
RESEARCH REPORT SERIES
(Statistics #2002-02)

 Extending the Fellegi-Holt Model of
 Statistical Data Editing

 William E. Winkler and Bor-Chung Chen

Statistical Research Division
U.S. Bureau of the Census
Washington D.C. 20233

Report Issued: February 1, 2002

Disclaimer: This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone
a Census Bureau review more limited in scope than that given to official Census Bureau publications. This paper is
released to inform interested parties of ongoing research and to encourage discussion of work in progress.

Extending the Fellegi-Holt Model of Statistical Data Editing

William E. Winkler* and Bor-Chung Chen 1/
Bureau of the Census, Washington, DC 20233-9100

william.e.winkler@census.gov (2001.09.29)

ABSTRACT

This paper provides extensions to the theory and the computational aspects of the Fellegi-Holt
Model of Editing (JASA 1976). If implicit edits can be generated prior to editing, then error
localization (finding the minimum number of fields to impute) can be quite rapid. In some
situations, not all of the implicit edits can be generated because of the great number (> 10^30) of
distinct edit patterns. The ideas in this paper are intended to determine
more rapidly the approximate minimal number of fields to change in situations where not all
implicit edits can be generated prior to editing. As a special case, the formal validity of
Bankier’s Nearest-Neighbour Imputation Method (NIM) is demonstrated.

Keywords: set-covering; integer programming; error localization

1. INTRODUCTION
 Statistical data editing (SDE) are those methods that can be used to edit (i.e., clean-up) and
impute (fill-in) missing or contradictory data. The result of SDE is data that can be used for
intended analytic purposes. These include primary purposes such as estimation of totals and
subtotals for publications that are free of self-contradictory information. The published totals do
not contradict published totals in other sources. Self-contradictory information might include
groups of items that do not add to desired subtotals or totals for subgroups that exceed a known
proportion of the total for the entire group. The uses of the data after SDE might be preparation
of variances of estimates for a number of sub-domains and micro-data analyses. If only a few
published totals need to be accurate, then an efficient use of resources may be to perform
detailed edits on only a few records that effect the estimated totals. If many analyses need to be
performed on a large number of sub-domains or if the full set of accurate micro-data are needed,
then a very large number of edits, follow-up, and corrections may be needed.
 Fellegi and Holt (1976, hereafter FH) provided a seminal model for SDE. Their methods have
the virtues that, in one pass through the data, an edit-failing record can be assured to satisfy all
edits and that the logical consistency of the entire set of edits can be checked prior to the receipt
of data. The implementations of the system have had additional advantages over traditional if-
then-else rule edit systems because edits reside in easily modified tables and computer code
needs no modification. FH had three goals that we paraphrase:

 1. The data in each record should be made to satisfy all edits by changing the fewest possible
variables (fields).
 2. Imputation rules should derive automatically from edit rules.
 3. When imputation is necessary, it should maintain the joint distribution of variables.

 Fellegi and Holt were the first to demonstrate precisely what information was needed for
correcting a record. By correcting, we mean changing (or filling in) values of fields so that a
record satisfies all of the edits. Prior to FH, individuals were unable to account for edits that did
not fail with a edit-failing record and that would fail after values in fields were changed so that
the initially failing edits would no longer fail. In addition to (explicit) edits that are originally
defined, FH showed that precise knowledge of implicit edits was needed. Implicit edits are those
that can be logically derived from explicit edits. FH (Theorem 1) proved that implicit edits are
needed for solving the problem of goal 1. Goal 1 is referred as the error localization (EL)
problem. FH provided an inductive, existence-type proof to their Theorem 1. Their solution,
however, did not deal with many of the practical computational aspects of the problem that, in
the case of discrete data, were considered by Garfinkel, Kunnathur, and Liepins (1986, hereafter
GKL), Winkler (1995, 1997), and Chen (1998). Because the error localization problem is NP-
complete (GKL), reducing computation is the most important aspect in implementing a FH-
based edit system.
 The main purpose of this paper is to provide a method for EL when most, but not all, implicit
edits are generated prior to editing. The algorithms are much faster than the direct integer
programming methods for EL that do not use implicit edits that have been computed a priori.
The speed increase is because the direct integer programming methods implicitly generate
implicit edits during EL. Many implicit edits are repeatedly computed. To demonstrate our
results, we build on ideas that are in or can be deduced from FH, GKL, Winkler (1997) and Chen
(1998). Each of the previous papers had technical lemmas that showed how the number of
computational paths could be reduced. We provide a number of technical lemmas that further
reduce the number of computational paths.
 Many statistical agencies have chosen to concentrate on traditional methods. These traditional
methods include if-then-else rules for detecting contradictory information and various ways of
imputing values of variables to replace the contradictory values. The dilemma with if-then-else
rules is that they may not be straightforward to develop and may be difficult to write into
computer code. If there are slight changes in the survey form and edit rules, then subsets of
thousands of lines of code may need to be rewritten and debugged. The reason that FH methods
are so appealing is that most of the if-then-else types of edits can be put in tables that are
straightforward to modify and update. Because the source code does not need any updating, it is
possible to create a FH system for editing that can be developed and maintained for different
surveys by non-programmers such as subject matter specialists, statisticians, and economists.
 This paper is divided into a number of sections. The second section gives background,
notation, and describes some of the limitations and strengths of previous approaches. It provides
an example and several insights that serve as the motivation for the approach that we have
adopted. The third section provides extensive theory and computational methods that are
engendered by the theory. In the fourth section, we provide some discussion. The final section
consists of concluding remarks.

2. BACKGROUND AND PREVIOUS WORK
 This paper only considers FH methods as they apply to discrete data. Extensions to situations
for numeric data or combinations of discrete and numeric data are straightforward.

2.1. Elementary background and motivating example

 The fields (variables) associated with a survey-data collection might be age, sex, marital status,
and relationship to head of household. A field such as sex might take the values ‘M’, ‘F’, or ‘b’,
representing male, female, or blank. In the computer, we might represent them by ‘1’, ‘2’, and ‘-
1’, respectively. A field such as marital status might take five different values and the field age
might take 115 different values. A record is said to fail an edit if it satisfies the constraints
imposed by the edit. If an edit places restrictions on the values a field can assume, then the field
is said to be an entering field of the edit. In this paper, we only consider edits that have two or
more entering fields. A record passes an edit if it does not fail the edit.
 FH define an edit as a set of points in the product space determined by the fields that are to be
edited. We consider the following three edits: E1 = {age ≤ 15, married , . }, E2 = {.
,not married , spouse}, and E3 = {age ≤ 15, . , spouse}. The three fields that we
consider are age, marital status, and relationship to head of household. In edit E1 , age and
marital status are entering fields. Edit E1 places no restriction on relationship to head of
household (the third field). In practice subject matter specialists with expertise in a given survey
define the edits. The relationship E1 & E2 => E3 means that edit E3 can be logically derived from
edits E1 and E2. In other words, if edit E3 fails, then necessarily edit E1 or edit E2 fails. A non-
redundant set of edits defined prior to editing are referred to as explicit edits. Edits that can be
derived from explicit edits are called implicit edits.
 Let r = { age ≤ 15, married, spouse }. Then record r fails edits E1 and E3 . If we only change
the marital status field, then record r will now fail edit E2. Prior to the work on FH, individuals
knew that at least one value of an entering field in each failing explicit edit needed to be changed
in order for a record to satisfy (not fail) all edits. However, when only fields that associated
with failing explicit edits were changed, the changed record would now fail explicit edits that it
did not fail originally. What FH showed (1976, Theorem 1) that all of the implicit edits are also
needed for correcting a record. In other words, the implicit edits contain information about edits
that do not fail with the original record but may fail after values in certain fields are changed. By
correcting, we mean changing values in entering fields associated with failing (explicit and
implicit) edits. The implication of the FH theory is that we must change at least one entering
field in edits E1 and E3. It does not matter which fields are changed.

