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Abstract 
 
In this note, we describe a method of simulated annealing for producing k-anonymity.  For analytic purposes, there 
is no reason to expect that the method will be superior or worse than the method of applying genetic algorithms used 
by  Iyengar (2002).  The main appeal of simulated annealing is the amount of control it allows of the micro-
aggregation process.   The k-anonymity problem is known to be NP complete. 
 
Introduction 
 
Samarati (2001, also Samarati and Sweeney 1998, Sweeney 1999) have defined k-anonymity in a microdata release 
as the property that each combination of values of quasi-identifiers can be indistinctly matched to at least k 
individuals. 
 
For instance, assume we have a microdata release of 2000 records having sex (two categories or value-states for the 
sex variable) and age (100 categories) in which the values states are uniformly distributed within each variable.  
Then using sex alone, we have 1000-anonymity; using age, alone we have 20-anonymity.  If sex and age are 
uncorrelated, then using the two variables yields 10-anonymity.  In other words, for each value of sex and each 
value of age there are 10 records.  If we do not consider 10-anonymity to be sufficient, then we could collapse age 
into ten-year intervals.  This would yield 100-anonymity.  In many situations, k-values between 3 and 10 are 
considered sufficient. 
 
Determining k-anonymity by collapsing value-states of a variable into aggregated value states is known to be a 
difficult combinatorial optimization problem.  Domingo (2001) shows that micro-aggregation is NP complete.  
Using similar arguments, it is straightforward to deduce that k-anonymity is NP complete.  Iyengar (2002) uses 
genetic algorithms to produce k-anonymity in a simulation that uses public-use Census data.  He also shows that the 
k-anonymized data can still be used for classification (determining whether someone has an income above or below 
$50,000).  In his application, he obtains k values as high as 250 yield anonymized data that can still be used for 
classification with accuracy comparable to the original un-anonymized data.  In general, however, with k-values 
above 10, we can destroy the analytic usefulness of data for loglinear analyses or subdomain analyses.  
 
In the remainder of this note, we give background and define terminology.  After these preliminaries, we describe 
the method for simulated annealing for producing k-anonymity.  We finish with discussion and an example that is a 
special case of the main application of Iyengar (2002). 
 
Background and Definitions of Terms  
 
We use a basic simulated annealing approach (e.g., Kirkpatrick et al. 1983, Geman and Geman 1984, Aarts and 
Lenstra 1997).   For now, we do not include generalization restraints.  Iyengar (2002) shows how a tree-based 
hierarchy (defined by users or subject matter experts) can be used naturally with genetic algorithms.  Although the 
procedure described below can be generalized and computed easily with user-defined hierarchies, we do not include 
them.  It is not clear how genetic algorithms could be developed that do not use user-defined hierarchies for 
collapsing value-states of individual variables.  We do note that the user-defined hierarchies can significantly reduce 
the number of subsets of the value states of each variable that are considered.  The problem, however, is still NP 
complete. 
 
Let Xi, i=1,…,n, be variables (fields) with value-states xij, j = 1, …, ni.  The annealing procedure will go through the 
set of fields sequentially.  In the following, G(y i) represents the set of values associated with value-state y i of field i.   
The states of the system are is described in terms of the set of disjoint groups associated with the value-states of 
individual variables.   In the application of Iyengar (2002), the objective function f() is a measure CM of the average 
penalty associated with suppressing values in a record (row of a table).  As Iyengar emphasizes, the objective 
function f() needs to be chosen according to the analytic uses of the k-anonymized data.   Let r = (y1, …, yn) be a 



record.  For accurate classification, for each i = 1, …, n, G(y i) should be associated with one class.  Following 
Iyengar (but with very slightly different notation), we define CM as the average penalty given by 
 
   f() = CM =  (∑all records  Penalty (record r))/N                                                                          (1) 
 
where N is the number of records in the file.  A record r is penalized if the value in some field is suppressed (i.e., set 
to a neutral value) or if the value y i in some field i is different from class label associated with the majority or 
records associated with G(y i).  The penalty for record r is given by 
 
                                  1 if record r is suppressed (i.e., has a value in a field set to a neutral value) 
  Penalty (row r) =   1 if class r  ≠ majority (G(yi)) for some i.                                              (2) 
                                   0 otherwise 
 
For Iyengar (2002), the objective is relatively straightforward because it is associated with a yes/no classification 
task.  For general contingency tables, our objective function might be associated with certain sufficient statistics 
needed for the loglinear modeling. 
 
