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Abstract

Standard signal extraction results for both stationary and nonstationary time
series are expressed as linear filters applied to the observed series. Compu-
tation of the filter weights, and of the corresponding filter transfer function,
is relevant for studying properties of the filter and of the resulting signal ex-
traction estimates. Methods for doing such computations for symmetric, dou-
bly infinite filters are well-established. This paper develops an algorithm for
computing filter weights for asymmetric, semi-infinite signal extraction filters,
including the important case of the concurrent filter (for signal extraction at
the current time point.) The setting is where the time series components being
estimated follow ARIMA (autoregressive-integrated-moving average) models.
The algorithm provides expressions for the asymmetric signal extraction filters
as rational polynomial functions of the backshift operator. The filter weights
are then readily generated by simple expansion of these expressions, and the
filter transfer function may be directly evaluated. Recursive expressions are
also developed that relate the weights for filters that use successively increas-
ing amounts of data. The results for the filter weights are then used to develop
methods for computing mean squared error results for the asymmetric signal
extraction estimates.

Disclaimer: This paper reports the results of research and analysis undertaken
by Census Bureau staff and staff of Howard University. It has undergone a
Census Bureau review more limited in scope than that given to official Census
Bureau publications. This report is released to inform interested parties of
ongoing research and to encourage discussion of work in progress.



1 Introduction
Suppose an observed discrete time series Z; is decomposed as
Zt = St + Nt

and the objective is to use the data on Z; to estimate the unobserved component
series Sy and N;. The component series might represent “signal plus noise,” or “trend
plus error,” or “seasonal plus nonseasonal.” Signal extraction results for optimal
(minimum mean squared error, or MMSE) linear estimators of the components were
given in the stationary case by Kolmogorov (1939,1941) and Wiener (1949); see also
Whittle (1963). Extensions to the case of nonstationary S; but stationary N; were
given by Hannan (1967), Sobel (1967), and Cleveland and Tiao (1976). Bell (1984a)
gave a more general treatment that covered the case where both .S; and N; are nonsta-
tionary. These papers dealt with estimation of S; and N; from an infinite realization
of the series Z;, a case that applies approximately when the observed time series Z;
is sufficiently long. Ansley and Kohn (1985), Kohn and Ansley (1987), and Bell and
Hillmer (1988) gave results for MMSE linear estimators based on a finite sample of
Z.

The results of the papers cited in the preceding paragraph express the MMSE
linear estimator of S; based on some set of consecutive observations on Z; as

gt = Zath—k (1)
k

where {a;} is the set of “filter weights.” The summation in (1) extends over the set
of k such that all available observations Z;_, are included. As noted this summation
could be finite or infinite; here we focus on the “semi-infinite” case where the summa-
tion is 37>°, = for some integer m (thus using data up to and including time ¢ + m).
It is convenient to rewrite (1) as

~

St == Oé(B)Zt

where

a(B) = axB* 2)

and B is the backshift operator (BZ; = Z; ;). Results from the references cited
above on infinite sample signal extraction give expressions for «(B) as functions of
the models for Z;, S;, and N; (or, equivalently, as functions of their spectral densities
or autocovariance generating functions). From these expressions one may wish to
compute the actual filter weights {cy}, or their frequency response function a(e™),
since studying these quantities gives insight into the nature of the signal extraction
estimate (1). (For examples of this sort of analysis, see Findley and Martin (2002).)



Direct computation of signal extraction weights from these expressions for asymmetric
filters is awkward, however, since it requires that one manipulate truncations used to
approximate infinite series expansions.

This paper develops an algorithm to obtain explicit expressions for asymmetric
filters «(B) for signal extraction based on semi-infinite samples for the important
case when Z;, S;, and N; all follow ARIMA (autoregressive-integrated-moving aver-
age) models (Box and Jenkins 1970). The results express a given asymmetric signal
extraction filter as a rational polynomial function of B, so the filter weights {ay}
can be obtained by direct expansion from these expressions, and a(e) can also be
calculated directly. This provides, for any m, the filter weights used to estimate S;
based on observations up to Z;,,, and extending back into the infinite past (i.e., us-
ing Zym_x for k =0,1,2,...). Our algorithm generalizes an algorithm of Granville
Tunnicliffe-Wilson (reported in Burman 1980) for computing weights for a symmetric
signal extraction filter (using Z; j for k = 0,+1,42,...). Additional results of our
paper relate the filter weights corresponding to different values of m, and provide
methods for computing asymmetric signal extraction MSE. Trivial extensions of the
results would accommodate decompositions that involve more than two components
(e.g., seasonal plus trend plus irregular).

Koopman and Harvey (2000) give an algorithm for computing finite sample signal
extraction weights for general linear state space models. To deal with the finite sample
case, their approach uses results of the Kalman filter and an associated smoothing
algorithm, and so is completely different from the approach presented here. For
sufficiently long series following ARIMA component models their approach and ours
will, of course, give approximately the same results.

Section 2 of the paper presents our algorithm for the important case m = 0, which
produces the “concurrent” or “one-sided” signal extraction filter that estimates S; us-
ing data up through the current observation Z;. Section 3 gives the simple extension
of the algorithm to the case of general m. Using these results, Section 4 notes some
unit root properties of the resulting filters, and Section 5 derives expressions for the
asymmetric signal extraction MSE. Sections 6 and 7 then provide examples illus-
trating the results of the previous sections, showing how to apply the algorithm to
calculate the filter weights. Section 6 considers a simple trend estimation example,
and Section 7 an example of canonical ARIMA model-based seasonal adjustment.

Some results of Sections 4-6 overlap with results of Pierce (1979,1980), and these
instances of overlap will be noted. Pierce obtained results for the general difference
stationary case where “differenced” S; and N; are assumed to be stationary time
series though not necessarily following ARMA models. Where the results overlap,
our results provide the simplifications that result for ARIMA models, in that they
yield expressions of the signal extraction filters as rational polynomials in B, whereas
Pierce’s results give expressions that involve infinite series expansions.



2 Algorithm for Calculating Concurrent (“One-
Sided”) Filters (m = 0)

We assume that the time series Z;, S;, and N, follow the ARIMA models

e(B)Z; = 0(B)a
©s(B)Sy = 0,(B)b (3)
Spn(B)Nt = en(B)et

where ¢(B), ¢s(B), ¢n(B) have degrees p, ps, p,, and 0(B), 6,(B), 6,(B) have
degrees q, qs, qn, respectively. The series a;, b;, and e; are independent white noise
series with variances o2, o7, 02, respectively. Note that ¢(B), ¢(B), ¢n(B) are the
products of any stationary and nonstationary autoregressive operators in the above
three models for Z;, S;, and N, respectively. We let 6(B), 65(B), 6,(B) denote
the nonstationary AR operators. In typical applications these involve differencing
operators (e.g., (1 — B)? or (1 — B'?)) or “seasonal summation operators” (e.g.,
1+ B+---+B'").

