc. could be investigated in the future.
As in Chand and Alexander (1995), administrative records are employed to
model tract variability of poverty rates.

2.1 Notation and Distributional Assumptions

In order to utilize tract-level data to estimate possible unique tract-level
features, the above models will all have tract level-specific parameters. A
hierarchical model across tracts, within a state, will be specified in order to
increase the sample size while estimating common features across tracts.

2.1.1 The Housing Unit Composition Model

For each housing unit, h, in tract i, both the housing unit composition and
the poverty status of all individuals within the housing unit can be mea-
sured. Housing unit composition consists of family size and the number of
unrelated persons living in the housing unit. For housing unit, (i,h), denote
these two counts by cfih and cuih, respectively. This includes vacant housing
units (cfih, cuih)=(0,0). By convention, occupied housing units will always
have one, and only one, family. This definition of housing unit composition
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represents the most basic description of a housing unit’s inhabitants needed
to define person-level poverty, since an entire family is either in poverty or
not and each unrelated individual has their own poverty status. The poverty
status for all persons in housing unit (i,h), can be described by indicator
variables of family composition and of poverty status.

Denote the type of composition of the household by the multiple-valued
indicator,δih:

δih = k, if (cfih, cuih) = (gk, uk)

where it is assumed that the T unique types of housing unit composition
pairs, (gk, uk), k=1,...,T , are identifiable from the sample (or enough are
identifiable to be used to approximate the collection of unique types). The
distribution of housing unit composition within tract is:1

P (δih = k| πik) = πik, {δih}h independent given {πik}k.

Conditional on the πik,
∑

h∈s I[δih=k] = aik form sufficient statistics.
The joint distribution of ai= (ai1, . . . , aiT ) is Multinomial(ai., πi1, . . . , πiT ),

conditional on ai., the total number of sampled housing units in tract i
(ai. =

∑T
k=1 aik).

Define the transformations:

θik = ln

(
πik∑T

`=k+1 πi`

)
; k = 1 . . . T − 1. (1)

As a result, given the number of sampled housing units in tract, i, and, when
the parameters, (θi1, . . . , θi,T−1), are fixed, the likelihood of the housing unit
parameters can be obtained from the joint distribution of ai, i.e.:

p(ai|ai.) ∝
T−1∏
k=1

{
eθikaik(1 + eθik)−

∑T

`=k
ai`

}
(2)

Completing the hierarchical model, specify:

θik ∼ N(µk, γ
2
k); ind., i, k = 1 . . . T − 1. (3)

1The Bayesian convention of using the ”conditioning line” to show when model param-
eters are considered fixed is followed here.
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The Housing Unit Composition model is defined by (2) and (3). Once
a prior is provided for µ1, γ

2
1 , . . . , µT−1, γ

2
T−1, Bayesian methods can be em-

ployed.
To avoid problems with using improper priors that result in improper

posteriors, the approximate method for obtaining overdispersed priors by
Natarajan and Kass (2000) will be used. Specifically, a uniform improper
prior will be used for µk and, given known constants νk, an approximate
uniform shrinkage prior will be used for γ2

k :

pr(γ2
k) ∝

[
1 + γ2

kp(νk)(1 − p(νk))
∑
i∈s

T∑
`=k

ai`/ai.

]−2

.

p(µ) = eµ/(1 + eµ)

Natarajan and Kass (2000) show that the class of priors, in which this
prior belongs, are all proper for any νk. In addition, they suggest substituting
the MLE of µk, based on a fixed effect model (i.e., assuming γ2

1=. . .=γ2
T−1=0),

into νk. It is recognized that basing any prior on even part of the data in the
likelihood precludes the direct use of Bayes theorem for posterior inference.
However, Natarajan and Kass state that treating νk as if is it does not depend
on the data appears to only have a minor effect on the posterior. Their
suggestion is followed here.