2.2. Background on FH Theory and previous approaches
 The paper of Fellegi and Holt is seminal because it demonstrated that the implicit edits are
needed for the error-localization problem (i.e., finding the minimum number of fields to impute).
FH further showed that the logical consistency of edit system could be checked using the logical
restraints imposed by the edits. With non-FH edit systems containing many if-then-else rules,
the logical consistency is often checked via test decks. If the test decks are not appropriate, then
it may not be possible that combinations of edits are mutually contradictory. During production
editing, the systems can often fail. They fail because additional records may contain error
patterns that are in contradiction to the logic in the existing system. In some situations, if the set
of edit rules are inconsistent (i.e., mutually contradictory), then special ad hoc loops may be
added to code. The special loops can be very difficult to develop.
 Statistical agencies have been slow to implement FH systems because of the types of
Operations Research (OR) methods that are needed to implement it. With a pure FH system,
there are two components: (1) integer programming algorithms in the main edit program and (2)
set covering algorithms in implicit edit-generation software.

 If implicit edits are generated, then standard branch-and-bound integer programs are very fast
for the main edit program (Barcaroli and Ventura, 1997, 1993; Winkler 1995). Winkler (1995)
introduced a greedy heuristic that is more than 100 times as fast as branch-and-bound for error-
localization. If the complete set of implicit edits is available prior to editing, then the speed of
the main edit program is no longer an issue. The heuristic algorithm processes on the order of
1000 records per second.
 Although implicit edit-generation software can be run prior to the receipt of survey data, it still
needs to run in a suitable amount of time (say, less than 24 hours). With modest size surveys,
successful edit-generation algorithms have been implemented by IBM and ISTAT (see e.g.,
Barcaroli and Ventura, 1997, 1993) and Winkler (1995). With very large surveys such as the
Italian Labour Force Survey (Barcaroli and Ventura, 1997, 1993; Winkler 1997) the amount of
computation can be prohibitive. The size of the product space of possible records is enormous
(4.6 × 10^79) and there is a large number of edit patterns (points) associated with the edits
(>>10^30). Using subsets of the Italian Labour Force Survey, Winkler (1997) extrapolated that
the IBM-ISTAT algorithms would have taken at least 800 days on the largest IBM mainframe.
By having the edit-generation algorithms learn from the beginning part of the computation,
Winkler (1997) and Chen (1998) developed algorithms that take less than 24 hours on the same
data set. The algorithms, however, are incomplete because they cannot deal effectively with
complicated skip patterns. Winkler (1997) and Chen (1998) estimate that the algorithms
generate at least 90 percent of the implicit edits for the Italian Labour Force Survey.
 Because of the difficulty in generating implicit edits prior to editing, various methods have
been developed for solving the error-localization problem directly without using implicit edits.
All of the methods limit the time spent on an individual record by putting upper bounds on the
amount of time for the computation or bounds on the size of certain data structures. The
remaining records that exceed bounds are then given to analysts for clerical review and
correction. These methods can be unsatisfactory if suitable clerical resources are not available.
In a dramatic comparison, Garcia and Thompson (2000) showed that a group of ten analysts took
six months to review and correct a moderate size survey that had complicated edit patterns. An
FH method needed only 24 hours to edit/impute the survey and changed 1/3 as many fields as the
clerical review.
 There are three error-localization methods. The first and slowest method is to use direct integer
programming methods such as branch-and-bound. The method can require on the order of 10
minutes per record. The second method employs variants of a cardinality constrained
Chernikova algorithm (Rubin 1975, Schopiu-Kratina and Kovar 1989, Filion and Schopiu-
Kratina 1993). The method is used in the GEIS system of Statistics Canada (in C, 1 second per
record), in the CherryPi system of Statistics Netherlands (in Pascal, 2 seconds per record), and in
the AGGIES system of the National Agriculture Statistical Service (SAS, more than one minute
per record). Because the methods are somewhat slow, Statistics Netherlands (De Waal 2000)
developed the LEO system that employs variants of the Fourier-Motzkin elimination method (in
Pascal, at least 10 records per second). None of these methods or systems can deal, however,
with large surveys having millions of records. For instance, with the U.S. Census of
Manufactures, 4 percent of 2.5 million records (100,000) have edit records with failures. This
large number of records drastically exceeds the capability of the aforementioned systems. It is
not possible to clerically edit 100,000 records. Since most of the 100,000 are associated with
small firms (companies), it seems reasonable to attain an FH system that could edit/impute all of
the records automatically. Only the records associated with the largest companies would be

clerically reviewed as an additional step of the editing. For the U.S. Decennial Census, there are
300 million records (see e.g., Chen, Winkler, and Hemmig 2000).
 In this paper, we demonstrate how all of the records can be error-localized when not all of the
implicit edits can be generated a priori. Chen (1998) and Winkler (1997) have shown that, if
most of the implicit edits are generated prior to editing, then virtually all of the records can be
properly error-localized. The methods of this paper provide a means of error-localization for a
small proportion of remaining records that cannot be properly corrected due to an incomplete set
of implicit edits. The methods are far faster than those based on Chernikova algorithms or
Fourier-Motzkin Elimination.

2.3 Bankier’s Nearest-Neighbor Imputation Method
 Bankier (1991, see also 1997, 2000) introduced a successful method on using (hot-deck) donor
imputation that has been used for the 1996 and 2001 Canadian Censuses and will be used for the
2006 Canadian Census. As with other donor imputation systems, the method is dependent on
having a large population of high quality donors. Before describing NIM, we describe how a
corresponding FH edit system that uses hot-deck imputation would work. The FH edit system
would determine the minimum number of fields to change. A priori matching rules would be
developed to select hot-deck donors from the set of records that satisfy all edits. If there are
suitable donors, then imputed fields from the hot-deck donors will maintain the univariate
distributions of the respondents. Two difficulties are associated with systems (either FH or if-
then-else) that use hot-deck imputation. The first is that the matching rules may not be as good
as they can be. This has been noted as a problem in the 1990 U.S. Decennial Census, the 1991
Canadian Census, and the 1991 British Census. The second is that there may not be enough
suitable donors. The second problem is often not as serious in a census as it is in a smaller
survey.
 Bankier’s NIM proceeds primarily by using donors. Each edit-failing record is matched with a
large subset (say 2,000) of records that satisfy all of the edits. The ones, say 40, that have the
smallest deviations in terms of the number of fields differing from the edit failing record are
retained. If the same edit-failing record were considered by the Fellegi-Holt method and a donor
was found that was in the 2,000 records that were searched as potential donors, then NIM could
necessarily get the same donor substitution as the FH method. Even if it did not have the exact
same donor, it would get a solution that was optimal in terms of the weighted, minimal number
of fields to impute. NIM has an effective heuristic that allows it to deal with numeric data. Age
(because of the number of values it assumes) can be considered numeric. NIM has further
heuristics that work somewhat as follows. Each of the 40 edit-passing records differs from the
edit-failing record on a set of fields. Fast heuristics look at subsets
to determine if the record resulting from changing the values in the subset satisfy all edits. From
the 40, the five best (in terms of weighted minimal number of fields changed) are selected. One
of the five is randomly selected as the donor for the hot-deck imputation.
 There are two crucial advantages for a NIM system. The first is that all of the imputed records
satisfy all of the edits. The second is that it finds the best matching rules automatically. From
the standpoint of this paper, there is another crucial insight. By considering the set of fields in a
donor record that differ from the edit-failing record, it is possible to efficiently fill-in (determine
the subset of fields to change) a record. The potential value states are always two. Either leave
the value in a field to its value in the original edit-failing record or change it to the value in the
potential donor record. In the main part of this paper, we give lemmas that characterize and

generalize ideas from NIM. The lemmas yield fast algorithms for filling in a record in situations
where not all of the implicit edits can be generated. If some of implicit edits are not present, then
a cover of the entering fields in the failed edits may not yield a set of fields to change that yields
an edit-passing record. By a cover, we mean a set of fields that enter every failing edit. The
lemmas give a quick way of determining additional fields that are needed for error-localization.
In the context of this paper (as it was in Theorem 1 of FH), error-localization is determining a
set of fields that can be changed so that a record satisfies all edits. In some contexts, error-
localization also means determining a minimum number.