We shall assume that the mean functions, F(S;) and E(1V;), of the time series S,
and NV; are both zero. Hence, the mean function of Z; is also zero. Equivalently, if the
mean functions are not zero but have been modeled (e.g., by linear regression func-
tions), they can be subtracted from the respective time series, the signal extraction
performed, and the appropriate mean function added back to the signal extraction
estimate.

We assume @;(B) and ¢, (B) have no common factors, so

©(B) = ¢s(B)n(B). (4)

We also assume ¢4(B) and ¢, (B) have all their zeroes on or outside the unit cir-
cle. (This assumption could be relaxed to allow for explosive models. Also, the
assumption of no stationary autoregressive factors common to ¢s(B) and ¢, (B) is
for convenience of presentation and is not essential to the results.) For example, for
seasonal adjustment of a monthly series, typically ¢,(B) = 1 + B + --- + B! and
¢on(B) = (1 — B)4 for d = 1 or 2, though ¢,,(B) could also contain a stationary AR
operator. Finally, we assume ¢(B) and §(B) have no common factors, and §(B) has
all its zeroes outside the unit circle (it is invertible). Consideration of the autocovari-
ance generating function (ACGF) of ¢(B)Z; shows that the component model AR
and MA polynomials satisfy the constraint

7*0(B)O(F) = 03on(B)pn(F)0s(B)0s(F) + 07 05(B)ps(F)0n(B)0n(F)

where F' = B™! is the forward shift operator (FZ, = Z;,1).
Denote the concurrent signal extraction filter for estimating S; by a(B). The
concurrent filter for estimating N; is 1 — a(B). From the references cited in the
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introduction (e.g., Whittle (1963, ch. 6) or Hannan (1970, p. 168)), the filter o(B)
is given by

o(B) = —5(B) [x(F)u(B)], o)

where w(B) = ¢(B)/0(B) is the infinite AR operator for Z;, v5(B) is the pseudo-
autocovariance generating function of S; (v5(B) = 0205(B)0s(F)/s(B)es(F)), and
the notation [e], indicates only terms with nonnegative powers of B are retained—
those with positive powers of F' = B! are dropped. (Section 5 demonstrates that (5)
actually provides the optimal signal extraction estimate in the general nonstationary
case considered here.) In (5) we could use more explicit notation and write a{”(B)
instead of just o(B), with the superscript (0) indicating that this is the concurrent
filter (m = 0) and the subscript s indicating it is for estimating S; (rather than N).
In this section, to avoid cluttering the notation, we omit these notational details from
a(B) and also from some quantities defined shortly (e.g., ¢(F) and d(B)). Starting
with Section 3, however, it becomes necessary to make the notation more explicit by
including such details.
From (3)—(5) we have

a(B) = —

7 ¢s(B)gn
o2 0(B)

Notice a(B) depends on the variances only through the variance ratio o/o?.
Assume that the term inside the brackets in (6) can be written as

on(F)0s(F)0,(B) _ c(F) = d(B)
O(F)ps(B) O(F)  os(B)

where

co(F) = cg+cF+-+c F"
d(B) = dy+diB+---+d,B"

are determined to satisfy the relation
c(F)ps(B) + d(B)I(F) = on(F)0:(F)0s(B). (8)

The right-hand side of (8) is a polynomial in F' and B of degree (p,, + ¢s, gs), where
the ordered pair gives the maximum powers of F' and B that appear. Consideration
of the left-hand side of (8) shows that, in general, we can set

h = max(q,p, + qs)
k= max(ps,qs).
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Now define i
9(B) = Y ;B = ¢u(F)0,(F)8,(B) (9)

i=h

where g; is defined to be zero for values of j > ¢, or j < —(p,, + ¢5s). The former
occurs if ps > ¢, and the latter if ¢ > p,, + ¢s.
Combining (8) and (9) gives

c(F)ps(B) + d(B)I(F) = g(B)

or more explicitly

k
Y 9B = (co+taF+-+ o)1= paB—-- =g, B")
j=—h
+(do +dy B+ -+ dpB*)(1 — 0, F — - — 0,F9) (10)
which provides h + k + 1 linear equations in h + k 4+ 2 unknowns: ¢, ¢y, ..., c, and
dy,dq, ..., dg. Since we have one more unknown than equations, we impose the con-

straint ¢p = 0. This implies that the bracketed term in (6) is

eBERE) _ (4D, 48]
oetB) ], T [E) ),
_ dB)
= (B (11)

since () the expansion of ¢(F')/6(F') involves only terms in positive powers of F', which
are terms in negative powers of B, and (:) the expansion of d(B)/¢s(B) involves only
terms in nonnegative powers of B. Combining (6) and (11) we see a(B) is given by

75 _ ps(B)en(B)  d(B)

B = 2B )
o2 g (B)(B)
= ;XW (12)

From (12), once we have computed d(B) we can compute the weights {oy} in o(B)
using standard computer routines for expanding rational polynomials. We now show
how to compute d(B) using (10).

Notice that with the constraint ¢y = 0 the equations (10) can be written in matrix



form as follows:

gi—h

gdo
g1

Gk

which can be rewritten as

with g, A;, and A, defined from the expressions in (13).

g—h ]

1
_(1031 1
_(1081
—Ps,ps
—Ps,ps
O(ks1-p.)xh
O(h—q)x(k+1)
-0,
-0,
—0,
—4,
1 -6
1
—4,
1
e T
C1
[A1|As] | do | =9
dy
L d |

7

Ch

1

(13)

The representation of
the matrices A; and Ay in (13) makes clear the pattern used in their construction.



First, for A; we construct the first column as shown in (13), and then construct
h — 1 additional columns by successively shifting down one position the entries of
the previous column that correspond to 1, —@,1, ..., —¢,,,. Note that since k =
max(ps, qs) > ps, there is always at least one row of zeros at the bottom of A;, with
more than one row of zeros if k = q5 > p;.

To construct As we proceed in a similar fashion as for A;. If h > ¢ we start by
setting the first h — ¢ rows of Ay to zero. If h = ¢ (because q > p, + ¢s), then we skip
this step and there are no rows of zeros at the top of A;. Then, immediately below
any needed rows of zeros, we construct the first column as shown in (13), and then
construct £ additional columns by successively shifting down one position the entries
of the previous column that correspond to —6,, ..., =6, 1.

Appendix A proves that the matrix [A;|As] in (14) is nonsingular. Thus, (14) can
be solved for c¢q,...,c, and dy,dq,...,dr, and we can then compute the expansion
of a(B) from (12). We don’t need to know ¢y, ..., ¢, to compute a(B), but we get
these as part of solving for dy,d;,...,d,. The quantities cy,...,c, will be used in
later sections, however.