2.1.2 The Poverty Status Model

Given the housing unit composition, poverty status can be defined by the
set of binary indicator variables, xih = (xF ih, xUih1 . . . , xUihuδih

) indicating
presence or absence of poverty by either a 1 or a 0 for the family and each
uδih

unrelated housing unit member.
The distribution of family poverty is defined as independent Bernoulli:

P (xF ih = 1|p0i) = p0i

Conditional on the family’s poverty status, the poverty status of the unrelated
individuals within the housing unit are also independent Bernoulli:

P (xUihj = 1|xF ih, pPi, pNi) =

{
pPi, if xF ih = 1
pNi, if xF ih = 0
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Completing the model between tracts, define the logits:

ln

(
p0i

1 − p0i

)
= z

′
iβ + ti,

ln

(
pPi

1 − pPi

)
= z

′
iβ + ti + νP , and

ln

(
pNi

1 − pNi

)
= z

′
iβ + ti + νN ,

where zi are tract-level covariates available for all tracts and

ti ∼ N(0, σ2).

The zi are the known tract-level IRS covariates used by Chand and
Alexander (1995) in modeling poverty status:
zi1= 1,
zi2= ln(median income)
zi3= ln(per capita income)
zi4= ln(QL)
zi5=ln(QU)
zi6=2 sin−1

√
PV , where QL, QU and PV are respectively, the lower quar-

tile income, the upper quartile income and the proportion of persons below
poverty level in the tract.

Functionally independent uniform, improper priors are used for β, νP

and νN . As with the housing unit model, an approximate uniform shrinkage
prior, see Natarajan and Kass (2000) is used for σ2. In this case,

pr(σ2
k) ∝

[
1 + σ2

k

∑
i∈s

{n0ip̃0i(1 − p̃0i) + nPip̃Pi(1 − p̃Pi) + nNip̃Ni(1 − p̃Ni)}/nHi

]−2

Here,

p̃0i = ez
′
iβ̃/(1 + ez

′
iβ̃),

p̃Pi = ez
′
iβ̃+ν̃P /(1 + ez

′
iβ̃+ν̃P ) and

p̃Ni = ez
′
iβ̃+ν̃N /(1 + ez

′
iβ̃+ν̃N )

where β̃, ν̃p and ν̃N are the MLE estimates of the person level model with
all ti = 0. Lastly, n0i, nPi and nNi are the number of sampled families, the
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number of unrelated persons in sampled housing units of families in poverty
and the number of unrelated persons in sampled housing units of families
not in poverty, respectively.

Given n0i, the number of sampled families in tract i (i.e., the number of
occupied sampled housing units), sufficient statistics for the joint distribution
of {xih}h∈s are:

m0i =
∑
h∈s

xF ih,

nPi =
∑
h∈s

xF ihuδih
,

mPi =
∑
h∈s

xF ih

uδih∑
j=1

xUihj ,

nNi =
∑
h∈s

(1 − xF ih)uδih

mNi =
∑
h∈s

(1 − xF ih)

uδih∑
j=1

xUihj.

The likelihood of the person level model parameters can be obtained from
the joint distribution of m0i, mPi , mNi, nPi and nNi, .i.e.:

pm0i
0i (1 − p0i)

n0i−m0ipmPi
Pi (1 − pPi)

nPi−mPipmNi
Ni (1 − pNi)

nNi−mNi (4)

The complete likelihood is the product of the two likelihoods in (2) and
(4), since the distribution of person level outcomes was specified conditionally
on the housing unit characteristic outcomes.

3 An Approximate Model

The following model uses the two approximations repeatedly.
Approximation 1 For a sample proportion p̂ = m/n, where m ∼ binomial(n, p),

approximately

sin−1
√

p̂ ∼ N(sin−1 √p, 1/4n).

Approximation 2 When p(µ) = eµ/(1 + eµ) and µ̂ is a consistent estimator
of µ, the Taylor linearization of p(µ) provides an adequate approximation:

sin−1
√

p(µ) ≈ sin−1
√

p(µ̂) − µ̂
1

2

√
p(µ̂)(1 − p(µ̂)) + µ

1

2

√
p(µ̂)(1 − p(µ̂)).
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Applying these approximations to the housing unit composition model,
define µ̃k to be the MLE from the fixed effect model specified by θik = µk

instead of assuming θik has a distribution as in (1).