2.4. Notation, additional background and technical lemmas
 A record r=(y1,...,yn) in a computer file can have n fields subject to edits. For discrete edits, y
takes values in Π Zn, the product space of integers. Each field yi, i=1,...,n, corresponds to a
variable that is coded. For instance, y1 might take values 1=male and 2=female. y2 might take
values 1=single, 2=divorced, and 3=married. y3 might correspond to age and take values 0 thru
99 or 1 thru 99. We set Rn equal to the set of values that field yn can assume and D = Π Rn. For
convenience, we always assume that values in a Rn take values 1 thru kn where the kn integers are
recodes of the kn value states associated with field yn. An edit E is a point set P(E) ⊆ D. A
record r fails E is y ∈P(E). FH showed that an arbitrary edit E can be expressed as a union of
edits Ei of a particular form. Each Ei can be expressed as Π Ein where Ein is the set of values
assumed by the nth component of the points yn in edit Ei. This form of Ei is called the normal
form. If Ein is a proper subset of Rn, then field n is said to enter edit Ei and edit Ei is involved
with field n. Entering fields of an edit E are those fields that are restricted by the edit E. If E =
{E1, E2 ,…, Em }, then use P(E) to denote the union ∪ { P(Ei): Ei ∈ E}.
 If r0 ∈ P(E) for some set of edits E, then the EL problem is to find (or possibly minimize)
∑ j ∈ J cj xj subject to

 y in D - P(E)

and

 xj = 1 if yj = yj

0 (2.1)
 = 0 otherwise,

where j = 1, …, m. The coefficient cj in the above sum is a confidence weight. In some
situations, all of the cj are set to one. The vector x = (x1,…,xm) tracks the specific fields in the
original record r0 = (y1

0,...,yn
0) that are changed. If cj is large, then the field j is much more

unlikely to contain an error. The relative values of cj are either decided by analysts who are
familiar with the editing of the survey or using empirical data from prior editing.
 We now make two restrictions that can be made without loss of generality in terms of the
theory and practical application in software. The first is that every edit Ei has at least two
entering fields. Let an edit Ei had only one entering field, say j. Then field j would have at least
one value-state that would always result in an error regardless of the values that other fields
assumed. For instance, if the jth field consisted of a postal code corresponding to a U.S. State,
then we would not consider any such codes that assumed invalid values. Such single-field edits
are best dealt with by lookup tables associated with pre-edits in the keypunch software. Thus,
while State codes can take any value, we restrict the State codes passed to the edit system of this

paper to valid ones. These valid State codes may still be used in multi-field edits because
different combinations of edits may be associated with different edits in, say, different States of a
national agricultural survey. Our second restriction is that, for each n, Rn = ∪ {E ∈ Eo | ≠ Rn}
where Eo is the original set of explicit edits defined by analysts. If the union were a proper
subset of Rn for some n, then any record y with a component yn in Rn but not in the union would
necessarily pass all edits. The first restriction means that we only consider value-states of fields
that enter at least one edit. The second that there are no value-states of individual fields that do
not enter at least one field in one edit. In practice, these restrictions could easily be checked via
straightforward combinatorial routines. This would alleviate tedious, possibly error-prone
checking by analysts. The restrictions facilitate our theoretical development but do not affect
software development.
 The following lemma of FH is the basis of generating edits in the normal form. For the
remainder of the paper, we will only consider edits in the normal form because any system of
discrete edits can equivalently be expressed in normal form. FH proved (1976, Theorem 2) that
all of the implicit edits can be generated by successive application of the generation procedure
given in Lemma 1.

Lemma 1. Let S = {Ej, j =1,..., k} be an arbitrary set of normal form edits such that for some
field l, Ejl is a proper subset of Rj. Let E* be the edit defined by:

 E*i = ∩ Eji for i ≠ l (2.2a)
 j

 E*l = ∪ Ejl (2.2b)
 j

If E*i ≠ ∅ for i ≠ l, then E* is an implied edit in the normal form.
 If a record r fails an implied edit E* of the form given in Lemma 1, then r necessarily fails one
of the edits used in generating E*. The set S is called the contributing set of edits used in
generating edit E*. Field l is called the generating field or node of E*. Field l necessarily enters
each edit involved in the generation procedure of the lemma. If E*l = Rl then edit E* is called
essentially new. In the partial ordering of set inclusion, a normal-form edit is said to be maximal
if it is properly included in no other normal-form edit. A normal form edit is redundant if it is
properly included in another normal-form edit. The set of explicit edits plus the set of maximal,
normal-form implicit edits is called the complete set of edits. The set of original explicit edits is
denoted by Eo and the set of complete edits is denoted by Ec. FH had originally defined the set of
complete edits as the explicit edits plus the set of essentially new, normal-form edits. GKL noted
that the proof of FH for the error-localization problem holds for the complete set as defined in
this paper. Our definition of complete is the one due to GKL rather than the one due to FH. A
set of edits is consistent if there is at least one record that fails no edit. The set of edits used in
generating an implied edit will be called its generating set. Generating sets are not unique.
 Let r0 in P(E). Then consider the set-covering problem (SCP):

 minimize ∑ j ∈ J cj xj (2.3)

 subject to ∑ j ∈ J aij xj ≥ 1, Ei in EF(r0)

 where

 aij = 1 if field j enters Ei
 = 0 otherwise

and EF(r0) is the set of edits that are failed by r0. FH showed that the solution to (2.3) is the
same as the solution to (2.1) provided the set E of edits is a complete set of edits.
 In this paper, we are concerned with performing EL when the set of edit E is incomplete. Two
approaches might be taken. The first is to use a heuristic to quickly determine additional fields
that might be changed. Within the first approach, there are two variants. In the first variant,
exemplified by NIM, the donor record yields a superset J* of the set of fields that must be
changed. In the second variant, we identify a preliminary set of fields J to change (based on an
incomplete set of edits E. The preliminary set is also extended to a superset J* that must be
changed. In each of the variants, a subset is then identified that represents the actual fields to
change. In the second approach, additional implicit edits are located during the course of EL.
There are two variants. In this paper, we use a method that utilizes information obtained during
the edit-generation process (e.g., Winkler 1997, Chen 1998) and new ideas of this paper. In the
variant due to GKL, a cutting plane algorithm (called GKL Algorithm 2) is used to identify all
the failing edits during EL. Because Algorithm 2 gives significant insights into some of the
information needed for reducing computation, we state it.