3 Extending the Algorithm to the Case of m # 0

We show two approaches to obtain the asymmetric signal extraction filters for m # 0.
The first approach directly generalizes the approach for the concurrent filter (m = 0).
The second obtains a recursive relation between the filters for successive values of m.
Following presentation of these two approaches we discuss the relation between the
signal extraction filters for S; and N; for any value of m.

3.1 Direct approach to calculating signal extraction filters

for m #0
For general m not necessarily zero, the asymmetric signal extraction filter, a{™ (B),
for estimating S; from Z;,,,, Zi1m_1,-.. 18
Fm
o™ (B) = —57(B) [x(F)1:(B)B"], (15)

which is a generalization of (5) that holds for all m. Results of this form are given
for the stationary case by Whittle (1963, ch. 6), and for the case of a nonstationary
signal with stationary noise by Hannan (1970, p. 168). Section 5 shows that this
result is appropriate in the more general nonstationary case considered here.
Starting with (15), the resulting generalization of (6) is
i ps(B)en(B) |on(F)0s(F)0,(B)

oB) = P X =) 0B |, (16)




As before, we express the term in brackets in (16) as

n(F)05(F)0 S(B)Bm a(F) | dm(B)

0(F)ps(B) - 0(F) (B

where ¢ (F) = VF 4+ 5 Fhmand d0)(B) = diY + dSVB + - - -+ d) B
are determined to satisfy the relation

(17)

(F)ps(B) + di™ (B)O(F) = ¢u(F)05(F)0,(B)B™. (18)
Note we impose the same constraint as before, cggl) = 0. The right-hand side of (18)
is now a polynomial in F' and B of degree (p, + ¢s —m, ¢s +m), and considering the
left-hand side of (18) we can set

hm = max(qapn +qs — m)
km = maX@sy qs + m)

(Note: Strictly speaking we should write A(™ and k{™ for these quantities as anal-

ogous different quantities would be appropriate for computing the asymmetric filter

al™(B) for estimating N; using data through ¢ +m. We ignore this refinement to

avoid overly complicated notation, particularly on the coefficients cgh) and d(m) )
We now define

9" (B) = @u(F)05(F)0s(B)B™ = g(B)B™ (19)

where g(B) = ¢\%(B) = ¢, (F)0,(F)0,(B) was given before in (9). Equation (19)

S
shows that
gs+m

Z a'B = Y gD
Jf—hm j=m—(pn+qs)

where the weights gg-”) = gj_m for j =m — (p, +¢s),...,¢s + m, and ggT) = 0 for

Jj<m—(p,+qs)orj>q,+m.

Given h,,, k,,, and the gg-n), we can proceed exactly as before to solve for ch), ey
ciﬁl and d,d\™ . .. ,déﬁl using equations of the same form as (13) and (14). That
is, the fundamental quantities that change with m in (13) and (14) are just h,, and
K. They determine the dimensions of the vectors and matrices in (13) and (14), and
the positions in the vector g of the nonzero g;. Once the versions of (13) and (14)
appropriate for the given m are set up, this version of (14) can be solved for ch), e
) and dY d LAY

The resulting solution for a{™(B) then follows as for (12):

i en(B)d™(B)

= 2 X Fm. (20)



Clearly a parallel derivation establishes that the asymmetric signal extraction filter

for estimating V; from Z;yp, Ziim1, ... 18
2 d(m) (B)
(m) B) = & SOS(B) n m 21
olr(B) = 7 x PR (1)

where d™(B) is obtained in the analogous fashion to d™(B).

3.2 Recursive approach to calculating signal extraction fil-
ters for m # 0

First we consider the case m > 0. Let

_ - j_C(F)
:;mF = o(F)

where c(F) = ¢’ (F) is calculated for the concurrent signal extraction filter for S; in
Section 2. Considering (7) given there and (16) above, we see that

o"(B) = chr_é x (B) l(n(F) C) ) Bmk

. ¢s(B)

= a(B) + Ln(B)mF + -+ F ™) (22)

where d(B) = d(B) is calculated for the concurrent filter in Section 2. Applying
o™ (B) as given in (22) to Z; gives Sy, the signal extraction estimate of S; using
data through time ¢ + m, and shows that (note m(B)Z, = a;)

o2
St\t+m = St|t + (771F + et N ) ay. (23)

As m — oo, a!™(B) becomes the symmetric filter a{*)(B), and (23) becomes

2
St|oo = St\t + (771F + 772F +)ag (24)

which shows that 2% (mF + o F? + -+ +)ay is the “total revision” from the concurrent

estimate St‘t to the “final” estimate gt‘oo that is obtained from the symmetric filter.
Equation (23) also makes it clear that for any m’ > m

2

~ ~ g !
St|t+m’ = Stlter + O__g(nm+1Fm+1 + o e FT )at (25)
2
~ ~ g
St = Stjt+m + O_—Z(anFm“ + g2 4y (26)
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so that Z (nm+1Fm+1 4 oo+ N F™)ay is the revision from §t‘t+m to §t|t+m/, and

ﬁ(anF mEl 77m+2FmJr2 + -+ -)ay is the revision from gtmm to §t‘oo. Pierce (1980)
gave general results on how signal extraction revisions depend on the one-step-ahead
forecast errors a;.

We can now see the fundamental importance of equation (7) and the constraint
co = 0. Equation (7) breaks 2w (F)ys(B) = ¢, (F)0,(F)0,(B)/0(F)¢s(B) into the
two parts ¢(F)/0(F) and d(B)?(pS(B). The second part gives rise to the concurrent
estimate, Sy, = [02¢,(B)d(B)/0%0(B)]Z; (derived in Section 2), which is a linear
function of current and past Z;. The first part, involving n(F) = ¢(F)/0(F), gives
rise to the revision from §t|t to SﬂHm in (23) (for m > 0) and to the revision from
gﬂt to §t|oo in (24), as given by the second terms on the right hand sides of these
equations. Because of the constraint ¢y = 0, these revisions are linear functions of
only the future innovations a;,1,asy9,... As long as S; is nonstationary (6s(B) # 1),
neither §t‘t nor Z; can be expressed as a linear function of just the a;; one must
account for the effects of starting values (Bell 1984).

Returning to calculation of the asymmetric filters, considering (22) for m + 1 (or
(25) for m’ =m + 1) gives

2
agmﬂ)(B) - ago)(B) + %W(B)(MF 4+ e+ 77m+1Fm+1)

2
= o™ (B) + Zen(B)n Fm (27)

S 0_2

We write (27) more explicitly as

[e’e] m 0_2 [e’e] ]
Z H)B] Z 04 277m+1 Z Tjtm+1 B’ (28)
jzf(m+1) j=—m g j=—(m+1)

where we define
Ty = —1.

