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Abstract 
 
This paper shows how Bayesian Networks can be used to create models for discrete data from contingency tables.  The 
advantage is that the models are created relatively automatically using existing software.  The models provide 
representations that approximately preserve the joint relationships of variables and are easy to apply.  The models allow 
imputation for missing data in contingency tables and for the creation of discrete, synthetic microdata satisfying 
analytic constraints. 
 
Introduction 
 
Graphical representation of Bayes Nets and other probabilistic relationships date to Lauritzen and Spiegelhalter (1988).  
They are used extensively in machine learning.  For instance, Figure 2 in Getoor et al. (2001)  (reprinted below) 
demonstrates an efficient representation of Census data.  951 parameters are able to represent a potentially large 
number of cells in a contingency table (7 billion). 
 

 
 
 
Bayes Net software will quickly determine dependency relationships such as those of Figure 2 in Getoor et al. (2001).  
A mathematical representation is  
 
PB(A1, …, An) = Πi≤n  PB(Ai | Parents(A i)).                                                                                                                 (1) 
 
If as shown in Figure 2, a given variable depends on only a few other variables (i.e., parents), then representation (1) is 
very efficient.  If there is no missing data, then computation of the probabilities in (1) is exceedingly rapid (see e.g., 
Friedman 1997). 
 
An Alternative to Hot-deck Imputation 
 
Given the representation of Figure 2 (alternatively from equation (1)), one can impute as follows: 
 
B_IMPUTE: 

1. Start with any variable A i having a missing value.  If the parents of A i have nonmissing values, impute the 
missing value of A i according to the conditional probabilities of Figure 2.   

2. If a parent has a missing value, proceed to its parents.  Proceed through parents until reaching the highest point 
in the Figure.  If at the highest point, impute the missing value according to the conditional probabilities 



determined by the parents.  If there are no parents, impute the probability according to the observed frequency 
of the variable. 

3. Proceed back down the figure filling in all values until the original variables A i is filled in. 
4. Proceed through the remaining variables A j having missing data as in steps 1-3. 

 
Notes: 

1. As with a hot-deck imputation, the above imputation does not deal with non-ignorable nonresponse. 
2. Unlike hot-deck imputation, the above imputation procedure preserves joint probabilities. 
3. Unlike hot-deck, the above imputation procedure does not rely on matching against representative donors in 

the set of records.   
 
Imputation that Preserves Edit Relationships  
 
If the contingency table represents only those records that have no missing values and that satisfy all edits, then no edit-
failing records will be represented in a figure comparable to Figure 2.  All imputations from such a figure will 
necessarily satisfy all edits. 
 
Note: 

1. Because of the parsimony of the representation, the BN (Bayes Net) representation will generally only be a 
within-epsilon representation.  In some situations, it may be possible to impute according the B_IMPUTE 
procedure in such a manner that the imputation does not satisfy edits.  Because the within-epsilon 
representation covers the overwhelming majority of situations from the original contingency table, most 
imputations should satisfy edits. 

 
Testing for Nonignorable Nonresponse 
 
It is intuitive that imputation when there are edit restraints will always be nonignorable.  Let X1 and X2 be two variables 
that are associated by an edit.  That is, the values assumed by variable X1 are restricted by the values assumed by 
variable X2.  For instance, if X1 represents marital status and X2 represents age, then an edit might be E = {X1 = 
married, X2 <=15}.  If a record R has values for variables X1 and X2 that coincide with E, then the record fails E. If X1 
has a blank value (either because it is missing originally or because it is blanked after passing through an edit program), 
then the value that must be imputed depends on the edit E and the value (<= 15) in the age variable X2.  The 
missingness in variable X1 is dependent on the value (potentially married) that might be in the variable X2. 
 
Synthetic Micro-data Satisfying Analytic Constraints 
 
If a large database is given by a contingency table, then it can be approximated by a Bayes Net.  If the synthetic data 
are generated according to the probabilities in the BN, then the synthetic micro-data will preserve most of the analytic 
properties of the original microdata. 
 
Alternative Representation of a Contingency Table for a Census 
 
Grim et al. (2001) provide a method of representing a contingency table for a census.  They represent it as a mixture of 
multinomial models in which each individual model satisfies a conditional independence assumption.  The conditional 
independence assumption is that the fields are independent given the indicator of being in an individual model.  The 
methods are computationally tractable and provide an alternative to the BN described above.   
 
Software 
 
General WinMine software for Bayesian Networks and, more generally, Dependency Networks is currently available 
without charge from Microsoft Research (2001). 
 
General latent-class modeling software is described in Winkler (1993).  The theory is developed in Winkler (1990, 
1993) and an application is described in Winkler (1994).  Another application to the problem of text classification with 
labeled and unlabeled data is described in Winkler (2000). 
 



Additional Remarks 
 
Any parsimonious probabilistic representation in databases having a large number of records (e.g., Davies and Moore 
1999, DuMouchel et al. 2000) of data can be used for generating either synthetic data or data that satisfies analytic 
constraints. 
 
1/ This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a Census Bureau 
review more limited in scope than that given to official Census Bureau publications.  This report is released to inform interested 
parties of research and to encourage discussion.   
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