 GKL Algorithm 2

1. Solve the SCP (2.3) and denote the solution x*.
2. Let J = {j | xj* = 1}. Fix the values of rj for j ∉J at rj0, but for every j in J, let rj assume

each of the values of Rj. Test each of the Π j ∈ J | Rj | possible records y so defined for
membership in D – P(E) where E is the existing set of explicit and implicit edits. If no
such record is found, x* specifies a solution to (2.1). Otherwise, go to Step 3.

3. Find any prime cover v0 to

 vQ ≥ 1 (2.4)

 v binary

 where Q = (qik) and

 qik = 1 if Ei is failed by the kth record y of Step 2
 = 0 otherwise.

 Let I0 = {i | vi

0 = 1}.

 4. Generate the implied edit E0 given by

 E0j = ∩ {E ij i ∈ I0 } , j ∈ J (2.5)
 = Rj, j ∉ J.

 Let EF(r0) = EF(r0) ∪ {E0}. Go to Step 1.

 GKL Algorithm 2 gives a way of finding all of the additional failing edits of the form E0 for a
record r0. Additionally, if we take any entering field i0 in E0, we can iteratively expand the initial
cover J to J1 = J ∪ {i0}. At the completion of the iteration process, we have a prime cover of the
failing edits for record r0. As noted by GKL, the excessive number Π j ∈ J | Rj | of patterns of
Step 2 typically make this procedure computationally intractable except in very small situations.
Our alternative to GKL Algorithm 2 will alleviate much of the excessive computation by making
use of much more of the information available from the edit-generation process of creating an
incomplete set of edits.
 To further prepare for the theoretical results of this paper, we need to state and explain a
number of technical lemmas. Each of the technical lemmas can be deduced from ideas in FH or
GKL. The technical lemmas are important because they give key insights into how
computational can be reduced. The first technical lemma is just a restatement of the comments
following GKL Algorithm 2.

Lemma T1. Let J be a prime cover of an incomplete set of failing edits EF(r0) for record r0.
Then, J can be expanded to a prime cover J* = J ∪ {f1, …, fn} that is a prime cover of all the
failing edits for r0.

Our goal in this paper is to find computationally tractable methods of expanding an incomplete
set of edits and to quickly find prime covers for all of the failing edits for all of the records r ∈ R.
The following technical lemma can be deduced from ideas in FH or in GKL.

Lemma T2. Let E be a complete set of edits. Let r0 be an edit-failing record. Then E gives
information about non-failing explicit edits for r0 that might fail after fields in r0 are changed.

The following technical lemma can be deduced from Theorem 1 of FH.

Lemma T3. Let E be a complete set of edits. Let r0 be an edit-failing record. Let J be a prime
cover of the edits in E that are failed by r0. Let E0 be an explicit edit that does not fail for record
r0 that has all of its entering fields I0 ⊆ J. Then, there exist values of the fields I0 so that the
record r1 that differs from r0 by the changed values in the fields of I0 satisfied all of the edits in E.

The following technical lemma can be deduced from Theorem 1 of FH or more specifically and
easily from GKL Algorithm 2. It can be considered a variant of Lemma T3.

Lemma T4. Let E be a complete set of edits. Let r0 be an edit-failing record. Let J be a prime
cover of the edits in E that are failed by r0. Let E0 be an explicit edit that does not fail for record
r0. Let I0 be the set of entering fields that are in J. Then the fields in I0 must be changed into a
subset of the values that they can assume. If all of the records r1 that can be obtained from r0 by
these changes in the fields of I0 fail, then edit E0 necessarily has one entering field f1 that is not in
J.

 Technical lemmas T1-T4 will provide us with key insight in the following sections. Let J be a
prime cover of the set of edits in incomplete set E that fail for record r0. We intend to show that
J can be extended to a prime cover J* of the set of all edits that fail for r0. Part of our
development will involve demonstrating how explicit edits that do not originally fail for record r0
can fail as fields in the cover J are changed. Further elementary motivation and insights are
given in section 3.1.

3. THEORY
 This section contains theory and explanations that are intended to make the understanding of
the computational algorithms as straightforward as possible. In the first section, we cover
background on how the failing explicit and implicit edits are used to determine the exact set of
fields that must be changed in an edit-failing record r. Furthermore, we show how record r is
filled in. By fill in, we mean how new values are imputed into fields in r so that record r will no
longer fail any of the explicit edits. Let the set of explicit and implicit edits E be incomplete. If r
is a record that fails an implicit edit that is not in E, then we indicate what can go wrong as the
record is filled in. In the second section, we provide a detailed characterization of how
contradictory conditions occur when a cover J* of the failing edits of a record r does not cover a
field in a failing implicit edit that is not in E. We show how to quickly determine additional
fields J1* such that changing values in fields of J* ∪ J1* yields a record r’ that satisfies all of the
explicit edits. In the third section, we provide the main theorem that additionally shows, for any
set R of records, how to quickly generate missing implicit edits “on-the-fly.” In the fourth
section, we show that the Nearest Neighbor Imputation Method (Bankier 1991, also 1997, 2000)
can be considered a special case of the theoretical results of this paper. Because the main
theorem and the computational methods represent an extension of existing FH theory, NIM is
consistent with the FH Theory.

3.1. Basic Theoretical Background
 FH theory gives that any prime cover J*of the entering fields of the complete set E of failing
explicit and implicit edits can lead to a record r’ that satisfies all edits. The record r’ differs from
the original record r only for the values in the fields in the cover J*. A cover is prime if no
subset of J* is also a cover. Any prime cover J* of the failing explicit and implicit edits is said to
be an error-localization (EL) solution. It satisfies the conditions (2.3) and (2.1)
 Let S* be all fields that are not in J*. Start with values fixed in each field in S*. Let f1, f2, …,
fn be the fields in J*. The record r can be filled in by successively finding values for each field
fk in J* such that the existing record with values fixed for all fields in S* and for fields f1, …, fk
satisfies all explicit and implicit edits that have entering fields in S* c {f 1, …, fk}.
 FH theory assures that we can find the values of fields f1, …, fk that can be used in successively
filling in a record. We say that a value for a field is assigned if the value is fixed. With a
complete set E of explicit and implicit edits, finding a cover J* and filling a record in is
straightforward. If a record has values assigned in fields in S* c {f 1, …, fk}, we need to find a
value for field fk+1. The fields {f1, …, fn} = J* are the prime cover of the failing explicit and
implicit edits. We consider all explicit and implicit edits E1, …, En that have one entering field
fk+1 and the rest of its entering fields in S* c {f 1, …, fk}. By FH theory, the complement of the
unions of the set of values for entering fields fk+1 in edits E1, …, En must not be the empty set.
We can choose any value for fk+1 that is in the intersection of these complement sets of values for
field fk+1 that is determined by edits E1, …, En.