Equation (28) shows the relation between the filter weights at m + 1 and m:

2
aft = ¢ Jmmry (29)
Qgj " = FNmt1Tjime1 J=—m,—m—+1,...

Once (”(B) has been computed as shown in Section 2, and n(F) = ¢(F)/0(F) has
also been computed, (29) can be used to compute the filter weights for a{™(B) for
m=12,...

We now obtain a similar expression for the filter weights for the case of m < 0
(for prediction of future S; using data through ZHm) We relate the signal ex-
traction estimates St|t+m = o™ (B)Z; and St‘t_i_m 1 = o™ Y(B)Z, In general,

11



to get §t\t+m—1 we can apply Oégm)(B) to the series Zt—i—m\t—i—m—lu Zitm—1, Lt4m=2, - - -
i.e., to the observed series up to Z;.,,_1 with the optimal one-step-ahead forecast
Ltm|t4m—1 = Z;";l T Zitm—; of Zi1rm, appended to it. This produces the following:

3t\t+m—1 = g)mZt+m\t+m 1+ Z Oé Zt j

]—7m+1

= Z?T]Zt+m ]+ Z Oé Zt j

j=—m+1
= > (agT) + agﬁ)mﬂ-j—i-m) Zy_j.
j=—m+1
Writing
§t|t+m—1 = Oégmil)(B)Zt = Z OégTil)Zt,j
j=—m+1
we see that
ag’f D= ong) + ag@mﬁﬂm j=-m+1,—-m+2,... (30)

Given the concurrent filter a(*)(B), the relation (30) can be used to compute the
weights for the asymmetric filters o™~ (B) for m =0, —1,...
Note that the second part of (29) can be written

a(m) _ agTJrl) +a (m-+1)

8] Qg f(m+1)ﬂ-]+m+1 .] =-—m,—m+1,...
Comparing with (30), we see that these are really the same equations. Thus, the

only difference between the cases m > 0 and m < 0 is that when m > 0 we need to
(m+1)

compute o —(mt1) =

2
Ug Nm+1 to start the calculations.

3.3 Relation between signal extraction filters for S; and N,

In the case where Z; is observed (m > 0), o™ (B) = 1—a{™(B). For m < 0 (Z; is in
the future) let gtmm = a{™(B)Z; and J/\ftmm = al™(B)Z; be the signal extraction
estimates of S; and N; based on Zyym, Zi1m 1, - - - For clarity let £ = —m (note £ > 0)
and note that St‘t ¢ and Nt|t ¢ satisfy

Ziji—¢ = Sjt—e + Nyjs—e

where Zﬂt,g is the optimal (minimum MSE) €—step ahead forecast of Z, from time
t — {. We can write Zt|t_g = 79 (B)Z;, where 7)(B) = ¥32, = BJH L and the 7TJ( )
are the (-step-ahead forecast weights. Box and Jenkins (1970 pp. 160-162) discuss

12



computation of the Wj(-é). (Note that 7(B) = 1 —n1)(B) where 7T](-1) = m;.) From these
results we see that for £ > 0

m(B) = al{Y(B) + af (B) (31)
so that, in terms of m = —¢, chf) = 7T](-7m) - ch;-”) and vice-versa. If we interpret

7(=™)(B) as 1 for m > 0, then (31) holds for all m.

4 Unit Root Properties of the Asymmetric Filters

Recall that the differencing or, more generally, nonstationary AR operators for S;
and N, are denoted by 65(B) and 6,(B), and that these are contained in ¢4(B) and
¢n(B). From (20) and (21) we see that a{™(B) contains ¢, (B) and hence contains
6n(B), while o™ (B) contains ¢,(B) and hence contains 6,(B). Pierce (1979, pp.
1312-1313) established this result for general difference stationary models.

The fact that (™ (B) contains 6,(B) and o{™(B) contains 6,(B) (for any m)
has important implications. For example, in model-based seasonal adjustment of a
monthly series typically §s(B) = U(B) =1+ B+---+ B and 6,(B) = (1 — B)? for
some d > 0 (note Burman 1980, Hillmer and Tiao 1982, Gersch and Kitagawa 1983,
Harvey 1989). It then follows that

e o!™(B) annihilates polynomials up to degree d — 1 (because (1 — B)?¢ does).

e /™ (B) annihilates fixed seasonal effects (because U(B) does). Fixed seasonal

effects are defined as any deterministic sequence &; such that U(B)& = 0. This
includes sums of trigonometric functions at the seasonal frequencies (275/12

for j =1,...,6), and also fixed effects defined from monthly indicator variables
with the average effect over 12 consecutive months subtracted off. (See Bell
1984b.)

For m > 0 these results and the expression 1 = o{™(B) 4+ o™ (B) imply that
a{™(B) reproduces polynomials up to degree d — 1 and a{™(B) reproduces fixed
seasonal effects. In fact, from (31) we see that these results also hold for m < 0
because 7(~™(B) (i.e., £ = —m step-ahead forecasting) can be shown to reproduce
both polynomials up to degree d — 1 and fixed seasonal effects.

The preceding results can be contrasted with those for the corresponding symmet-
ric signal extraction filters for S; and N;. The symmetric filters are (Hillmer, Bell,
and Tiao 1993, p. 75)

- i a(B)pn(F)0(B)0s(F)
o (B) = 5 % 9(B)O(F) (82)
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)y Te  Ps(B)ps(F)0n(B)0(F)
o (B) =5 8(B)O(F)

For model-based seasonal adjustment we see from (32) and (33) that a{*)(B) con-
tains 6,(B)6,(F) = (1 — B)4(1 — F)¢ = (1 — B)*(—F)¢ and o/ (B) contains
6s(B)os(F) = U(B)U(F) = U(B)?>F''. So a{®)(B) annihilates (and o> (B) re-
produces) polynomials up to degree 2d — 1, and (> (B) annihilates (and o) (B)
reproduces) not just fixed seasonal effects but some deterministic effect (; that re-
quires application of U(B) twice to be removed. Thus, the symmetric filters reproduce
functions of higher order than the asymmetric filters.

Unit root results for asymmetric trend estimation filters are now obvious. Thus,
if S; is a trend component requiring differencing by (1 — B)¢ and N; is a stationary
noise component, then the trend estimation filter o™ (B) reproduces, and the trend
removal filter o™ (B) annihilates, polynomials up to degree d — 1. The corresponding
symmetric trend estimation filter and symmetric trend removal filters reproduce and
annihilate, respectively, polynomials up to degree 2d — 1.

