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Although terminology differs, there is considerable overlap between record linkage methods
based on the Fellegi-Sunter model (JASA 1969) and Bayesian networks used in machine
learning (Mitchell 1997). Both are based on formal probabilistic models that can be shown to be
equivalent in many situations (Winkler 2000). When no missing data are present in identifying
fields and training data are available, then both can efficiently estimate parameters of interest.
When missing data are present, the EM algorithm can be used for parameter estimation in
Bayesian Networks when there are training data (Friedman 1997) and in record linkage when
there are no training data (unsupervised learning). EM and MCMC methods can be used for
automatically estimating error rates in some of the record linkage situations (Belin and Rubin
1995, Larsen and Rubin 2001).
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1. INTRODUCTION

Record linkage is the science of finding matches or duplicates within or across files. Matches
are typically delineated using name, address, and date-of-birth information. Other identifiers
such asincome, education, and credit information might be used. With a pair of records,
identifiers might not correspond exactly. For instance, income in one record might be compared
to mortgage payment size using a crude regression function. In the computer science literature,
datacleaning or object identification often refers to methods of finding duplicates.

In the model of record linkage due to Fellegi and Sunter (1969, hereafter FS), a product space
A x B of records from two files A and B is partitioned into two sets matches M and nonmatches
U. Pairsin M typically agree on characteristics such as first name, last name, components of
date-of-birth, and address. Pairsin U typically have isolated (random) agreements of the
characteristics. Weusey=(y1, Y2, ---,¥n ) t0 denote an arbitrary agreement pattern. For instance,
y might be agreement on first name, agreement on last name, and agreement on date-of-birth. In
the FS model, obtaining accurate estimates of the probabilifi¢d/P@nd Py | U) are crucial to
finding the best possible decision rules for separating matches M and nonmatches U. The
conditional independence assumption Cl is tha{ B) =[] P{: | C) where the set C can be
either M or U. Under ClI, FS showed that it is possible to estimafeMd(and Py | U)
automatically without training data. For situations in which identifying information among
matches is reasonably good, Winkler (1988) showed how to estinydtMPéand Py | U) using
the EM algorithm. The EM algorithm can provide optimal separation between M and U because
its parameters can correspond to the form needed for the classification rule. If assumption Cl is
not made, then a general EM (Winkler 1989, 1993, Larsen 1996) can provide parameters
yielding better separation between M and U. The theory for the general EM (Winkler 1990,
1993) is more general than the iterative scaling procedure of Della Pietra et al. (1997) in the
sense that it allows general convex constraints rather than just linear constraints. The advantage
of less general EM under assumption Cl is that it yields computational speed-ups of orders
between 100 and 10,000 in contrast to methods that use dependencies between variables.



Bayesian Networks are graphical networks (Lauritzen and Spiegelhalter 1989) that are often
used in the machine learning literature. A Naive Bayes Network is a Bayesian Network under
assumption CI. Naive Bayes networks are typically applied in situations in which representative
training data are available. Naive Bayes methods have been extended to situations in which a
mixture of labeled training data and unlabeled data are used for text classification (Nigam et al.
2000). Parameter estimation was done using a version of the EM algorithm that is effectively
identical to that used by Winkler (2000) and Larsen and Rubin (2001) when training data are not
available. In the latter situations, assumption Cl was not needed.

In record linkage, it is known that dropping assumption CI can yield better classification rules
and automatic estimates of error rates (Winkler 1993, Larsen and Rubin 2001). This is true even
in situations where training data are not available (unsupervised learning). Record linkage has
the advantage that its natural small dimensionality (six to twenty) makes accounting for
dependencies more computationally tractable. Characteristics of the data and of the
computational algorithms can reduce the number of computational paths to produce good
parameter estimates in unsupervised learning. In text classification and other general
applications of Bayes Nets, the large dimensionality (from 1,000 to 200,000) often rules out
using methods that account for dependencies between identifying variables. Accounting for all
of the two-way dependencies (Sahami 1996, Dumais et al. 1998) did not yield improved text
classification rules for Bayesian Networks. Accounting for selected interactions involving two
or more interactions did improve text classification rules (Winkler 2000).

Nigam et al. (2000) demonstrated that if a small amount of labeled training data is combined
with a moderate or relatively large amount of unlabeled data, then classification rules can be
improved. The improvement is in contrast to those methods in which only labeled data are used
in training. In general, machine learning, training data provides necessary structure so that
parameter estimation can provide classification rules that perform relatively well. In contrast to
unsupervised learning methods for which no training data are available, the training data
drastically reduces the number of computational paths that are considered by the parameter-
estimation algorithms. Unsupervised learning methods have typically performed very poorly for
general machine learning classification rules.

The unsupervised learning methods of record linkage (Winkler 1988, 1993) performed
relatively well because they were applied in a few situations that were extremely favorable.