 By FH theory, any prime cover J* of the entering fields in a complete set E of failing explicit
and implicit edits gives a proper set of starting values S* that is the set of fields that are
complementary to J*. A set of starting values is called proper if the remaining fields in a record
can be filled in so that the record satisfies all edits. Let record r ∈ R fail an incomplete set E of
explicit and implicit edits. Let J* be a cover of the entering fields in the failing edits. Let S* be
a proper set of starting values (i.e., a subset of the complement of J*). Finding a proper set of
starting values S* is more important than finding J*. Any subset of a proper set of starting
values is also a proper set of starting values.
 Let the record r ∈ R fail a set of explicit and implicit edits EF (r). FH theory implicitly gives
information about potentially failing explicit edits. A potentially failing edit (explicit or implicit)
is one that can fail in some situations when an entering field in an initially failing explicit or
implicit edit is changed. Note that a potentially failing record does not fail initially. Assume that
one field in a record is changed and a potentially failing edit now fails. Take a second entering
field from the originally potentially failing edit and change the value for the record for the
second field so that the values are not in the set of values of the second entering field. Then, the
record will necessarily pass edits. This idea follows from Lemma T4.
 We build intuition with the simplest situation. Let r ∈ R be a record that has four fields.
Assume that each field has two entering values. Let explicit edit E1 have entering fields f1 and f2.
Let explicit edit E2 have entering fields f2 and f3. Assume that implicit edit I1 is generated from
E1 and E2 using field f2. Let record r fail edits E2 and I1. Assume that the value in entering field
f1 for record r agrees with the value in the entering field for edit E1. Assume that we only have
explicit edits E1 and E2. Implicit edit I1 is not available. Let J* = {f2} be the cover of failing edit
E2 and S* = {f1, f3, f4}. Change the value in field f2. Then edit E1 fails.
 The previous example can be extended to any situation where there is a missing implicit edit.
That is, if an implicit edit is missing from a cover, then a field in a cover of the existing,
incomplete set of explicit and implicit may be changed in a manner that causes a potentially
failing explicit edit Ek to fail. If one of the fields in the missing implicit edit that agrees with
another field in the potentially failing edit I2 is also changed, then the edit Ek will not fail. Note
that if a set of values is assigned (based on the initial set S* and the subset of values in fields in
J* that have been changed) and if an implicit edit fails, then an explicit edit with entering fields
in the set of assigned values will necessarily fail.
 Let J* be a cover of a set E of failing explicit and first-level implicit edits. Let Ek be non-
failing explicit edits that have exactly one entering field fk agreeing with a field in J* and that
fails when the value for field fk in J* is changed. Necessarily the value placed in J* must be in
the intersection of the complements of the set of values for the entering field fk in originally
failing explicit and first-level implicit edits. Let fl be another entering field in Ek. Let I* be the
complementary fields in all such non-failing explicit edits that fail after a field from J* is
changed. Let S1* be the complement of the fields in J* c I*. Then S1* is a proper set of starting
values. S1* may not be a maximal set of starting values. A proper set of starting values is
maximal if no superset of it is proper.
 Assume that an incomplete set of explicit and implicit edits exists. For the remainder of this
paper, we assume that, at a minimum, the set of implicit edits must include all first-level implicit
edits. There are several different ways in which error localization could be performed in the
main edit program. First, if the set of incomplete edits is assumed to be nearly complete, then it
may be best to take a cover J* of the failing edits in the incomplete set and fail to fill-in a record.
It may be sufficient to find additional fields that need to be added to the set of fields in J*.

Second, it may be best to immediately look for fields I* to add to cover J* prior to doing error
localization. Third, if J* is missing a moderate number of implicit edits, then it may be better to
generate additional implicit edits based on the existing set of failing edits. The generation would
be an efficient hybrid of the GKL algorithm 2 that targets only one field at a time. Suitable test
decks may be good for finding additional implicit edits prior to running the main edit program.

3.2. Fundamental Characterizations
 We begin by examining the simplest situations in order to build intuition. We assume that each
field only assumes two values, that each edit only contains two entering fields, and that no skip
patterns exist. The extensions to where each field assumes more than two values are
straightforward (see e.g., Winkler 1997). The extensions to more than two entering fields in an
edit are cumbersome and tedious (see Appendix). The extensions to when there are skip
patterns are cumbersome and non-trivial (see Appendix).
 Assume that the edit scenario involves records having n fields. The only implicit edits that we
consider are maximal implicit edits (as in Winkler 1997 or Chen 1998). An edit is a maximal
implicit edit if it is implicit and it is not properly contained in another implicit edit. GKL showed
that the set of explicit and maximal implicit edits is sufficient for solving the error-localization
problem. The set of implicit edits that are generated from explicit edits are called first level
implicit edits. By induction, we define the nth level edit as those that are generated from a
contributing set of edits in which there exists at least one edit from level n-1. If an implicit edit
E2 can be generated by an implicit edit at a given level and other edits, it is called a successor of
E1; E2 is called the predecessor of E1. During the edit-generation process, we proceed down edit
generation trees determined by the fields (nodes) on which the implicit edits are generated. If E
is a set of explicit and implicit edits, then the lowest level of E is the subset of edits that have no
currently known successor edits.

Lemma 2. (Winkler 1997). Assume that there are no skip patterns associated with a set of edits.
Then every implicit edit at level n is generated by an implicit edit from level n-1 and a set of
explicit edits.

 If a field only assumes two values, then an implicit edit is generated using exactly one explicit
edit and an implicit edit from the previous level. Let a record r fail an explicit edit E0 that is
generated by implicit edit E1 and explicit edit E2 on generating field f1. If r fails edit E1 and the
value in field f1 is changed, then the resultant changed record fails explicit edit E2.

Lemma 3. Let E be an implicit edit at the nth level that is generated from n-1st level edit E1and
another edit E2 using field f1. Let r be a record that fails edit E. If r fails edit E1 and the value in
field f1 is changed, then record r fails edit E2. If r fails edit E2 and the value in field f1 is
changed, then record r fails edit E1.
Proof. See appendix.

 Let E be an edit at the nth level. Let record r fail E. We say that C={E1, E2, …., En} is a r-
chain leading to edit E if E1 is an explicit edit (i.e., at the 0th level), E=En, and record r fails all
edits in C. Then the following lemma can be proved by inductively applying Lemma 3.

Lemma 4. Assume that E is an incomplete set of edits. Let E0 be an implicit edit that is missing
from E. Let r be a record that fails edit E0. There exists an r-chain leading to E0.
Proof. See appendix.

 It is not necessary for r-chains to be unique. Let record r fail an edit E0 at level n. Let C={ E1,
E2, …., En} be an r-chain leading to E0. Assume that D={F1, …, Fn-1} are explicit edits that
satisfy the following property, for j>1, Ej has contributing edits Ej-1 and Fj. By inductively
applying Lemmas 2-4, we have that record r cannot fail any of the edits in D. However, if the
value in a generating field is changed, then it is possible for the appropriate explicit edit to fail.
If E is incomplete, then typically some of the edits in the r-chain C will not be in E.

Lemma 5. Let E be an incomplete set of edits and let I be an implicit edit that is not in E. Let r
be a record that fails implicit edit I. Let D1 be the set of explicit and implicit edits in E that are
failed by r. Let F={f1, …, fn} be any prime cover of D1 that does not cover I. Let r’ be the
record obtained from r by changing each of the values in F. Then r’ fails at least one explicit edit
E0.
Proof. See appendix.

 Lemma 5 is just a variant of technical lemmas of section 2. Necessarily, there exists an r-chain
C that goes from E0 to I. Not all of the edits in the r-chain C need to be in E.

Lemma 6. Let E be an incomplete set of edits. Let edit E1 be at the lowest level. Let record r
fail edit E1. Let E1 have entering fields f1 and f2. Let record r’ be obtained from record r by
changing either field f1 or field f2. Assume that record r’ fails an explicit edit E2 that record r did
not fail. Then it is possible to generate an implicit edit E3 with contributing edits E1 and E2 such
that E3 is failed for record r.
Proof. See appendix.

 We could also deduce Lemma 6 from GKL Algorithm 2. The difference is that Lemma 6
yields a computationally much faster method of finding each field that must be changed. The
same is true for the following lemma.