(33)

5 Asymmetric Signal Extraction Mean Squared
Error (MSE)

We shall obtain the MSE of the asymmetric signal extraction estimate in several
alternative ways. Let

Etlt+m = St — St\t+m

be the error in the estimate of S; using data through time ¢t + m. For m > 0 we can
write

€je4m = Sp— Oém)(B)[St + N
= [1—a™(B)]S, — o™ (B)N,

S

= ai(B)S, — o™ (B)N; (34)
and from (20) and (21) this is
os  ¢s(B)AT(B) e 0b  eu(B)AI(B)
Etlt+m = ?XWF St—EXTB)F Nt
o2 dBLB),  op dr(B)6.(B)

— In ATy Zs \P)7n\7)
02T eB) v 2T gy (35)

From (35) we can see that (for fixed m) €ystn, is stationary with ACGF

76,m(B) = =

F0(B)O(F) (02 (B)dS™ (F)0(B)0s(F) + o3d(™ (B)d™ (F)0,,(B)6n(F)|

(36)

14



Each of the two parts of (36) can be computed using Tunnicliffe-Wilson’s algorithm
(Burman 1980). Alternatively, variances and autocovariance for the first part can be

computed by applying standard results on computing ARMA model autocovariances
(McLeod 1975,1977; Wilson 1979) to the “pseudo-model”

o(BYus = {[d%'] " di ()} 0. (37)

where & is white noise with variance [d0]?0%2 /0%, and u, is a place holder for
any time series following the model (37). (Note that the constant term, d%), in the
d™(B) MA operator in (37) is not 1, so d™) is factored out of d™(B) and Var(&;)
includes [d%”)]2 to compensate.) Autocovariances for the second part are computed
the same way. The analogous derivation for the error €., in the symmetric signal

extraction estimate yields a result analogous to (36), which simplifies to (Bell 1984)

agagQS(B)QS(F)Qn(B)Qn(F)
o?0(B)0(F)

Yeoo(B) = (38)

Pierce (1979), working with general difference stationary models, showed that the
two terms in (34) are stationary by showing that (™ (B) and (™ (B) contain ¢(B)
and ¢, (B), respectively. He then directly obtained an expression for the spectral
density of the signal extraction error in terms of his general expressions for (™ (B)
and o™ (B). The result (36) shows how the results for ARIMA component models
simplify to rational polynomial expressions that are easily evaluated for given m.
These simplifications result from using the decomposition of the term in o™ (B)
within the [o], notation into the two parts shown in (17), and similarly for a{™(B).

Another approach to computing the MSE, which works for all m, starts by writing

Etlt+m = (St - gt\oo) + (gt\oo - gt\ter) (39)
= €foo t+ [agoo)(B) = agm)(B)] Zy. (40)

Now from (15) and (32)

0f(B) ~af(B) = —gw(B)r(F)n(B) ~ —px(B) [r(F)(B)B"],
= LB W(F)(B)B] (a1)

where [o]  retains only those terms involving negative powers of B (positive powers
of F = B™!). From (15)-(17) we can write (41) as

o? c{m
aP(B) - af(B) = P T (B) i
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from which it follows that (40) can be written as

o2 dm(F
€t|t+m = Et‘oo + O__l; X ﬁarkm . (42)

The error €, in the optimal symmetric signal extraction estimate is uncorrelated

with a;y,, for all t and m, so the ACGF of €j;1n, is the sum of the ACGFs of the two

parts, that is

ayc™ (B)e{™ (F)
0?0(B)0(F)

where 7, o (B) is given in (38). As above, the two terms in (43) can be evaluated by

computing autocovariances for appropriate pseudo-models.

As an aside we note that the above derivation shows that §t‘t+m = o™ (B)Z;, with
a{™(B) defined by (20), actually is the optimal signal extraction estimate of .S; based
on the data (..., Zi4m 1, Zt+m). This result is well-established in the stationary case,
as noted earlier, and Hannan (1967) and Sobel (1967) gave such results for a nonsta-
tionary signal observed with stationary noise. However, this result has not previously
been explicitly demonstrated in the more general nonstationary case considered here.
The result follows since both terms on the right hand side of (42) are orthogonal to
the differenced observed data (..., w1 1, W) where wy = 6(B)Z;. The time series
€t|oo 18 Orthogonal to the complete series {w,} since it is the error in the optimal sym-
metric signal extraction estimate (Bell 1984). The term (02/0?)[c™ (F)/0(F)]at m
is orthogonal to (..., Wi m_1,Wsm) since it is a linear function of the innovations
a4 for j > m. Hence € 1p = S; — gt\ter is orthogonal to (..., W im_1, Wim) which

7€,m(B) = 76,00(B) +

(43)

implies that §t|t+m is the optimal estimate. This line of argument also applies with
general difference stationary models as considered by Pierce (1979,1980) if we start
from the more general expression (15) and use (41).

A final approach to computing asymmetric signal extraction MSE for m > 0 starts
from (26), which using (39) leads to

2
o
€t/t+m = €tjoo T a—g(anFmH + 77m+2Fm+2 + - 2)ay (44)

where 7)(F) = c¢(F)/0(F) was defined in Section 3.2. Again by virtue of €., being
uncorrelated with a; for all j, the ACGF of €., is the sum of the ACGFs of the

two parts of the right-hand-side of (44):
Yem(B) = Ve (B) + ( > ij) ( > 77ij> (45)

RN

The signal extraction MSE is thus obviously

Var(€gj4m) = Var(€eyoo) +Z_§ ( i 7}?) (46)

j=m+1
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This involves an infinite sum, which would need to be truncated as an approximation,
but has the advantage (relative to (36) and (43)) that the only dependence on m is in
the limit of the summation. In fact, we see that as m increases to m + 1 (we get one
more observation) the signal extraction variance decreases by (o4 /0?)n2, 1, ultimately
decreasing to Var(ejo) in the limit. Starting from (25) leads to the corresponding
expression for any m’ > m

4

o !
Var(€t|t+m) = Var(€t|t+m’) + U—I; ( Z 77]2) (47)

j=m+1

From (25) we note that (o} /0?) ( f— 77;) is the variance of the revision from the
estimate at time ¢ + m to the estimate at time ¢t + m/'.

The preceding approach extends to m < 0 by using (42) as a starting point. To
see this, suppose M < 0 is the smallest value of m of interest (—M is the maximum
forecast lead of interest) and define

(M) F)
(M (M _ G ( 48
Then from (42) €11 = €0 + Z—’z[n](LM)aHMH + néM)atJr Ma2 + -] and clearly

4 e’
Var(et\t+M) Var( €t|oo _1; (Z[ M)} )

2
Furthermore, for any m > M, %[n](LM) iypre1 + o0+ ng )Mater] is the revision from

S\t\t—i-M to S\t\t—‘,—m so that

Var(€yji4m) = Var(egoo) + Z—;’: ( i [n](_M)r) . (49)

Also, for m" > m

4

o m'—M
Var(€yje1m) = Var(egpin) + (r_l; ( 3 [nJ(M)} ) . (50)

j=m—M+1

Equations (49) and (50) are analogous to (46) and (47) which effectively used (42)
with M = 0 as a starting point. If MSEs for m < 0 are of interest, then after
computing the nJ(-M) from (48) we can use (49) and (50) to compute these MSEs for
any m > M.