Five conditions are favorable application of the unsupervised EM methods. The first is that the
EM must be applied to sets of pairs in which the proportion of matches M is greater than 0.05
(see Yancey 2002 for related work). The second is that one class (matches) must be relatively
well-separated from the other classes. The third is that typographical error must be relatively
low. For instance, if twenty percent of matches have first name pairs that are of the form
(Robert, brother), (Bob, blank), or (Robert, James) then it may be difficult to separate matches
from nonmatches. The fourth is that there must be redundant identifiers that overcome errors in
other identifiers. The fifth is that parameters obtained under assumption Cl yield good
classification rules. Under the five favorable conditions, the number of computational paths
considered by the EM algorithm is greatly reduced from the number of computational paths
under general EM when the five assumptions may not hold.

This paper will demonstrate how to find situations when the five assumptions can be relaxed.
The main intent is to focus on relatively parsimonious computational extensions of the narrowest
EM methods. The extensions provide better parameter estimates in more general situations when
the five favorable conditions do not necessarily hold. Ng and Jordan (2002) have observed that



Naive Bayes classifiers can often perform well even though there are strong theoretical reasons
why they should perform relatively poorly. We slightly extend those situations when Naive
Bayes (condition CI) is known to work well. The improvements reduce error rates and, where
necessary, sizes of clerical review regions. As a long-term goal, our secondary intent to develop
exploratory tools for improving matching efficacy in very large administration list situations

when each list may contain between 100 million and 1 billion records. BigMatch technology
(Yancey and Winkler 2002) that we use for the large matching situations is straightforward to
update with the methods described in this paper.

The outline for this paper is as follows. In the second section, we cover background on the
Fellegi-Sunter model, Bayes Networks, EM Algorithms, use of training data, and effects of
typographical error in identifiers. In the third section, we describe variants of the EM algorithm
and the empirical data files. The fourth section provides results. We give some discussion in the
fifth section. The final section is concluding remarks.

2. BACKGROUND

This section gives basic background on record linkage and specific issues that relate to it. In
the first subsection, we formally describe the main theory of Fellegi and Sunter. The second
subsection covers Bayesian Networks and their relationship to Fellegi-Sunter theory. The third
subsection specifically gives insights into the strengths and limitations of training data in the
record linkage setting. The fourth subsection give reasons why typographical error and related
representational differences affect and limit efficacy of EM methods. The fifth subsection
describes how different sets of blocking criteria and specific ways of applying weak classifiers
create suitable sets of pairs for later applying stronger classifiers for separating matches from
nonmatches. In the sixth subsection, we cover extensions for approximate string comparison and
the relative frequency of different value-states of strings (fields).

2.1. Fellegi-Sunter Model of Record Linkage

Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had been
introduced by Newcombe (1959, 1962, see also 1988). They provided many ways of estimating
key parameters. To begin, notation is needed. TwoAilesdB are matched. The ideais to
classify pairs in a product spagex B from two files A and B into M, the set of true matches,
and U, the set of true nonmatches. Fellegi and Sunter, making rigorous concepts introduced by
Newcombe (1959), considered ratios of probabilities of the form:

R=P(y U | M)/P(y Ol U) 1)

wherey is an arbitrary agreement pattern in a comparison space I". For instance, I" might consist
of eight patterns representing simple agreement or not on the largest name component, street
name, and street number. Alternatively, eachl” might additionally account for the relative
frequency with which specific values of name components such as "Smith", "Zabrinsky",
"AAA", and "Capitol" occur. The ratio R or any monotonely increasing function of it such as the
natural log is referred to as a matching weight (or score).

The decision rule is given by:



If R > T, then designate pair as a match.

If T) R <T, then designate pair as a possible match
and hold for clerical review. (2

If R< T,, then designate pair as a nonmatch.

The cutoff thresholds T,,and T, are determined by a priori error bounds on false matches and
false nonmatches. Rule (2) agrees with intuition. If y//I" consists primarily of agreements, then
itisintuitivethat /71" would be more likely to occur among matches than nonmatches and ratio
(1) would be large. On the other hand, if /71" consists primarily of disagreements, then ratio (1)
would be small. Rule (2) partitionsthe set y /71" into three digoint subregions. Theregion T, <
R <T,isreferred to as the no-decision region or clerical review region. In some situations,
resources are available to review pairs clerically. Figure 1 provides an illustration of the curves
of log frequency versus log weight for matches and nonmatches, respectively. Figure 1c shows
hypothetical cutoffs weights.

Pairs with weights above the upper cut-off are referred to as designated matches (or links).
Pairs below the lower cut-off are referred to as designated nonmatches (or nonlinks). The
remaining pairs are referred to as designated potential matches (or potential links). 1f T,=T,,
then decision rule (1) can be used for separating records (correspondingly pairs) into those that
arein one class from those that are not. The probabilities P(agreefirst | M), P(agree last | M),
P(agree age | M), P(agreefirst | U), P(agreelast | U), and P(agree age | U) are called marginal
probabilities. P( |M) & P( |U) are called the m- and u-probabilities, respectively. The natural
logarithm of theratio R of the probabilitiesis called the matching weight or total agreement
weight. The logarithms of the ratios of probabilities associated with individual fields (marginal
probabilities) are called the individual agreement weights. The m- and u-probabilities are aso
referred to as matching parameters. A false match isapair that is designated as a match and is
truly anonmatch. A false nonmatch is pair designated as a nonmatch and is atruly a match.