Define gij=sin−1
√

aij/
∑T

`=j ai`, j = 1, ..., T − 1. Using the two approxi-
mations one has that,

gij ∼ N(cj + bjθij , 1/(4
T∑

`=j

ai`)),

where bj = 1
2

√
p(µ̃j)(1 − p(µ̃j)), cj = sin−1

√
p(µ̃j)−µ̃jbj and p(µ̃j) = eµ̃j/(1+

eµ̃j ).
The resulting housing unit component of the likelihood is approximated

by the normal distribution:

p(gi1, ..., gi(T−1)|θi1, ..., θi(T−1)) ∝
T−1∏
j=1

e
−2

[∑T

`=j
ai`

]
(gij−[cj+bjθij ])2

Expanding around the MLE estimates,β̃, ν̃p and ν̃N of the person level
model with all ti = 0, one has the following approximation to the joint
distribution of the person level model.

P (g0i, gPi, gNi, nPi, nNi) ∝ e−2n0i(g0i−[c0i+b0i(x
′
iβ+ti)])2

×e−2nPi(gPi−[cPi+bPi(z
′
iβ+ti+νP )])2

×e−2nNi(gNi−[cNi+bNi(z
′
iβ+ti+νN )])2

where g0i=sin−1
√

m0i/n0i, gPi=sin−1
√

mPi/nPi, gNi=sin−1
√

mNi/nNi and

b0i =
1

2

√
p(z

′
iβ̃)(1 − p(z

′
iβ̃))

c0i = sin−1
√

p(z
′
iβ̃) − z

′
iβ̃b0i

bPi =
1

2

√
p(z

′
iβ̃ + ν̃P )(1 − p(z

′
iβ̃ + ν̃P ))

cPi = sin−1
√

p(z
′
iβ̃ + ν̃P ) − (z

′
iβ̃ + ν̃P )bPi

bNi =
1

2

√
p(z

′
iβ̃ + ν̃N)(1 − p(z

′
iβ̃ + ν̃N ))

cNi = sin−1
√

p(z
′
iβ̃ + ν̃N) − (z

′
iβ̃ + ν̃N)bPi

The distributions of the remaining parameters of the model are specified
identically as in the exact model given in section 2.
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4 Finite Population Parameters of Interest

For tract, i, estimates of the per-capita poverty rate, average number of
persons per household and the occupancy rate can be estimated using the
model and accompanying data. These three population characteristics can
be expressed in terms of the model in the above section.

Let k0 be the vacant household composition indicator (i.e. (gk0, uk0)=(0, 0)).
The population housing unit occupancy rate is defined to be:

OCRi = 1 −
∑Hi

h=1 I[δih=k0]

Hi

The number of persons per housing unit, in tract i, can be written:

PPHi =

∑Hi
h=1(gδih

+ uδih
)

Hi
.

Lastly, the per capita poverty rate, in tract i, can be described as:

POV Ri =
POVi∑Hi

h=1(gδih
+ uδih

)
,

where the total number of persons in poverty, in tract i, is defined to be:

POVi =
Hi∑

h=1

xF ihgδih
+

uδih∑
j=1

xUihj.

5 Estimation

Estimates of both location and scale will be made using Bayesian predictive
inference. Briefly, the predictive distribution of all unsampled indicators
that make up OCRi, PPHi and POV Ri is obtained based on the model
assumptions and the posterior distribution of the model parameters. The
posterior distributions are obtained using a block at a time MCMC algorithm
(Chib and Greenberg, 1995) with either Metropolis/Hastings steps or Gibbs
sampling steps within blocks.