An alternative way to calculate the weights n; that appear in (44)—(47) is to
expand ¢, (F)0s(F)05(B)/0(F)ps(B), the term within the [e], notation in equation
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(6) for the concurrent filter a(B), and then pick out the coefficients of F, F? ...
This would replace the intermediate calculation of ¢(F) followed by expansion of
c(F)/0(F). For another alternative, note that the general expression (5) for «(B)
can be written

1
i (E)r(B)1(B)(B)

= w(B) [af(B)y(B)] (51)

where a{>®)(B) = 0=27(F)m(B)ys(B) is the general expression for the symmetric sig-
nal extraction filter and (B) = 6(B)/p(B) = n(B)~*. Equation (51) shows n(F)
can be obtained by computing the symmetric filter () (B) and multiplying it by
Y (B) (and taking the terms in powers of F'). Pierce (1980, p. 99 and p. 104) and
Hillmer (1985, p. 62) do just this and obtain expressions analogous to some of (44)—
(47). Pierce obtains results on the MSE of revisions in signal extraction estimates
for general difference stationary models, including non-optimal signal extraction esti-
mates. Hillmer derives approximate expressions for signal extraction MSE based on
finite data. (The approximation comes from assuming approximately zero covariance
between the contribution to error from having no data before the first observation
and that from having no data after the last observation.) Letting the time point of
the first observation recede to —oo, Hillmer’s MSE result becomes exact and agrees
with (46).

o(B) = =(B) {

6 Example: Random Walk Trend Plus Error

Perhaps the simplest “trend plus error” model in common use assumes that Z; =
T; + e, where the trend T; follows the random walk model

(1— B)T; = b,

Here b; is white noise with variance o2, and e; is white noise with variance o2. Ap-
plying (1 — B) to Z; gives

(1-B)Z; =b,+ (1 — B)ey. (52)
The right hand side of (52) has variance o7 + 202, lag-1 autocovariance —c?, and all
other autocovariances zero. It is thus an MA(1) model and Z; follows the ARIMA(0,1,1)
model
where 6; and o = Var(a;) are determined to yield the same variance and lag-1

autocovariance for the right hand side of (53), i.e.,

(14 6%)0® = o} + 202
2

2 _
—010° = —o_.
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Notice from these two equations that

2 2
o} 9 207
ﬁ = (1 + 91) - o2
(1+067) — 26
(1—6y)% (54)

We now show how to calculate the optimal filter «(B) for estimating 7T; from
Zyy Zy 1, . ... Relative to our previous notation, we identify S; with 7; and N, with
e;. For simplicity of notation, we omit the superscript (m = 0) and subscript s from
a(B) and related quantities (d(B) and ¢(F')). We add this detail in later material as
needed.

We now identify

¢(B) = ¢s(B)=1-1B on(B) =1,
0(B) = 1-0,B, 0,(B) = 0,(B) = 1,
g(B) = @n(F)0,(F)0s(B) =1, (55)

h = max(q,p, + qs) = max(1,04+0) =1,
k max(ps, ¢s) = max(1,0) = 1.

Given these identifications, for this example (10) becomes
9(B) = 1

= (Cl - d091)F + (do - d191 - Cl) + dlB

The solution for ¢y, dy, d; can easily be found to be

cg = 0;/(1—6,),
do = 1/(1—061), (57)
d = 0.

We could alternatively have obtained this by solving the equations set up as in (13),
which for this example are

0 1 —6; 0 J 1 -6, 0 c1
g = 1 = —1 c1 + 1 —(91 [ do ‘| = -1 1 —01 do
0 0 0 1 ! 0 0 1 dy

Now from (12), (54), (57), and the identifications in (55), the desired filter o(B)
is



_ (1 . 01)21[1/(1 — 91)]

1-6,B
1-6
- 1-6,B
= (1-6)[1+6,B+6;B>+--]. (58)

(This result agrees with an expression given for this example by Pierce (1979, p.
1315) who also gave results for other values of m.) We see that T, = a(B)Z, is an ex-
ponentially weighted moving average of Z; (Box and Jenkins 1970). The exponential
weighting is obvious, and since the sum of the filter weights is

S = (L—O)[L 40y 462 -] =1 (59)

(58) produces an average of the current and past values of Z;.

The result (59) implies that the trend estimation filter o(B) reproduces constants,
which implies that the detrending filter a,,(B) = 1 — «(B) annihilates constants. The
latter result could also be seen by noting from (21) that o, (B) contains ¢,(B) = 1—B.

7 Example: Canonical Seasonal Adjustment with
the Airline Model

We now illustrate computation of asymmetric seasonal and nonseasonal signal ex-
traction filters when Z; follows the quarterly “airline model”

(1-B)(1-BYZ;=(1-0B)(1—0O©BYa,.

For more concrete illustration we shall use the values § = 4, © = 8, 0> = 1.
Letting S; and [V; denote the canonical seasonal and nonseasonal components from
thel decomposition approach of Burman (1980) and Tiao and Hillmer (1982), we
identify

¢(B) = (1-B)(1-B"=(1-B)*1+ B+ B*+ B?),

a(B) = (1-B=1-2B+B  ,(B)=(1+B+B*+ B,

9(B) = (1-6B)(1—-06B%).
Furthermore, the moving average operators in the models for S; and N; are of the
general form 6,(B) = 1 — 03B — 0,5B? — 0,3B% and 0,(B) = 1 — 0,,B — 0,,B?,
respectively. For the particular parameter values noted we computed the model
decomposition using the program SEATS (Maravall and Gomez 1997), getting

05(B) = 1—.0464B — .4959B* — .4578B>, o7 = .00482, (60)
0.(B) = 1-—1.3463B + .3788B% o2 = .8506.
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To set up the calculation of the concurrent filter a(B) for estimating S; we identify

h ==
k —_

max(q, pn + qs) = max(5,2 +3) = 5
max(ps, qs) = max(3,3) =3 .

The vector g = (¢_5,9 4,--.,93), where prime denotes transpose, is determined via

(9) by multiplying out

9B = 3 0 = e (P (D)
= J(1 — F)2(1 =04 F — 0oF? — 03F*) (1 — 0,18 — 0,,B* — 0,3B%)
yielding for the 65(B) given in (60)
g = (—.4578,.4409, .6951, .5758, —2.5079, .5758, .6951, .4409, — 4578)".