2.2. Bayesian Networks

Nigam et al. (2000) observed two strengths of Bayesian networks. Thefirst is that the method
Is based on aformal probabilistic model that lends itself to statistical interpretation. The second
isthat it provides a straightforward way of combining labeled and unlabeled data during training.
In most machine learning applications, only labeled training data for which the true classification
statusis known isused. Because training data are very expensive and unlabeled data are easy to
collect, Nigam et al. (2000) showed how to combine moderate amounts of labeled data with
varying amounts of unlabeled data to produce classification decision rules that improved on
classification rules that were based on the moderate amounts of |abeled data alone. They showed
that too small an amount of labeled training would not yield suitable decision rules.
Furthermore, they showed that, if too large an amount of unlabeled training data was combined
with a moderate amount labeled training data, then decision rules could also be worse than those
based on labeled data alone.

Nigam et al. (2000) and others (e.g., Ng and Jordan 2002) have shown that classification
decision rules that are based on naive Bayesian networks (i.e., conditional independence
assumption) work well in practice. The conditional independence is useful because it makes
computation much more tractable (Nigam et al. 2000, Winkler 1988). Varying authors have



observed that the fields in pairs are quite dependent and that the computed probabilities for pairs
do not even remotely correspond to the true underlying probabilities. Winkler (1989, 1993)
observed that, if dependencies are dealt with, computed probabilities can somewhat correspond
to the true probabilitiesin afew situations. Dependencies can be computed with conventional
hierarchical latent class methods as introduced by Winkler (1989, 1993) when the number of
fields is moderate (say, 20 or less).

2.3. Use of Training Data

For general machine learning, it iswell known that a suitable amount of representative data can
yield good classifiers. A suitable amount of training datais generally O(m) where m are the
number of parameters in the machine learning model (e.g., Ng and Jordan 2002). When mis
moderately large, then the amount of training data O(m) can be quite large and expensive to
obtain. The intuition of using a more moderate amount of training data with arelatively large
amount of (inexpensive) unlabeled dataistwo-fold. First, the training data provides more
structure for the computational algorithmsin the sense that they can severely limit the number of
computational paths. Second, when the unlabeled datais combined in a suitable manner with
labeled training data, effective size of training dataisincreased. In some situations, Larsen and
Rubin (2001) showed that training with unlabeled data and increasing amounts of |abeled
training data can significantly improve matching efficacy.

2.4. Errorsin Identifiers

Record linkage and general text classification have amajor difference in how they deal with
typographical error. In text classification, most typographical error isin relatively commonly
occurring words that can be corrected by spell checkers. In record linkage, many of the
identifiers consist of components of the name, address, and date-of-birth for which there are no
spell checkers that can be automatically run. Thereis astrong need for nearly automatic
methods of dealing with differing amounts of typographical error in pairs of files. For instance,
P(agree characteristic | M) and P(agree characteristic | U) can vary dramatically from one pair of
filesto another. More surprising is that these probabilities can vary substantially from an urban
region to an adjacent suburban region even when identical sets of fields are used in the matching.
Fellegi and Sunter (1969, see also Winkler 1994) indicated that part (or most) of the differenceis
due to differing amounts of typographical error. For instance, Winkler (1989) showed that
P(agreefirst name | M) and P(agree age | M) vary dramatically from one region to the next. By
more carefully modeling the effect of string comparators (see section 2.6 for string comparators)
on the likelihood ratios (1) and improving the form of the application of EM under condition ClI,
it was possible to estimate optimal parameters for 450 different regions in the 1990 Decennial
Census automatically. The amount of clerical review was reduced by 2/3 in comparison to the
1998 Dress Rehearsal Census.

Instead of just considering yes/no agreement between identifiers, we can consider various
degrees of partial agreement. The EM can be extended in a straightforward fashion to deal with
more than two value-states (i.e., agree/disagree) with different fields. Furthermore, parameter-
estimation methods might account for the relative frequency of occurrence of certain fields. For
instance, agreement on arelatively rare name such as Zabrinsky might have more value than
agreement on a frequently occurring name such as Smith. The EM might be further extended to
account for different relative frequency categories and the typographical errors that occur in
them (see Winkler 1988).



2.5. Identifying Suitable Sets of Pairs

It is not possible to consider all pairs from two files A and B. In record linkage, we consider
only those pairs agreeing on blocking criteria. One blocking pass might consider only those
pairs agreeing on a geographic identifier and Soundex of surname. Another blocking pass might
only consider pairs agreeing on house number, ZIP code, and the first initials of the first and last
name. Theideaof blockingisto find aset of pairsin which matches are concentrated. Multiple
blocking passes are needed to find duplicates in a subsequent blocking pass that are not found on
aprior pass. Due to high typographical error ratesin most files (e.g., Winkler 1994, 1995), itis
quite unusual to find all matchesin just one blocking pass.