Specifically, variates from the full conditional posterior of the θik’s and
the ti’s are obtained one at a time using a Normal proposal function with
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mean and variance corresponding to the posterior mode and Hessian of the
posterior and a Metropolis/Hastings rejection step. Variates from the joint,
full conditional posterior distribution of β, νP and νN are obtained in a
similar manner using their posterior mode and corresponding Hessian. The
conditional posterior distribution of µk is Normal and can be sampled from
directly. As in Natarajan and Kass, the conditional posterior of the variance
components are sampled by using an inverse gamma proposal distribution
obtained by replacing the approximate uniform shrinkage prior with Jeffreys’
prior (i.e., where the prior of log of the variance component is constant).
This is followed by a Metropolis/Hastings rejection step. Gibbs samplers
are used for the new features in the approximate model. The computational
burden on computing estimates from the approximate model is much less
that from using the exact model. For both models inference was obtained
after discarding the first 500,000 iterations and using the next 700,000 for
estimation. One long chain was run. Posterior means were estimated by
averaging all iterations together after the burn-in period. To reduce the
effects of correlated data, posterior variances were made by calculating the
sample variance based on every 100-th observation. The resulting 100 sample
variances, each based on 7,000 data values, were then averaged together to
make the final estimate.

5.1 Assessment of Model Using Sample

Since a novel model for within tract variance that incorporates both hous-
ing unit level and person level characteristics is being advocated, the first
assessment is of how well the model describes the within tract variances.
One way of assessment is to examine how well the model can reproduce the
original estimates derived from the observed data (e.g. see Gelman, et al.
(1995), section 6.3) By using the model to generate a new set of sample
data, the distribution of a jack-knifed variance estimate of the arcsine square
root transformation of the tract sample poverty rate can be empirically esti-
mated. The jack-knife used is based on housing units to account for within
housing unit correlation. Specifically, the variance of the arcsine square root
of the sample proportion of persons in poverty, in a tract, is obtained for
each sampled tract. This is accomplished by first randomly grouping hous-
ing units (the sampling unit) into jack-knife cells. The arcsine square root
transformation is used because of its variance stabilizing property. Figure
1 compares 95% simultaneous coverage intervals, Besag, et al. (1995), from
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the model-based predictive distribution of the jack-knifed standard deviation
with the actual jack-knifed standard deviations from the original sample. As
can be seen, the model provides good coverage of the observed jack-knifed
estimates, indicating that the model can replicate the within tract variances
well. This figure also shows the degree of error of the jack-knifed estimate
of variance, as measured with the model. The tracts are ordered by sample
sizes and the increase in error as the within tract sample size decreases is ap-
parent. (Note: since sample sizes tended to cluster, plots directly by sample
size are difficult to read. Figure 11 provides the link between actual sample
size and sample size order) The design-based estimates of tract-level poverty
rate per person (povr), number of persons per housing unit (pph) and oc-
cupied housing unit rate (occr) are similarly compared to their model-based
predictive distribution in figures 2, 3 and 4, respectively. As can be seen, each
tract-level design-based estimate is, at least, comfortably covered by the 95%
simultaneous coverage intervals. Although this type of assessment does not
rule out better models (with smaller confidence intervals), it is a way to rule
out serious model failures. This assessment does not rule out the possibility
that the model used is over-parameterized and produces large probability
intervals due to a poorly estimated model. As will be seen in section 6, this
is not the case; the posterior variances and posterior coefficients of variation
(CVs) accompanying the key small area estimates are reasonably small.

6 Small Area Estimates

The purpose of modeling this data is to provide small area estimates at the
tract-level with accompanying precision. Figures 5, 6 and 7 provide poste-
rior means of tract-level poverty rate, tract-level persons per housing unit
and tract-level occupancy rate, respectively. These tract level estimates are
ordered by tract housing unit sample size and sample estimates are included
as a reference. As typically seen with hierarchical models, the model based
estimates deviate less from the sampled estimates as the within tract sample
size increase, a product of decreased borrowing as the sample size increases.
In all three graphs, the exact model and the approximate model estimates
are closer together for large sample sizes; illustrating that the approximation
holds well for the large tracts coupled with the fact that any differences due
to borrowing outside of the tract from different models is minimized for large
samples. Although differences are apparent between the two models for the
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smaller tracts, agreement is relatively close. The average absolute relative
error due to using the approximate model for estimates are 6.2% for esti-
mated poverty rate, 1.1% for estimated persons per housing unit and .2% for
estimated occupancy rate.