The Algorithm 
 
  Algorithm Sim1 
Repeat until M cycles or the restriction on the objective function f(). 
  Repeat thru for i=1, …,n fields  
     For i, sample an existing value-state, say y i (each value state must have positive probability of being 
       sampled.)   All movement will be related to individual value states y i.  This is because all movement  
       to different system states (in either forward or backward directions) can be described in terms of  
       of individual y i‘s.   First, draw a value-state y i at random.  Then, draw a sample value associated 
       with state y i from the neighborhood of i and state y i to get zi.  The neighborhood N(y i) 
       = { yi } ∪ ({ xij, j = 1, …, ni } \ G(yi) ).  The neighborhood consists of y i and all of the value states 
       outside of the group G(y i) containing y i.   We have two operations.  The first is associated with collapsing. 
       Assume that we sample a value state outside of the group containing y i to get a value state zi. 
       The potential move is to move zi from its current group (could be a singleton) to the group G(y i). 
       With the potential new configuration of the states of y i, we compute f(zi) and f(y i).  If f(yi) (the system  
       state with the new configurations improves the objective, we accept the move; otherwise, we accept   
       with probability exp((f(zi) – f(yi))/ ci) where ci is associated with the annealing schedule of field i.  In 
       this situation zi represents collapsing.  If yi is sampled, we can move y i from its group G(y i) and create 
       a singleton group G(y i) = { yi }.  We compute the objectives f(zi) and f(y i).   In this second situation, f(zi)  
       represents uncollapsing.  If f(zi) improves the objective f(), we accept.  If it does not, we accept the move 
       with probability exp((f(zi) – f(yi))/ ci).  We can vary (if necessary) the ci as M increases in a manner so  
       that ci goes to zero.    
 
Discussion 
 
There are three subtle issues: (1) what is meant by the local neighborhood, (2) how does one define transition 
probabilities between the various states of the system and (3) what does the terminology f(y i) mean. 
 
(1)  Each state of the system consists of a set of fields and the set of subsets (groups) of value-states on the 
individual fields at a given time-point.  A local neighborhood consists the set of fields and the subsets of the value-
states of each field that can be reached in one move from the current system state. 
 
(2)  For each field i, movement is  by changing the group in which single state xik is associated.  We can move a 
single value-state from the current group in which it resides to a new group.  Generally, the movement mechanism 
has a tendency toward collapsing into larger and larger groups.  We also need to assure that we can uncollapse.  
Uncollapsing assures that we can move to any state of the system (i.e., irreducibility) and that the resultant Markov 
process is reversible (we can get back to earlier states of the system).  We can also control the sampling mechanism 
more precisely.  At early stages, we allow somewhat more collapsing.  At later stages, we can slow down collapsing 



by making by making the uncollapsing (i.e., separating a value-state xik from the group in which it resides) slightly 
more likely than at early stages. 
 
(3)  f(zi) is the CM measure (see Iyengar 2002) with the proposed change.   f(y i) is the CM measure currently. 
 
Example of Iyengar 
 
An interesting observation.  Classification accuracy can be good with high k-values.  Iyengar uses 30162 records 
from a public-use Census file.  The eight variables are age, work class, education, marital status, occupation, race, 
gender, and native country.  He uses the additional binary variable salary class (above or below $50,000).  The k-
values are 10, 25, 50, 75, 100, 150, 200, 250, and 500.  For k=250, the variables work class, occupation, race, 
gender and native country are generalized away (put in a single value-state).  Age is collapsed into {([0,39], (0,∞)}, 
education into {four or more years college, some college, other}, and marital status into {married, was married, 
never married}.  Classification accuracy with the k-anonymized data was comparable to the classification with 
original data (approximately an 18% 10-fold cross-validated error rate). 
 
1/ This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a Census Bureau 
review more limited in scope than that given to official Census Bureau publications.  This report is released to inform interested 
parties of research and to encourage discussion.   
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