Unlike general text classification, in record linkage it is quite feasible to use an initial guess of
parameters associated with agreements to get an enriched set of pairs within ablocking criteria.
Virtually all matches will be concentrated in those pairs having matching weight (1) above a
certain value. Y ancey (2002) shows how to improve matching parameters within such classes of
pairs viaan EM algorithm.

2.6. Approximate String Comparison and Frequency

Many matches have typographical error in key identifying fields. For instance, in 1988 Dress
Rehearsal Census data among pairs that are true matches, 20% of first names and 15% of last
names did not agree on an exact character-by-character basis. Ages differed by more than 1 year
with at least 15% of matches. To alleviate some of the effect of typographical error, we use
string comparators (e.g., Winkler 1994, 1995) that return values between 1 for exact agreement
and O for total disagreement. Table 1 provides a comparison of string comparator values.
Bigrams are widely used in the computer science literature.

Table 1. Conparison of String Conparators Using
Last Nanes and First Nanes

Two strings String conparator
val ues
Jaro Wnkler Bigram

SHACKLEFORD  SHACKELFORD 0.970 0.982 0.700
DUNNI NGHAM CUNNI GHAM 0.896 0.896 0.889
NI CHLESON NI CHULSON 0.926 0.956 0.625
JONES JOHNSON 0.790 0.832 0.204
MASSEY MASSI E 0.889 0.933 0.600
ABROVS ABRANVS 0.889 0.922 0.600
HARDI N MARTI NEZ 0.000 0.000 O0.365
| TMAN SM TH 0.000 0.000 0.250
JERALDI NE GERALDI NE 0.926 0.926 0.875
MARHTA MARTHA 0.944 0.961 0.400
M CHELLE M CHAEL 0.869 0.921 0.617
JULI ES JULI US 0.889 0.933 0.600
TANYA TONYA 0.867 0.880 0.500
DWAYNE DUANE 0.822 0.840 0.200
SEAN SUSAN 0.783 0.805 0.289
JON JOHN 0.917 0.933 0.408
JON JAN 0.000 0.000 0.000



To utilize training data more effectively, we divide the agreement values associated with pairs
into more val ue states according to ranges of the string comparators. This may allow us to model
the effect of partia agreements more effectively. With strings such as first names and last
names, we associate value-states of an identifier about whether the string is very frequently
occurring, frequently occurring, approximately average occurring, and two categories of
relatively rarely occurring. Winkler (e.g., 1994, 1995) developed relatively crude ways for
dealing with the effect of string comparators and frequency that depending on a priori training
data to get the shapes of various functions that downweight the likelihood ratio (1). The
downweighting takes place as string comparator val ues decrease from one and the relative
frequency of avalue-state of string (e.g., Zabrinsky versus Smith) increases.

With training data, we may be able to find additional relationships that have not been
previously conceived and modeled. Generally, accounting for partial agreement with string
comparators makes dramatic improvements in matching efficacy (Winkler 1990b, 1995). From
one pair of filesto the next, typographical error rates can dramatically affect the probabilities
P(agreefield | M). For instance, in an urban areaor arural area, the P(agree first name | M) and
P(agree last name | M) may be significantly lower than for a corresponding suburban region.
Figure 2 illustrates the situation. The curves of log frequency versus weight for matches can
overlap morein an urban region (Figure 2a) and arural region (Figure 2c) than in a suburban
region (Figure 2b). In the overlap regions between the curves of matches and nonmatches,
having suitably chosen training data may help in finding better estimates of error rates.

If high quality, current geographic identifiers are associated with records, then accounting for
frequency may not help matching (Winkler 1989, Y ancey 2000). Acrosslarger geographic
regions (e.g., an entire ZIP code or County or State), accounting for frequency may improve
matching efficacy. By frequency, we mean accounting for specific value-states of a string such
aslast name. A frequently occurring string such as Smith may have less distinguishing power
than aless frequently occurring string such as Zabrinsky.

3. METHODSAND DATA

Our main theoretical method is to use the EM algorithm and maximum likelihood to obtain
parameters and associated classifiers for separating A x B into matches M and nonmatches U.
The data files are Decennia Census files for which the truth of classification is known. The truth
IS obtained through several levels of clerical review and field followup.

3.1. EM Methods

In the models of Nigam et al. (2000) and of this paper, words (comparison fields) are used to
classify documentsinto different classes. Our development isidentical theoretically to that of
Nigam et a. Our notation differs very dightly because it deals more with the representational
framework of record linkage. Lety; be the agreement pattern associated with pair p;. Classes C;
are an arbitrary partition of the set of pairsD in A x B. Later, we will assume that some of the C;
will be subsets of M and the remaining C; are subsets of U. Unlike general text classification in
which every document may have a unique agreement pattern, in record linkage, some agreement
patternsy; may have many pairs pigy associated with them. Here| will run through an
appropriate index set. Specifically,

Py |©)=3 i 9P |Ci; ©) PC; ©) (4)



wherey; is aspecific pair, C; is aspecific class, and the sum is over the set of classes. Under the
Naive Bayes or conditional independence, we have

P4 1G:0) =11« Plix|G;0) ()

where the product is over the kth individual field agreemggrih pair agreement patteyn In
some situations, we use a Dirichlet prior