Note that since ps; < g5 and ¢ < p,, + ¢s, none of the g; are set to zero. The vector
(5, ¢4, €3, Co,¢1,do,dy,ds,ds) is determined by solving (14) with

100 0 0 T 0 0 07 [.32 0 0 0 7
11000 —® 60 0 0 ~8 32 0 0
11100 0 -6 00 0 0 —.8 32 0
11110 0 0 -© 60 0 0 -8 .32
Ai=|01111 Ay 9 0 0 -© ~4 0 0 -8
00111 1 -6 0 0 1 -4 0 0
00011 0 1 -6 0 0 1 -4 0
00001 0o 0 1 -0 0o 0 1 -4
L0000 O, Lo 0o o 1] Lo o o 1

The resulting (65, C4,C3,Co,Cq, do, dl: dg, dg)/ is

(—7.2827,18.2929, 1.7480, —1.6132, —12.7708, 21.3279, 20.2905, 13.0286, —.4578)’.

Given d(B) = dy + d, B + dyB* + d3B? we can expand (12) to compute a(B). The
.,Qqp) are

first eleven filter weights (o, g, . .

(.1028, —.0667, —.0567, —.0527, .1284, —.0371, —.0388, —.0395, .1037, —.0293, —.0309).

Figure 1, discussed shortly, shows the first 60 weights of this filter and, along with
Figure 2, filter weights for other values of m.

The concurrent signal extraction filter for estimating N; can be simply computed
as 1—a(B). As an alternative, and as a check on the above calculations, we computed
this filter directly using the same computer program that produced the above results,
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but with the roles of S; and N; reversed. Denote this filter a(B) (= «!9(B)), where
the tilde here and below denotes quantities analogous to those above but obtained
with the roles of S; and N, reversed. In this case (12) becomes

&(B) = Z—z x % (61)

where d(B) is obtained by solving the analogue to (14) for the filter for N;. For this
we identify

h = max(q,ps+ q¢,) = max(5,3+2) =5
k= max(p,,q,) = max(2,2) =2

and

9(B)

I
)
Sy
I
>
3
>
2
3
)
2
=

= 1+ F+F+F)(1—0,F —0,5F*)(1 —0,1B — 0,,B%)
which gives
g = (.3788,—1.4774,1.4785, —.3777, —.3777,1.4785, —1.4774, .3788)’.

Analogous to before, since p, < ¢, and ¢ < ps + ¢,, none of the g, are set to zero.

1 0 0 0 0 [ 0 0 ] [32 0 0

-2 1 0 0 0 —® 00 0 -8 32 0

1 -2 1 0 0 0 -6 00 0 —.8 .32

- 0 1 -2 1 0 ~ 0 0 -6 0 0 -—.8
A= g 0 1 22 1 =y 0 o |74 0 o
0 0 0 1 -2 1 -0 0 1 —4 0

0O 0 0 0 1 0 1 -0 0 1 -4

.0 0 0 0 0] 0 0 1] [0 0 1

Note that A, has the same entries as A, but it has one less row and column. Carrying

(.04126, —.10365, —.00990, .00914, .07236, 1.05474, —1.39825, .37878)’

and when (61) is expanded using this d(B), the resulting &(B) checks with 1 — «(B)
to within rounding error.

Figure 1 (m = 0,—1,—2,—4) and Figure 2 (m = 1,2,3,4) show the canonical
seasonal filter weights ocs,?) obtained from (20) for kK = m, ..., 60, for various values
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of m for this case where § = .4 and © = .8. The seasonal pattern of the filter weights
is evident, with positive weights occurring every 4 lags and compensating negative
weights occurring at lags in between. Also evident is the exponential decay of the
weights over years, the rate of the decay from year-to-year being governed by © = .8.
One other result worth noting is that for the concurrent (m = 0) filter the largest
weight occurs not at lag 0 (for the current observation) but rather at lag 4 (for the
observation one year ago). This is something of an artifact that occurs for the seasonal
filter. If we looked at the corresponding nonseasonal filter 1 — a(B) (the concurrent
seasonal adjustment filter), the largest weight by far would indeed be on the current
observation. Also, for all the positive values of m shown the largest weight in both
the seasonal and nonseasonal filters occurs at lag 0.

Figure 3 contains four graphs showing the signal extraction MSE for estimating
the airline model canonical seasonal component for values of m from —12 to +12.
Each of the four graphs show MSEs for one of four sets of values of the airline model
parameters (0,0): (.4,.4), (.4,.8), (.8,.4), and (.8,.8). For all cases 0> = 1. To
compute the MSEs we used equation (38) to compute 7. «(B) and the approach of
Section 3.1 to compute the polynomials ¢{™ (F), then expanded both terms on the
right hand side of (43) and added them together to get ve,(B). The MSE is the
coefficient of B® in ., (B). Figure 3 shows how the MSEs decrease as m increases
(more observed data lowers MSE) for the different sets of parameters. In all four cases
there is a seasonal pattern with the largest decreases in MSE occurring when adding
another observation for the same quarter as the one of interest (e.g., adding another
first quarter observation for estimating the first quarter seasonal in some year). The
overall magnitude of the MSEs is considerably smaller when © = .8 than when © = .4
— note the differences in the vertical scales of the graphs on the left versus those
on the right. This occurs because as © increases the canonical seasonal innovations
variance decreases, which leads to lower signal extraction MSE. (That increasing ©
decreases the canonical seasonal innovations variance follows by extending a result
of Hillmer and Tiao (1982, p. 67) to show that the airline model canonical seasonal
ACGF depends on © only through the multiplicative factor (1 — ©)%) For a given
value of © the MSEs are larger when 6 = .8 than when 6 = .4, though they also
decrease faster with increasing m when 6 = .8 (though this may appear so partly
because they are decreasing from larger values).

8 Appendix A: Proof that the matrix [A;|As] of
(14) is nonsingular

First we note that from (13), the matrix [A;|As] of (14) can generally be partitioned
as shown below. The row and column dimensions of the partitioned blocks are shown
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around the margins of the array.

GH 0 0 h — q
[A1]As] = Gai G2 Gas q+ps (62)
0 0 Gss k+1—p,

h—q q+ps k+1—ps

(In (62) and following we let 0 denote a matrix or vector of appropriate dimensions.)
If G11, Ga2, and Gz are nonsingular then [A;|As] in (62) is nonsingular. First note
from (13) that

1
—Ps1 1
Gu=| %2 —s1 (h —q) x (h—q),
. . . 1
B

is a lower triangular matrix with ones on the diagonal, so it is nonsingular. Similarly,

1 -0, —6
1 —01 .
Gigg = 1 (k+1—=ps) x (k+1—ps),
_91
1

is an upper triangular matrix with ones on the diagonal, so it is also nonsingular.
Furthermore,

1 | -4,
—Ps1 1 RN
: —Ps1 | :
Gu= | R S
—Ps,ps 3 —pq | 1 -6 : WS o)
~Ps.ps : ‘ 1
P —6,
- —Pspe | I |
q columns p, columns
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Below we state and prove a Lemma that we can use to prove that (G99 is nonsingular.

