
RESEARCH REPORT SERIES
(Computing #2007-1)

BigMatch:
A Program for Extracting

Probable Matches from a Large File

William Yancey

Statistical Research Division
U.S. Census Bureau

Washington, DC 20233

Report Issued: June 15, 2007

Disclaimer: This report is released to inform interested parties of research and to encourage discussion. The views

expressed are those of the author and not necessarily those of the U.S. Census Bureau.

.

Research Report Series

BigMatch: A Program for
Extracting Probable
Matches from a Large
File

Revised: June 25, 2007

William E. Yancey

Statistical Research Division
U.S. Bureau of the Census
Washington, D.C. 20233

.

 2

BigMatch: A Program for
Extracting Probable
Matches from a Large File
Revised: April 24, 2007

Abstract

We present documentation for running the BigMatch program, a new re-
cord linkage tool for use in matching a very large file against a moderate size
file. For each of several blocking criteria, the program can extract likely
matching record candidates from the large file without requiring sorting of ei-
ther file.

Key words: record linkage, software

Background

The BigMatch program is based on the Census Bureau record linkage
program by Winkler et al. For this and other record linkage programs, record
pairs from two files are brought together to be compared when they agree on a
specified blocking criterion. In order for the best matching pairs to be found,
record linkage projects generally require successive passes with the applica-
tion of several blocking criteria, each of which requiring its own file sorts.
When one of the files is very large, the time required to sort the file can be-
come prohibitive.
 The BigMatch program allows one to run several different blocking crite-
ria for every large file and a moderate size file requiring the large file to be
read just once and without requiring prior sorting of either file. Required sort-
ing is done on a key list in memory, and the time required to run the program
is generally modest. For each blocking criterion, the program outputs a file of
records from the large file that are plausible matches to records in the moder-
ate file.
 The standard Census Bureau record linkage program features one-to-one
matching which results in each record being paired with its most likely match
within its blocking group. The BigMatch program does not do this, so that an
output file may contain several records from the large file that were stored as
likely matches to the same record in the moderate file. The purpose of the
BigMatch program is to function as a preprocessor that can efficiently extract

 3

smaller files from a very large file so that these smaller files can be used effi-
ciently with standard record linkage software. However, the BigMatch pro-
gram has also been used for deduplicating a single file. If a file contains mul-
tiple duplicates, then the absence of one-to-one matching can be advanta-
geous, provided that the file can fit in core memory.
 Further information about the record linkage software can be obtained
from william.e.yancey@census.gov or william.e.winkler@census.gov.

Extracting Probable Matches from a Large File for
Record Linkage

Program Overview
 The purpose of the BigMatch program is to extract subfiles of plausible
match records from a very large file by making only one sequential pass
through the very large file. The large file never has to be sorted. Suppose that
we want to find matching records in a very large master file, which we will
designate as the Record file, that correspond to records in a moderately sized
file, which we will designate as the Memory file. We define a file to be of
moderate size if it can comfortably fit into core memory. The BigMatch pro-
gram allows the user to specify several blocking criteria, each with its own
matching field parameters. The program reads in the Memory file and creates
a table of the keys for each blocking criterion. The program then proceeds to
read in records from the large Record file. For each blocking criterion, the
program determines whether there are any records from the Memory file
which have keys that match the key of the Record file record. For all Memory
file records with matching key value, a matching comparison weight is com-
puted with the Record file record. If any of the comparison weights exceeds a
cutoff value, the Record file record is written out to a subfile corresponding to
that blocking criterion. Another file contains the pairs matching field values.

Program Changes for This Revision
 The main change in the program is to allow more than one Record file to
be compared to the same Memory file. Since there may be several files being
compared, we have changed the names of the output files to reflect the names
of the input files being compared. Old hands may notice that the roles of the
previously designated A and B files have been switched, so we have adopted
the names Memory file and Record file to try to minimize confusion.

Running the Program
Compiling the Program
 The program bigmatch.c can be compiled using a C compiler. On a
UNIX machine, one can use the command

cc –o bigmatch bigmatch.c −lm
where the −lm flag instructs the compiler to link with the C math function li-
brary. This flag may be unnecessary if the C math function library is in the

.

 4

linker’s search path. One may also use optimization flags to enhance per-
formance. The program BigMatch currently compiles and runs on Compaq
Alphas, Sun workstations, and Windows PCs.
 The software should compile and run correctly on almost all machines
with C compilers. The software is fast (~300,000 pairs per second on an Ita-
nium computer when using 10 blocking criteria. A million record file (106)
will need approximately 1.5 gigabytes of RAM if 10 blocking criteria are ap-
plied. The memory-data structures contain all the strings that are used for
blocking and matching. The memory-data structures contain a substantial
number of pointers for rapid retrieval and comparison of pairs of records.

Program Input
 The program reads in two input files:

• parmn.txt
• parmf.txt
The file parmn.txt simply contains the paths to the input files. On the

first line is the path to the Memory file and on the subsequent lines are the
paths to the Record files. If the program is being used for deduplication of a
file, the same file path is used on both lines.
 The file parmf.txt contains the parameter information that controls
the program execution. Refer to the sample parameter file at the end of the
document.