POE) =11 (9 )" Ik (©Vikiq)** (6)

where the first product is over the classgsarfd the second product is over the fields. Nigam et
al. (2000) set. equal to two and refer to the effect of the prior as Laplace smoothing. The prior
(6) helps keep most of the estimated probabilities away from zero. We' tzedéhote

unlabeled pairs and'Bb denote labeled pairs. Given the set D of all labeled and unlabeled
pairs, the log likelihood is given by

I(©]D) = log (P®)) +
Yieoulog Pl | G;0) P(G,;0)+
Yol 1093 P | G:O) P(G;0) (7)

where the first sum is over the unlabeled pairs and the second sum is over the labeled pairs. If
we let z be a missing data indicator that pair i in class j is observed, then we have the complete
data equation (CDE)

I(© | D; z) = log ( RY)) +
2iep2jzjlog(P§i|G;0) P(G;©) (8)

where the first sum is over all pairs and the second sum is over the classes. If labeled and
unlabeled pairs are mixed in proporticnand 1A, O<A < 1,we have

1(© | D; z) = log ( F®)) +
(AA) Yieou 2 jzjlog (P§ | G;0) P(G;0)) +
Ao Y jzjlog (P§i | G;0©) P(G;0)). (9)

We use the EM algorithm to estimate (9). The specific form of the EM algorithm depends on the
exact parametric form that we assume fof PG ; ©) P(G; ©). Under condition Cl, we let

PG 1G:0) = [Tk i ™ (L) & (10)

where the product is over all the comparison fieldsyand an indicator (or value-state) of the
kth field is observed in the pair. pThe starting points for the EM might be the estimatesgof
and P(G; ©) that are available from the labeled data. Under the conditional independence
assumption, i0' = (', P'(G ; ©) : ], k) is the current estimate 6 then



pi ™ = [(0-1) + (1-2) Y iepu Bz | G ) yic +
A3 ol E(zj|G) vl /
[2(e-1) +(1-2) 3 iepu E(z; [Cj) 1 +
A Yo E(zj|C)1] (11)

and

P (C; ©) =[[(a-1) + (1-A) ¥ ienu E(z; | G ) +
Ao E(zi [CG) ]/
[ICle-2) + (1) Yiepu L +A S it 1] (12)

If expected values E(z;; | Cj ) are substituted in the (9), then Equation (11) follows by taking
partial derivatives and setting the resultant equation equal to zero. Equation (12) follows by
standard multinomial reasoning (e.g., McLachlan and Krishnan, pp. 17-19). The parameter o
can be varied independently for pjx and P(C; ; ©). For the empirical example, we vary o
between 1.00001 and 1.001. The smoothing via different values of o in the prior causes the
successive estimates pjx *1 and P (G ; ©) to stay away from zero and one. Because of the
relatively low dimensionality of record linkage problems, we can consider such small values of
o. We note that, under condition CI, the maximization step isin closed form.

An alternative form of smoothing is to add a small value 6 to every cell as suggested by Larsen
(1996). With amoderate number of fields or with different parametric representations of the
fields in the pair, some differing pairs can have the same representation. In some instances,
differing pairs may have the same representation in fields. This can happen with a small number
of fields and when different string values of agreement are not explicitly included. We use
fregl(i, j) to represent the frequency of the j™ pattern in the i" class of the labeled pairs and
frequ(j) be the frequency of the j™ pattern in the unlabeled pairs. With a slight abuse of notation,
we let the sum over the labeled pairs to be over al of the observed patterns in the labeled and
unlabeled data. The understanding is that, for agivenj, freql(i,j) iszero for al i if apatternis
observed only in the unlabeled data. Similar to Equation (9) we have,

1(®]D;2)= (1-1) Y iepu Y jzj frequ(j)
log (P(yi |Cj; ©) P(C; ©)) +
A Y ieni 2 j Zij (freql(i,j) + 6)
log (P(d: |G ; ©) P(C;; 9)). (13)

In Equation (13), the value & is added to each cell in every class of every observed data pattern
from the labeled and unlabeled data. 1n analogy to Equations (9) and (10), we have estimates at
step t of

Wi ™ =[(2-1) ¥ iepu frequ() Ez; | Cj ) yi +
AY o (freql(ij) +8) E(zi | Ci ) yid /
[(1-1) 3 ieou frequ() Ez; |G ) 1 +
A3 ieoi (freq(ij) +8) E(zj[Ci) 1] (14)

and



P™(Ci; ©)=[[(12) 3 ieou E(z | C] ) +
A% e (freql(ij) +8) E(zj|Cj) ]/
[(1A) 2 ienu 1 +
A % e (freql(ij) +9) 1] (15)

The specific computational procedure can be best understood if the z;; in Equation (13) can be
replaced by E(z; | ©")

L@ |D;2) = (1-1) ¥ ienu Y E(z | ©)
frequ(j) log (P(di | C; @) P(Cj; ©%)) +
LYo Y E(z; | ©) (fregl(ij) +9)
log (P(di |C;; @) P(C; @Y). (16)