Lemma 7. Let E be an incomplete set of edits. Let edit E1 be at the lowest level. Let record r
fail edit E1. Let E1 have entering fields f1 and f2. Assume that edit E1 is generated by implicit
edit E3 and explicit edit E4 on field f3. Assume that record r fails implicit edit E3 and does not
fail explicit edit E4. Assume that f1 enters explicit edit E4. Let record r’ be obtained from record
r by changing field f3. Then record r’ may or may not fail explicit edit E4. Assume that record r’
fails explicit edit E4. Let record r1 differ from record r’ by changing field f1. Then record r1
does not fail E4, E3, or E1.
Proof. See appendix.

Lemma 8. Let E be an incomplete set of edits. Let r be a record that fails some of the edits in E.
Then it is possible to expand E to a set of edits E' that contains all of the edits that are failed by
record r.
Proof. See appendix

 During the implicit edit-generation process, it is straightforward to track on what field the
implicit edit was generated, what edits contributed to the implicit edit, and at what level the
implicit edit was generated. For each implicit edit, it is possible to find an (non-unique) r-chain
leading back to an explicit edit at the 0th level. Because we are interested in implicit edits that
may be missing from the set of edits that we have generated, we need only consider implicit edits
that are at the end of an r-chain. In other words, if E is the existing set of explicit and implicit
edits, then we only consider implicit edits Ef in E that are at the lowest level of the r-chains.
 If we have an incomplete set E of explicit and implicit edits, then Lemma 6 gives us a very
quick way to determine additional fields that would yield an EL solution. If we generate and
store the additional implicit edits that are obtained by repeatedly applying Lemma 6, then we
have all of the implicit edits that a record r fails. We can then reapply the main EL routine to get
a more efficient solution than would be obtained by adding fields fE to the fields of the cover of
the incomplete set E. We can think of this as a quick, heuristic approach to finding an EL
solution.

3.3. Main Theorem
 Let us assume that incomplete set E contains most of the implicit edits. It is very rapid to
expand E to E’ with implicit edits that are found via Lemma 7. For a given set of records R, if E
is expanded to E’, then set E’ would necessarily contain all implicit edits that fail for R. The
generalization of Lemma 7 to situations in which a field can assume more than two values is
straightforward (see the appendix). The generalization to situations when skip patterns are
present (on the survey form and in the set of edits) is not straightforward. It involves a series of
technical lemmas and results that extend Winkler (1997).
 We are now in the position to state the main theorem.

Theorem 1. Let E be an incomplete set of edits. Let R be a set of records that fail edits in E. Let
r ∈ R be a record that fails at least one implicit edit that is not in E. Let EF(r) be the set of
implicit edits in E that are failed by record r. Let F={f1, …, fn} be the set of fields that are a
prime cover of EF(r). Then it is possible to very quickly find a set of fields Fr ={f n+1, …, fq}such
that F ∪ Fr is an EL solution for r. Furthermore, it is possible to find the implicit edits Emr that
are failed by r that are not in EF(r).

Corollary 1. Let E be an incomplete set of edits. Let R be a set of records that fail edits in E.
Then E can be expanded to a set of edits E’ that contain all of the implicit edits that fail for
records in R.

 In the situation when there are no skip patterns, the algorithm is straightforward.

Algorithm NS1 (no skip patterns)

1. Let EF(r
0) be the set of failing edits for record r0. Solve the SCP (2.3) and denote the

solution x*.

2. Let J = {j | xj* = 1}. Fix the values of yj for j ∉J at yj0. For each j ∈ J, let Ej

c = ∩ {F ji
c ,

j ∈ J, Ei ∈ EF(r
0)} be the intersection of the complements of the jth entering fields. If

every value fj in Ej
c yields a newly failing explicit edit Ek(j) , then generate a new implicit

edit Ik(j) that fails for record r0. If, for all j ∈ J, there exists no such Ek(j) , then x* is a
solution to (2.1); else let E1 = {Ik(j) , j ∈ J} be the set of new implicit edits. Let EF(r0) =
EF(r0) ∪ E1. Go to Step 1.

An alternative, much faster algorithm is

Algorithm NS2 (no skip patterns)

1. Let EF(r0) be the set of failing edits for record r0. Solve the SCP (2.3) and denote the
solution x*.

2. Let J = {j | xj* = 1}.

3. Fix the values of yj for j ∉J at yj0. For each j ∈ J, let Ej

c = ∩ {Fji
c , j ∈ J, Ei ∈ EF(r0)}

be the intersection of the complements of the jth entering fields. If every value fj in Ej
c

yields a newly failing explicit edit Ek(j) , then let d(j) be a complementary entering field
in Ek(j) that is not in J. If, for j ∈ J, there exists no such Ek(j) , then go to Step 4; else let J1
= { d(j), j ∈ J} and J = J ∪ J1. Go to Step 2.

4. Find a subset of J that yields a solution to (2.1).

 Algorithm NS2 is far faster than Algorithm NS1 because new implicit edits do not need to be
computed at intermediate stages of the algorithm. Algorithm NS2 will generally not yield a
minimal solution to (2.1). Algorithm NS1 can yield a minimal solution to (2.1) if a branch-and-
bound or similarly appropriate algorithm is applied to (2.3) with the new set of implicit edits that
fail for record r0. Algorithm NS1 is far faster than GKL Algorithm 2 because it does not require
enumerating all the Π j ∈ J | Rj | possible records y associated with the cover J and finding all
existing edits that fail for them.
 We can think of a set of records as a set of points in the product space of the values assumed by
all of the fields. With a large survey such as the Italian Labour Force Survey (Barcaroli and
Ventura, 1997, 1993; Winkler 1997), the product space of slightly more than 100 fields may
consist of on the order of 4.6 × 10^79 points. For this survey, there are six hundred explicit
edits. There may be as many as 6,000 implicit edits. For this set of data, we extrapolate that
conventional set-covering (e.g. GKL) would need between 800 and 8,000 days on an
exceptionally fast computer to generate all of the implicit edits. The heuristic algorithms of
Winkler (1997) and Chen (1998) generate at least 90% of the implicit edits in less than 24 hours.
Because a survey will not contain nearly as many records as there are in the product space or in
the complete set of implicit edits, a more practical day-to-day procedure may be as follows.
Generate 90% of the implicit edits using the heuristic algorithms. For a given set of survey
records, generate the remaining implicit edits “on-the-fly” in the main edit program.

3.4. The Nearest-Neighbour Imputation System
 Bankier (1991, see also 1997, 2000) introduced the Nearest-Neighbour Imputation Method
(NIM). NIM has always been suitable for nearly discrete data fields such as age that are very
similar to numeric fields. Bankier (2000) shows how NIM is extended to situations involving
general continuous data. For convenience, we will only consider the discrete data situation.

NIM has two stages. In the first, an edit-failing record r0 is compared with a large set of edit-
passing records. Using a metric that counts the number of fields that differ between the records,
a group G of edit-passing records that differ on the smallest number of fields is obtained. Each
record r in G differs from record r0 on a number of fields Fr. Fast heuristics determine the
approximate minimal number of fields Fr’ in Fr that can be changed and still yield an edit-passing
record. The final imputation for record r0 is obtained by simple random sampling of those
records that are closest in terms of the number of fields in the sets Fr’.
 In potential donor records, NIM considers all of the fields that differ from the edit-failing
record. Assume the initial number of differing fields is N. To determine the approximate
minimum number of fields to change, NIM first determines whether single fields can be dropped.
This is equivalent to determining EL solutions consisting of N-1 fields. If a solution can be
found having N-1 fields, then NIM may look for solutions having N-2 fields and so on.
Although NIM is the direct inspiration for the approach used in this paper, NIM methods can be
considered a special case of methods used in Lemmas 3-5. In NIM, there is a direct
computational advantage because the value of the field that must be substituted is already
known. The following is another corollary to the theorem of this paper.