Before proceeding to the Lemma we clarify some special cases. First, if p; = 0
then G11 = Ij,_4, the h — ¢ dimensional identity matrix. Also the right half of G, in
(63) is omitted and in fact Gao = I, which is nonsingular. If ¢ = 0 then Gs3 = Ij41p,,
the left half of Gy in (63) is omitted, and Gag = I,,, which is nonsingular. Finally, if
h = g then the top block row of (62), [G11|0]0], is omitted from [A;|As], and we only
need show that Gy, and G33 are nonsingular. When h = ¢ the results just discussed
for G35 still apply, as does the Lemma below for Gos, so this case need not be treated
separately.

We state and prove our Lemma in a more general form and using more general
notation than actually needed for the application to GGyy of the particular form given
in (63). The notation used here is unique to this Lemma in that we reuse some
notational symbols (such as «) that appear earlier in the paper, but here they have
a different meaning.

Lemma: Let

alz) = ag+agr+ -+ o’

Blx) = fo+ izt + P’

be polynomials in z of degrees » > 0 and s > 0. Assume that «g, a,, 3y, and (G, are
all nonzero. Consider the (r + s) x (r + s) matrix [C}|Cs] where

" | B i
a1 Qo \ 51 Bo
€51 \ B
ol g : Do r+s
(Ch]Cs) = . . .
(878 : 03] ‘ ﬁs : ﬁl rows (64)
ar Do Bs :
| :
i a, | Bs |
s columns r columns

Assume that a(x) and (z) have no common zeros. Then [C;|Cs] is nonsingular.
Proof: Consider the homogeneous difference equation
a(B)B(B)z = 0. (65)

Let the zeros of a(z) be &, ..., &, with multiplicities p,. ..,y where gy + -+ +
fm = 7. Let the zeros of 3(z) be (i,...,(, with multiplicities v4, ..., 1, where
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1+ -+ v, =s. It is well-known (see Henrici 1974, pp. 584-587) that the space of
solutions to (65) has dimension 7+ s (the order of «(B)3(B)) and that the sequences
(defined for ¢ > 0)

u(t) = P&t =0, m—1 (=1,....m (66)
v(t) = ¥ j=0,...,u,—1 [L=1,....n (67)

provide a (linearly independent) basis for this space. Take the r sequences u;(t), .. .,
u,(t) given by (66), truncate each to r + s elements, and put each truncated sequence
into a vector. Label these vectors uy,...,u,. Similarly construct vectors vy, ..., v
corresponding to the first r + s elements of the s sequences v (t),...,vs(t) given by
(67). We note two facts about these vectors:

1. The w; and v; are constructed so that Cju; = 0 fori =1,...,r and Chv; =0
fori=1,...,s.
2. The r + s vectors uq, ..., u,,vy,...,vs are linearly independent.

We establish the second fact just noted by induction. Suppose that
a1y + -+ Gty + Q01+ Gty = 0 (68)

for some set of coefficients a;. Then we can show that the same linear combination
of the sequences from (66) and (67) is zero for all ¢ > 0. Equation (68) covers
0<t<r+s. Let t > 0 and assume the relation as in (68) holds up through t — 1.

We take the linear combination of u; (%), ..., vs(t) as in (68) and reexpress it using the
difference equation (65). Letting §(B) = 1—6;B—---—6""B™* = [apfo] ' (B)S(B)
we have

ayuy(t) + - 4+ apup(t) + apqv1(t) + -+ - + appsvs(t)
= a[bui(t—1)+ -+ 65t —r—s)|+---
+a, i s[010s(E — 1) 4+ -+ + 8y 5v5(t — 1 — 5)]
= Olayu(t—1) 4+ apsvs(t — )]+ - -
+orpslarui(t —r —8) + -+ + apysv5(t — r — 5)]
§1-0+4 -+ 84y 0
0

where the next to last line above follows from the induction hypothesis. Since the
u;(t) and v;(t) sequences are linearly independent the a;s must all be zero, which

shows that the vectors uq,...,u,,vq,...,vs are also linearly independent.
Now we define matrices U and V with columns given by the vectors uq, ..., u,,
and vq,...,vs
U=lu|...|u] V=[v]...|vg).
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The first fact noted above for the vectors uy,...,u., v1,...,vs shows that C1U = 0
and C,V = 0. Let S(C}) denote the linear subspace of R"** spanned by the columns
of C}, and similarly for S(Cy), S(U), and S(V). Let S(C;)* denote the orthogonal
complement of S(C;) and S(C5)* that of S(Cs). Since C; has full rank s, S(Cy)* has
rank r. Since uy, ..., u, are all orthogonal to C; (Cju; = 0) they are all in S(Cy)*,
and since they are linearly independent they span S(C))*, i.e., S(Cy)*+ = S(U).
Similarly, S(Cy)t = S(V).

Now we can show that [C|C5] has full row rank and thus is nonsingular. Suppose
that

d'[C1]Cy) =0

for some (r+s) x 1 vector d. Then d € S(C;)* = S(U) and also d € S(Cy)*+ = S(V).
This implies that d = Ub; for some vector b; and that also d = Vb, for some vector
by. But then

0=d—d=Ub; —Vby

and by the linear independence of the columns of [U|V] this implies that b; = 0
and by = 0, which implies that d = 0. Hence, [C}|C5] has full row rank and thus is
nonsingular. This proves the Lemma.

To complete the proof that the matrix [A;|As] of (14) is nonsingular note that we
assume @, , # 0 and 0, # 0 (otherwise the actual orders of the operators ¢4(B) and
0(B) would be less than p, and g, respectively). Thus, the matrix [A;|As] is of the
form required by the Lemma. Hence, [A;|A,] is nonsingular if

os(z) = 1—pax—- - —pspa and
Blx) = —0,— 0,10 — - — 027" + 21

have no common zeros. Note that 8(z) = 290(z1). The zeros of ¢,(z) are assumed
to lie on or outside the unit circle. The zeros of 0(x) are assumed to lie outside
the unit circle, which implies that those of 3(z) = 2%0(z~!) lie inside the unit circle.
Hence, ¢;(x) and (3(z) have no common zeros and the Lemma establishes that [A; | As]
of (14) is nonsingular.
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the presentation.
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Figure 1. Canonical Seasonal Filter Weights for m = 0, -1, -2, and -4
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