We can assume that both first summations are over al of the observed patterns in the labeled and
unlabeled by setting frequ(j) and fregl(j) equal to zero when j is a pattern that is not in the
unlabeled data and |abeled data, respectively. If we renormalize, the coefficientsin front of the
logs so that the terms add to one (which does affect the maximization of the likelihood), then we
have equations of the following form

L(©""|D; 2) = 3 Pai.j) 10g (p(i.j)) (17)

where pa(i,j) = ((1-1 ) E(z; | ©") frequ(j) + A E(z; | ©") (freql(i,j) + 8))/N¢, Ncisthe
normalization constant, and py(i,j) = P(di | Cj ; ©%) P(Cj; ©). Let P, betheinteraction patterns
that are to befit in class C;. Each interaction pattern in P, represents alisting of the fields (terms)
that must be summed over. For patterni in P, let |; represent the specific subsets | of fields. For
instance, if P, represents the presence of k specific fieldsin apair, then I; has 2 subsets. The 2
subsetsin I; partition the entire set of pairs. Inthefollowing, thenotioni [J| meansthat the
pair i has the pattern of fields represented by |. The specific fitting procedure F; at step tis:

1. For each patterni in P, and each | inl;, let My = Yo pi(i,j)) and Ey = Yin pe(inj). For each
classk#j, let Mg = 5 pe(i,k) and Ex = 3 pefi,K).

2. Ifillin P, then pua(i,j) = pi(i,j) Ea / My. and, if kZj , pra(i,K) = pi(i,K) Ex / My

3. Repeat 1 and 2 for &l classes C; and all patternsi in P,.

Then each F; is one cycle of iterative proportional fitting (e.g., Winkler 1989, 1993, Meng and
Rubin 1993) and increases the likelihood. The last equation in step 2 assures that the new
estimates add to a proper probability. If necessary, the procedure can be extended to general |-
Projections that also increase the likelihood and have strong constraints for keeping the
probability estimates px(i,j) from converging to zero or one (e.g., Winkler 1990a). The
smoothing with the constant deltain Equation (18) has the effect of assuring that most
probability estimates p(i,j) do not converge to zero. For afixed pattern i, some of the probability
estimates px(i,j), however, may differ by several orders of magnitude across the different classes
Ci. If necessary, affine constraints may be use to restrict the differing relative sizes of the pi(i.j)
(Winkler 1990a).



We observethat if A is 1, then we only use training data and our methods correspond to naive
Bayes methods in which training data are available.idf0, then we are in the unsupervised
learning situations of Winkler (1993) and Larsen (1996).

3.2. Data Files

Three pairs of files were used in the analyses. The files are from 1990 Decennial Census
matching data in which the entire set of 1-2% of the matching status codes that were believed to
have been in error for these analyses have been corrected. The corrections reflect clerical review
and field followup that were not incorporated in computer files available to us. We did not use
2000 Decennial Census data because we received files too late to verify the accuracy of match
status codes. The later files will be used in work subsequent to the work of this paper.

A summary of the overall characteristics of the empirical data is in Table 2. We only consider
pairs that agree on census block id and on the first character of surname. Less than 1-2% of the
matches are missed using this set of blocking criteria. They are not considered in the analysis of
this paper.

Table 2. Summary of Three Pairs of Files

Files Files Files

_ A A B, B G G
Si ze 15048 12072 5022 5212 4539 4851

# pairs 116305 37327 38795

# mat ches 10096 3623 3490

The matching fields that are:

Person Characteristics. First Name, Age, Marital Status, Sex
Household Characteristics: Last Name, House Number, Street Name, Phone

Typically, everyone in a household will agree on the household characteristics. Person
characteristics help distinguish individuals within household. Some pairs have both missing first
name and age. In the initial results, all comparisons are considered agree/disagree (base 2). This
basic situation corresponds to matching comparisons that were used in matching systems in 1990
and 2000 Decennial Censues. The eight data fields yield 256 data patterns for which frequencies
(proportions) are calculated. If one or both identifiers of a pair are blank, then the comparison
(blank) is considered a disagreement. This only substantially affects age (15% blank) and phone
(35% blank). Name and address data are almost never missing.

We also consider partial levels of agreement in which the string comparator values are broken
out as [0, 0.66], (0.66,0.88], (0.88, 0.94], and (0.94,1]. The first interval is what we refer to as
disagreement. We combine the disagreement with the three partial agreements and blank to get
five value states (base 5). The large base analyses consider five states for all characteristics
except sex and marital status for which we consider three (agree/blank/disagree). The total
number of agreement patterns is 140,625.

The pairs naturally divide into three classes: tatch within household,,GC nonmatch
within household, €— nonmatch outside household. Although we considered additional
dependency models, we only consider the two models. The first is of Larsen and Rubin (2001),
called g: I,HP,HP, in which we fit a conditional independence model in class@4-way
interaction models in classes &hd G. The second is similar to ones considered by Winkler



(2993). Itiscalled gs: HP+,HP+,HP+ in which we fit slightly more interactions than in g, in all
three classes. The analysis framework is quite flexible. It issummarized in Table 2. Werefer
to the different five componentsin Table 3 as the metaparameters of the modeling framework.
Thisis reasonably consistent with how Hastie, Thibshirani, and Friedman (2001) describe
metaparameters. Metaparameters are generally chosen based on some knowledge of the data and
the potential classification rules.