Corollary 2. The Nearest-Neighbor Imputation Method (NIM) is consistent with the
(computational) extensions of the Fellegi-Holt model of statistical data editing as detailed in this
paper.

 If there is a very large set of suitable donors, then NIM will get solutions (in terms of the
number of fields changed) that are as good as those obtained by FH. NIM will automatically
find the best nearest-neighbor matching rules. NIM drastically reduces computation because it
only considers computational paths associated with the available donors. It only considers
changing the values of the fields in Fr between the existing value in record r0 and potential donor
record r.

4. DISCUSSION
 As with the GKL paper, this paper primarily deals with computational extensions of the FH
model. In a roundabout way, Bankier’s NIM procedure provides key insights that eventually led
to the computational improvements of this paper. Let a record r in R fails some of the explicit
edits. Let a donor record r1 that satisfies all of the edits. Let J* be the set of fields that differ
between r and r1. Then J* is necessarily a superset of the EL solution. The NIM method works
in a top-down method. The heuristic method of this paper works in a bottom-up method in
finding a superset J1* of the EL solution. In both situations, an EL solution might be equal to the
sets J* or J1*. NIM is more straightforward because it limits the computational paths to either
changing a field to the value in the donor record or leaving at the value in the original record.
The heuristic method of this paper must deal with more of the possible changes in field values
than those of NIM.
 The main theorem of this paper provides a slower method of finding all failing implicit edits
for a set of records R. It further allows finding minimal EL solutions.

5. CONCLUDING REMARKS
 This paper describes theoretical and computational extensions of the Fellegi-Holt model of
statistical data editing. The main application is in determining the approximate minimum

number of fields to impute in situations when not all implicit edits can be generated a priori. As
a special case, a theoretical justification for Bankier’s Nearest-Neighbour Imputation Method is
given.

1/ This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a
Census Bureau review more limited in scope than that given to official Census Bureau publications. This report is
released to inform interested parties of research and to encourage discussion.

REFERENCES

Barcaroli, G., and Venturi, M. (1993), "An Integrated System for Edit and Imputation of Data: an Application
 To the Italian Labour Force Survey,” Proceedings of the 49th Session of the International Statistical Institute,
 Florence, Italy, September 1993.
Barcaroli, G., and Venturi, M. (1997), "DAISY (Design, Analysis and Imputation System):
 Structure, Methodology, and First Applications," in J. Kovar and L. Granquist, (eds.) Statistical
 Data Editing, Volume II, U.N. Economic Commission for Europe, 40-51.
Bankier, M. (1991), “Alternative Method of Doing Quantitative Variable Imputation,” Statistics Canada
 Memorandum.
Bankier, M., Houle, A.-M., Luc, M. and Newcombe, P. (1997), “1996 Canadian Census Demographic
 Variables Imputation,” American Statistical Association, Proceedings of the 1997 Section on Survey
 Research Methods, 389-394.
Bankier, M. (2000), “2001 Canadian Census Minimum Change Donor Imputation Methodology,” U.N.
 Economic Commission for Europe Work Session on Statistical Data Editing, Cardiff, UK, October 2000
 (also available at http://www.unece.org/stats/documents/2000.10.sde.htm).
Chen, B.-C. (1998), “Set Covering Algorithms in Edit Generation,” American Statistical Association, Proceedings
 of the Section on Statistical Computing, 91-96 (also available as Statistical Research Division Report
 rr98/06 at http://www.census.gov/srd/www/byyear.html).
Chen, B.-C., Winkler, W. E., and Hemmig, R. J. (2000), “Using the DISCRETE edit system for ACS Surveys,”
 Statistical Research Division Report rr00/03 at http://www.census.gov/srd/www/byyear.html .
Chernikova, N.V. (1964), “Algorithm for Finding a General Formula for the Non-negative Solutions of
 System of Linear Equations,” USSR Computational Mathematics and Mathematical Physics, 4, 151-158.
Chernikova, N.V. (1965), “Algorithm for Finding a General Formula for the Non-negative Solutions of
 System of Linear Inequalities,” USSR Computational Mathematics and Mathematical Physics, 5, 228-233.
De Waal, T. (1996), “CherryPi: A computer program for automatic edit error localization,” Paper
 presented at the UN Work Session on Statistical Data Editing, 4-7 November 1996, Voorburg, the
 Netherlands.
De Waal, T. (1997), “A recipe for applying CherryPi to the edit process,” Paper presented at the UN
 Work Session on Statistical Data Editing, 14-17 October 1997, Prague, Czech Republic (also available at
 http://www.unece.org/stats/documents/1997.10.sde.htm).
De Waal, T. (2000), “New Developments in Automatic Edit and Imputation at Statistics Netherlands,” U.N.
 Economic Commission for Europe Work Session on Statistical Data Editing, Cardiff, UK, October 2000
 (also available at http://www.unece.org/stats/documents/2000.10.sde.htm).
Draper, L. and Winkler, W.E. (1997), “Balancing and Ratio Editing with the new SPEER system,” American
 Statistical Association, Proceedings of the 1997 Section on Survey Research Methods, 570-575 (also available
 as Statistical Research Division Report rr97/05 at http://www.census.gov/srd/www/byyear.html).
Fellegi, I. P. and Holt, D. (1976), "A Systematic Approach to Automatic Edit and Imputation," Journal of
 the American Statistical Association, 71, 17-35.
Filion, J.-M., and Schopiu-Kratina, I. (1993), “On the Use of Chernikova's Algorithm for Error
 Localization," Statistics Canada Technical Report.
Garfinkel, R. S., Kunnathur, A. S. and Liepins, G. E., (1986), "Optimal Imputation of
 Erroneous Data: Categorical Data, General Edits," Operations Research, 34, 744-751.
Garcia, M. and Thompson, K. J. (2000), “Applying the Generalized Edit/Imputation System AGGIES to the
 Annual Capital Expenditures Survey,“ Proceedings of the International Conference on Establishment
 Surveys, II, 777?-789.
Kovar, J.G., MacMillan, J.H. and Whitridge, P. (1991), "Overview and Strategy for the Generalized Edit

 and Imputation System", Statistics Canada, Methodology Branch Working Paper BSMD
 88-007E (updated in 1991).
Little, R. A., and Rubin, D. B., (1987), Statistical Analysis with Missing Data, John Wiley: New York.
Nemhauser, G. L. and Wolsey, L. A., (1988), Integer and Combinatorial Optimization, John Wiley:
 New York.
Rubin, D.S. (1975), “Vertex Generation in Cardinality Constrained Linear Programs,” Operations
 Research, 23, 555-565.
Schiopu-Kratina, I. And Kovar, J.G. (1989), “Use of Chernikova’s Algorithm in the Generalized Edit and
 Imputation System,” Statistics Canada, Methodology Branch Working Paper BSMD 89-001E.
Winkler, W. E. (1995), “Editing Discrete Data,” American Statistical Association, Proceedings of the
 Section on Survey Research Methods, 467-472 (also available as Statistical Research Division Report
 rr97/04 at http://www.census.gov/srd/www/byyear.html).
Winkler, W.E. (1997), “Set-Covering and Editing Discrete Data,” American Statistical Association, Proceedings
 of the Section on Survey Research Methods, 564-569 (also available as Statistical Research Division Report
 rr98/01at http://www.census.gov/srd/www/byyear.html).
Winkler, W. E. (1999), “The State of Statistical Data Editing,” in Statistical Data Editing, Rome:
 ISTAT, pp. 169-187 (also available at http://www.census.gov/srd/www/byyear.html).
Winkler, W. E., and Petkunas, T. (1997), “The DISCRETE Edit System,” in J. Kovar and L. Granquist,
 (eds.) Statistical Data Editing, Volume II, U.N. Economic Commission for Europe, 56-62.