The differences between the posterior variances from the approximate
and the exact model are more apparent, as seen in figures 8, 9 and 10. The
approximate model tends to under-estimate the accuracy of the poverty rate
but overestimate the accuracy for both average persons per housing unit and
occupancy rate. It should not be a surprise that the approximate model can
overestimate the variance because the approximation, while based on large
sample theory, does not ignore any source of error. Using the approximate
model to provide estimates of accuracy can be problematic, as evidenced
in this example. The average absolute relative error due to using the ap-
proximate model for variance estimates are 57.9% for estimated poverty rate
variance, 109.6% for estimated persons per housing unit variance and 36.3%
for estimated occupancy rate variance.

Now that it is seen that estimates of variability are different between the
exact and approximate model, there is still the question of which model is
better. By some lucky combination of errors it is possible that the approxi-
mate model actually improves on deficiencies in the exact model. Although
models better than either the exact or approximate model outlined here are
possible, a comparison of the fit of these two models will still be informative.
As a model fitting criterion, the Bayesian predictive model selection approach
of Laud and Ibrahim (1995) is used. In particular, their ”L-criterion” is used
which is a measurement of the squared root of the expected sum of squared
differences between observed tract-level sample statistics and their predic-
tions from the respective models. This criterion reflects the mean squared
error of the predictions; other criteria can be used. As seen in table 1, the
exact model provides a better fit than the approximate model for sampled es-
timates of ÔCRi, ̂PPHi and ̂POV Ri, which are defined as the sample-based
counterparts to the finite population parameters of section 4:

ÔCRi = 1 −
∑

h∈s I[δih=k0]

nHi

,

̂PPHi =

∑
h∈s gδih

+ uδih

nHi

and
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sample Exact Approximate Percent
statistic Model Model Difference

ÔCRi .26175 .27553 -5.3 %̂PPHi 2.59695 2.81266 -8.3 %̂POV Ri .68389 .75263 -10.1 %

ŜDi 1.55288 1.53563 1.1 %

Table 1: L-Criteria for Comparing Models

̂POV Ri =
POVi∑

h∈s gδih
+ uδih

, where

̂POV i =
Hi∑
h∈s

xF ihgδih
+

uδih∑
j=1

xUihj.

For estimating the within tract sampled standard error, ŜDi, as measured
by the square root of the tract-level sample size times the jack-knifed tract
variance, it can be seen that the approximate model does do slightly better
but that the percent difference is small relative to the other comparisons.
Overall, the exact model appears to provide a much better fit to the observed
data. Other models (and even other approximations) may provide a better fit
than the two, used here. However, the exact model used here does appear to
capture the salient features of the data. Also, the approximation represents
a reasonable approximation to the exact model but, as demonstrated, may
produce estimates of precision which are very different from the exact model.

For most tracts and most estimates, the exact model provides estimates
with adequate precision for many purposes. Figure 12 lists the posterior
CVs (i.e. the squared root of the posterior variance divided by the posterior
mean) for the key estimates and tracts. Most poverty rate estimates have a
CV between 20% and 30% with a few exceptions. Estimates of occupation
rate and of persons per housing unit generally have a CV below 10%.
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7 Summary

A model describing housing unit composition and person level outcomes was
formulated using a joint multinomial/binomial model. The primary goal of
providing a methodology to make estimates of both level and accuracy for
small areas, without making restrictive assumptions about the within small
area variance, was demonstrated. The approximate model, while still requir-
ing MCMC methods for estimation is much simpler to work and estimates
can be made via Gibbs sampling, as opposed to the Metropolis/Hastings
proposal for the complete model. As demonstrated, the approximation pro-
vides relatively accurate estimates of location but poor estimates of scale. In
general, the exact model also provides a better fit to the sampled data.

The multinomial/binomial logistic hierarchical model used here could be
adapted to many of the outcomes from the American Community Survey.
Because of the relatively simple design of the ACS, the only major deviation
of the sample collection from simple random sampling has been accounted for
in the model. In addition the multinomial and binomial models with logistic
link functions lends itself to data modeling due to the variety of software
available.

As demonstrated, the exact model provides an adequate fit to the ob-
served data, (based on the posterior predictions of sampled statistics) and
generally provides precise small area estimates (based on posterior CV’s).
Satisfying both of these requirements suggests that the model and method-
ology may be developed to produce defensible small area estimates.
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