Table 3. Metaparameters of the Modeling

1. Models—
a. Cl — independenti4(i0 — 1990 version) I,1,l
b. Larsen-Rubin Cl in class 1, 4-way person,
4-way household in classes2 and 3, g1 |,HP,HP
c. Winkler 4+ way interactionsin all classes, g3(g0 1990 version)
2. lambda— how much to emphasize training data
3. delta — 0.000001 to 0.001 — smooth out peaks
4. how many iterations
5. number of degrees of partial agreement
a. agree, disagree (and/or blank) [small base = 2]
b. very close agree, moderately close agree, somewhat agree,
blank, disagree [large base = 5]

We draw relatively small and relatively large samples of training data. The sample sizes are
summarized in Table 4.

Table 4. Training Data Counts with Proportions of Matches
A B C

Large Sample 7612 (0.26) 3031 (0.29) 3287 (0.27)

Small Sample 588 (0.33) 516 (0.26) 540 (0.24)

The overall comparisons are summarized in Table 5.

Table 5. Summary of Comparison Scenarios

1990 2002
yes/no 3-level yes, blank, no
ClI (i0), interact (g0) ClI (i1), interaction (g1, g3)
LI,I; HP+HP+ HP+ LI ; LHP,HP; HP+ HP+HP+
1-1, non-1-1 1-1, non-1-1
no delta delta smoothing

Under each of the scenarios, we do unsupervised leamirg @.001) and supervised learning
(A =0.9,0.99 or 0.999). In the supervised learning situation, we use both large and small
samples.

We have two overall measures of success. The first is applied only when we use 1-1 matching.
At a set of fixed error levels (0.002, 0.005, 0.01, and 0.02), we consider the number of pairs



brought together and the proportion of matches that are obtained. This corresponds to
production matching systems used in 1990 and 2000 Decennia Censuses. The second is applied
only when we use non-1-1 matching. We determine how accurately we can estimate the lower
cumulative distributions matches and the upper cumulative distribution of nonmatches. This
corresponds to the overlap region of the curves of matches and nonmatches. If we can accurately
estimate these two tails of distributions, then we can accurately estimate error rates at differing
levels. Thisisknown to be an exceptionally difficult problem (e.g. Vapnik 1999, Hastie,
Thibshirani, and Friedman 2001). Our comparisons consist of a set of figuresin which we
compare a plot of the cumulative distribution of estimates of matches versus the true cumulative
distribution with the truth represented by the 45 degree line. We also do this for nonmatches. As
the plots get closer to the 45 degree lines, the estimates get closer to the truth.

4. RESULTS

The results are divided into two subsections. In the first, we consider results from 1-1
matching. In the second, much more difficult situation, we consider the estimation of the tails of
distributions.

4.1. Results under 1-1 Matching

In Table 5, we provide results from 1-1 matching. At differing error rate levels and in the
differing files, the 1990 matching procedures that (also used in 2000) were nearly as effective as
the newer procedures. Use of the larger base sometimes improves results by 0.005 and use of
interaction models also sometimes improves results by 0.005.

Table 5. Matching efficacy for 1-1 matching
Counts of pairs and proportions of true matches

Error |evel

0. 002 File A File B File C
93 9780 (0.967) 3428 (0.944) 3225 (0.922)
g1 9741 (0.965) 3448 (0.950) 3261 (0.932)
i1 9640 (0.956) 3277 (0.903) 3042 (0.867)
i 0 9701 (0.959) 3489 (0.961) 3306 (O0.945)
g0 9649 (0.954) 3422 (0.943) 3273 (0.936)

0. 005
93 9882 (0.974) 3547 (0.974) 3409 (0.972)
gl 9868 (0.973) 3523 (0.967) 3386 (0.965)
i1 9855 (0.971) 3513 (0.965) 3314 (0.945)
i 0 9857 (0.971) 3540 (0.972) 3379 (0.963)
g0 9810 (0.967) 3511 (0.964) 3329 (0.949)

0.010
93 9955 (0.976) 3584 (0.979) 3452 (0.979)
g1 9948 (0.976) 3568 (0.975) 3441 (0.976)
i1 9942 (0.975) 3566 (0.974) 3414 (0.968)
i 0 9952 (0.976) 3580 (0.978) 3431 (0.973)
g0 9878 (0.969) 3536 (0.966) 3372 (0.956)

0.020
93 10062 (0.976) 3622 (0.980) 3491 (0.980)
gl 10057 (0.976) 3614 (0.978) 3487 (0.979)
i1 9942 (0.976) 3614 (0.978) 3481 (0.977)
i 0 10065 (0.977) 3623 (0.980) 3489 (0.980)
g0 9998 (0.970) 3589 (0.971) 3417 (0. 960)

i0,i1 independence; g0, g1, g3 interaction rﬁodels



The reason that we do not show results for error rates above two percent (0.02) is that almost
all of the pairs brought together are nonmatches below the cutoff associated with the two percent
error rate.