APPENDIX

 This appendix provides proofs of the main lemmas of this paper and additional explanation that
connects the lemmas. Let r be a record that fails an implicit edit I. Let E be an explicit edit that
is failed by r. Let r’ be a record that is obtained from record r by changing a value in an entering
field from edit E. A basic idea is that implicit edit I gives information about an explicit edit E
that does not fail originally with record r but may fail with record r’.

Proof of Lemma 3. This follows from identical reasoning to that given in paragraph seven of
section 3.1.

Proof of Lemma 4. Assume that E0 would be generated at level n if it had been generated and
that n≥1. By Lemma 3, E0 is generated by an implicit edit E0

 (n-1) at the n-1st level and explicit
edit E1 (n-1). Because r fails E0 it must necessarily fail either E0 (n-1) or E1 (n-1). Set E2 (n-1)
equal E0 (n-1) or E1 (n-1) depending on which one failed. If E2 (n-1) is equal E1 (n-1), then we
have constructed an r-chain going from E0 to E1 (n-1). For each j, 0<j<n-1, assume that the r-
chain has not already terminated and let E0 (j) = E2 (j) be the implicit edit at level j that fails.
Then there exists implicit edit E0 (j-1) at level j-1 and explicit edit E1 (j-1) that are used to
generate E0 (j). Let E2 (j-1) be equal to E0 (j-1) or E1 (j-1) depending on which one failed. If E2
(j-1) = E1 (j-1), then the r-chain terminates; else we continue the induction until j-1= 0.

By Lemma 2, it is straightforward to extend Lemmas 3 and 4 to the situations in which an
implicit edit is generated from one implicit edit and multiple explicit edits. This is the situation
when a field can assume more than two value states. It is also straightforward to extend the two
lemmas to situations in which edits have three or more entering fields.

Proof of Lemma 5. Record r’ necessarily fails implicit edit I because no entering field in I was
changed. By Lemma 4, there is an r’-chain leading from some explicit edit E to implicit edit I.
Record r’ necessarily fails explicit edit E.

Proof of Lemma 6. Assume r’ differs from r on field f1. Let E2 have entering fields f3 and f4.
Necessarily either field f3 or field f4 must equal f1. Assume that f1= f3. Generate edit E3 on field
f1. E

3 has entering fields f4 and f2. Record r fails implicit edit E3. �

Proof of Lemma 7. This is proved by the reasoning of section 3.1. We have changed a prime
cover of fields in edits E4, E3, and E1 such that the resultant record r1 fails none of them.

The proof of Lemma 7 depends implicitly on the logical consistency of the edit system as
described by FH. Assume edits E4, E3, and E1 from Lemma 7 were contained in a complete set
of edits E. Let record r fail E4, E3, and E1. One of the prime covers of E could contain fields f3
and f1. Let r’ differ from r by generating field f3. If record r’ fails explicit edit E4, then
necessarily by changing the complementary entering field f1 in E4 we obtain a record r1 that must
not fail E4.

Proof of Lemma 8. Let E' be the subset of E of edits at the lowest level. Define sets of edits at
the lowest level that record r fails as follows. Let E0(r) be the subset of E' of edits that record r
fails. Let E1 be any edit in E0(r). By Lemma 5B, if the entering fields of E1 are changed, then
either no explicit edit fails or an explicit edit that did not originally fail will now fail. In the
former case, define E1(r) = E0(r) \ {E

1}. In the latter case, define E1(r) = E0(r) ∪ {E2} \ {E 1},
where E2 is the successor implicit edit to edit E1 that is failed by record r. Choose edit E3 in
E1(r). If E

3 has no successor, let E2(r) = E1(r) \ {E
3}. If E3 has successor E4 that is failed by

record r, let E2(r) = E1(r) ∪ {E4} \ {E 3}. For j > 2, let E2j+1 be an edit in Ej(r). If E
2j+1 has no

successor, define Ej+1(r) = Ej(r) \ {E
2j+1}. If E2j+1 has successor E2j+2, define Ej+1(r) = Ej(r) ∪

{E2j+2} \ {E 2j+1}. Because record r can only fail a finite number of edits, there must exist a
value of j for which Ej+1(r) is the null set. Let E' = E ∪ (∪j {E

2j+2 for j for which the edit
exists}).

All of the proofs involve the properties of the values of generating fields and of the entering
fields of the contributing edits used in generating an implicit edit. Because the characteristics on
an implicit edit at a given level depend on an implicit edit from the immediately preceding level
and an explicit edit, the lemmas are straightforward to extend to fields that assume more than
two values and to edits that have two or more entering fields. We now proceed to the situation
in which skip patterns occur. Prior to proving the extensions for skip patterns, we need to
provide background that characterizes skip patterns.

To summarize the previous work when there are no skip patterns. Assume that record r fails
edits in an incomplete set E. Let S be the set of starting values and let J be a prime cover of the
fields of the failing edits in E. As we sequentially change the values in the fields in J, it is
possible to find a failing explicit edit E1 that has at least one entering field that is not in J. By
taking the complementary entering field in E1, we can either expand J to a larger set or generate
an additional implicit edit that is not in E. When skip patterns are present, we wish to quickly
find failing explicit edits as the values in the fields in J are changed.

To provide intuition, we describe a typical situation in which skip patterns occur. We will
always assume that there are no skip patterns within skip patterns. In other words, our skip
patterns are first-level skip patterns. Higher-level skip patterns are extremely rare in real

surveys. For a large labor-force survey, a question may ask age of the respondent. If the age is
less than or equal fifteen, the there is a skip to a section of questions on education. If the age is
greater than fifteen, then there is a skip to a section of labor-force questions. There is an explicit
assumption that individuals less than or equal fifteen will not be working and that they will be in
school. Individuals over fifteen that are answering the work-force questions are generally
assumed to not be in school. Equivalently, if an individual is answering work-force questions,
they are assumed to be over fifteen.

As shown by Winkler (1997), if no skip patterns exist, then each implicit edit at level n can be
generated by an implicit edit at level n-1 and a set of explicit edits. If first-level skip patterns
exist, then there are implicit edits at level n that can only be generated by an implicit edit at level
n-1, at least one first-level implicit edit, and, possibly, additional explicit edits. In the following
lemma, we assume that each field assumes just two value states. The extension to more than two
value states is straightforward.

Lemma 9. Let r ∈ R fail some edits in incomplete set E. Let E1 be a failing edit at the lowest
level of an existing edit-generation tree. Let there exist a missing implicit edit E2 that fails for r
and that will not be covered by any prime cover J of the failing edits in E. Further, assume E2
can only be generated from E1 and a first-level implicit edit E3 on generating field f0. Fix a
prime cover J that contains field f0. If f0 is changed, then there exists explicit edit E4 that fails.
Proof. Let E3 be generated from E3a and E3b on some field f1. If f0 is changed, then edit E3 fails.
Because the entering fields in E2 are not covered by J, the entering fields in E3 that are
complementary to f0 are also not covered.
Note that E3 need not be observed. As E3 fails, then either E3a or E3b fails. Assume E3a. Then f0
enters E3a that is the desired explicit edit E4. If a complementary entering field f2 in E3a is also in
J, then when f2 is changed E3a will no longer fail. If f2 is not in J, then we can expand J with field
f2.

In the proof of the prior lemma, we do not need to observe E2 or E3. As values in the fields in J
are changed, an explicit edit will eventually fail.