4.2. Resultsunder non-1-1 Matching

Figures 3-11 represent results from non-1-1 matching. In Figures 3-5, we use the small base 2
and in Figures 6-11, we use the large base. In Figures 3, 4, and 5, we consider unsupervised
learning for the interaction model gs, interaction model g;, and conditional independence model
11, respectively. All results are for base 2. All models perform poorly, particularly in the lowest
10 percent of the cumulative distribution of matches. The independence model, possibly
somewhat surprisingly performs, slightly better than the two interaction models. The EM
algorithm when applied under independence restraints does better than the two interaction
models in estimating an accurate proportion for the class of matches within a household.
Interaction model g; yields estimates of this proportion that are slightly too low; interaction
model g; estimates this proportion that are too slightly high.

In Figures 6 and 7, we consider unsupervised learning for the interaction models gs, and
conditional independence model i, respectively. All results are large base results. All models
perform poorly, particularly in the lowest 10 percent of the cumulative distribution of matches.
Again, the independence model, possibly somewhat surprisingly performs, slightly better than
the interaction model. Interaction model g; is hot shown because it performs slightly more
poorly than interaction model gs. Again, interaction model g; yielded estimates of the proportion
of the matches within a household that are dlightly too low; interaction model gs yields estimates
of this proportion that are slightly too high.

In Figures 8 and 9, we consider small sample training with lambda mixing proportions of 0.9
and 0.999, respectively. The lambda mixing proportion 0.999 provides excellent accuracy in the
crucial range of 0.0-0.1. These results are better than the results with lambda mixing proportion
of 0.9. Only the independence model is shown because it provides the best accuracy. The large
sample results of Figures 10 and 11 are dlightly better than the small sample results givenin
Figures8 and 9. Theindependence model in the large sample situation provides excellent
accuracy. Although not shown, the two interaction modelsin the large sample situation provide
even better accuracy than the independence model.

5. DISCUSSION

From large amounts of previous empirical work, we know that typographical error can vary
significantly between two pairs of files. We define typographical error as any difference in two
corresponding fields for a character-by-character comparison. The typographical error can be
significantly different for two pairs of files representing two adjacent regions such as an urban
region and one of its suburban regions. This particularly affects the probability of agreement on
first name given a match and the probability of agreement on age given amatch. These
typographical differences can occur because there are genuine differences in the quality of the
files from two different regions. These differences can be compounded if one individual
somehow makes significant keypunch errors while others do not. Then one portion of afile may
contain substantial typographical error that affects the shape of the curve of matches. These
types of typographical variations can occur in administrative lists that are melded from several
different sourcesfiles. One or more of the sources files may have significant error.

The fact that the (partially) supervised learning illustrated in Figures 8-11 performs much
better than the corresponding unsupervised learning results given in Figures 3-7 is not surprising.



We need arepresentative sample of pairsto determine the shape of the lowest part of the
cumulative match curve. In some pairs of files, 0.001 of the pairsfor afixed agreement pattern
may be matches. In another pairs of seemingly similar files, 0.02 of the pairs for the same fixed
agreement pattern may be matches. For instance, in pairsin which first name and age are
missing, the proportions of matches can vary between 0.001 and 0.02.

In the case of unsupervised learning, the interaction models have strong tendencies to put extra
pairsin class C; or fewer pairsin class C; depending on whether dependencies are fit in class C;
or conditional independence isfit in class C;. We have not yet investigated whether fitting with
convex constraints (Winkler 1993) that force certain of the estimated probabilities into narrower
ranges may help. Early results are not too promising. Given the extreme differencesin
typographical error rates for individual agreement patterns over differing, but similar, types of
files, we are not optimistic.

We still find the high quality of the estimates of the cumulative distributions (Figures 8-11)
under conditional independence to be somewhat surprising. In future work, we will investigate
this. We do note that, within the set of matches, 40-45 percent agree on every field amost on a
character-by-character basis.

6. CONCLUDING REMARKS

This paper examines methods for weakening some of the stringent conditions that were
implicitly assumed in earlier applications of EM parameter estimation to record linkage. The
EM-based estimation methods potentially yield better parameters for separating matches from
nonmatches when they are applied in appropriate situations. The estimates improve over
iterative refinement methods that proceed through a series of clerical reviews and expert
guessing such as are available in certain commercial record linkage systems. They are also far
faster and better use resources than iterative refinement methods.

1/ This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a
Census Bureau review more limited in scope than that given to official Census Bureau publications. Thisreport is
released to inform interested parties of research and to encourage discussion.
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Figure 9b. Estimates vs Truth, File A
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Figure 9d. Estimates vs Truth, File B
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Figure 9f. Estimates vs Truth, File C
Cumulative Nonmatches, Lambda=0.99
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Figure 10a. Estimates vs Truth, File A
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Figure 10f. Estimates vs Truth, File C
Cumulative Nonmatches, Lambda=0.9
Large Sample, Independent EM, non—1—1
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