The first line contains 9 integers:
1. The number of blocking criteria or blocking strategies
2. The number of sequence fields
3. The output cutoff flag
4. The number of ID fields
5. The print output flag
6. The record duplicate flag
7. The number of Memory file records
8. The length of an Record file record
9. The length of a Memory file record
The program allows the user to test the Record file against several block-

ing strategies simultaneously. The first number tells the program how many
blocking strategies are to be used. The current maximum number of blocking
strategies is 100. The sample parameter file indicates 6 blocking passes.
 The sequence fields are the fields that contain the unique record identifica-
tion number for each record in its respective file. Here the user indicates the
number of fields that make up the sequence number. The sample file indicates
1 sequence field.
 A positive output cutoff flag indicates that the user intends to supply cut-
off values for the matching weights for the Record file subfile output. A zero
indicates that the program should use the default values, which are currently
16 and 0. In the sample, the output cutoff flag is set to true.

 The ID fields refer to a unique entity identifier, such as the Census ident i-
fication number, which should be consistent across all files. This ID field is
here for program analytic testing purposes and does not play a role in the gen-

 5

eral matching. If no ID number is to be used, this field should be set to 0, as
in the sample file.

 The print output flag is set to 1 if the user wishes to supply cutoff values
for the matching weights of the pairs of matched Memory file and Record file
records to be printed out for analytic purposes. If this flag is set to 0, the de-
fault cutoff values of 12 and 0 will be used. In the sample, the print output
flag is set to true.

 The record duplicate flag is set to 1 if the user is trying to find duplicate
records within a file. When this flag is set, the program only computes com-
parison weights when the Memory file record sequence number is less than the
Record file record sequence number. This prevents computing the matching
weight of a record with itself or with computing matching weights for both
symmetric pairs of records. Hence if a file contains n duplicated records, in-
stead of the program outputting n2 pairs, it outputs n(n – 1)/2 pairs. When not
searching for duplicates within the same file, this flag should be set to 0. The
sample file sets the duplicate flag to 1, indicating that this is a deduplication
run.

 If the number of records in the Memory file is known, it can be entered
here. The number of Memory file records can be obtained from the report of
the blokstats program, as described below. If the number of Memory records
is not known, this input integer should be set to 0 and the program will count
the number of Memory file records, as is the case in the sample file.

 The Memory and Record files are assumed to be flat ACCII files of fixed
record length. In these last two positions, the user informs the program of the
length of the Memory file record and the Record file record respectively. The
sample parameter file sets the (maximum) record length for the files to 100
characters long.
 The second line of the parmf.txt file is a row of integers providing the
number of blocking fields for each blocking strategy. The number of integers
on this line should equal the first number on the first line of the file. The
sample parameter file shows that the 6 blocking strategies have 6, 6, 2, 3, 3, 4
blocking variables respectively.
 The third line of the parmf.txt file is a row of integers providing the
number of matching fields for each blocking strategy. Again, the number of
integers on this line should equal the first number on the first line of the file.
The sample file shows that all blocking passes have 6 matching fields. In
general, the number of matching fields does not have to be the same for every
blocking run.
 The next lines of the parmf.txt file provide the parameters for the
blocking fields and matching fields for each blocking strategy. First are listed
the blocking field parameters and then the matching field parameters. The
number of lines for the first set of blocking fields should equal the first integer
from the second line of parmf.txt. Only records with agreeing blocking
keys will be compared. Each line contains:

1. A blocking field name (up to 20 characters)
2. The start position in the Memory file of the blocking field

.

 6

3. The length of the blocking field
4. The start position in the Record file of the blocking field
5. The length of the blocking field
6. The blank filter flag
The blank filter flag allows the user to specify how the program should

deal with record pairs with blank key components. If a blank filter flag is set
to 1, then if the records have this blocking key component blank, then the
comparison weight for these records is not computed. If the blank filter flag is
set to 0, then if the records have this blocking key component blank, the re-
cords are considered to agree on this key component. Hence if any key com-
ponents with blank filter flag set to 1 are blank, then the record weight com-
parisons will not be made. A key component is considered to be blank if it
consists of all space characters or all ‘0’ characters.

In the sample file, the next 6 lines show the first set of blocking variables.
Note that the field lengths for the Memory file and Record file blocking vari-
ables must be the same. All of the blank filter flags are set to 1 so that any
Record file record that has any of its blocking field component values blank
will be skipped.

Note that if there are more than one Record files, they all must have the
same layout.

The next lines of the parmf.txt file provide the parameters for the
matching field parameters. The number of lines of matching field parameters
should equal the first integer on the third line of the file. These are the fields
in the file records that are compared to compute a matching weight. Each line
contains:

1. A matching field name (up to 20 characters)
2. The start position in the Memory file of the matching field
3. The length of the matching field
4. The start position in the Record file of the matching field
5. The length of the matching field
6. A null flag (non-operational)
7. The field comparison type
8. The conditional matching agreement probability
9. The conditional non-matching agreement probability

For the field comparison type, one should choose among the following op-

tions:
• c—exact string comparison
• uo—string comparator allows for some typographical variation
• p—numerical comparison for age
• y—numerical comparison for year

In addition, there is a modification that indicates checking for field inver-
sion. The program will test a field for inversion with the next matching field
if the field comparison type has an ‘i’ appended to it. The last option is for
exploring whether a pair of matching fields has its values switched, e.g. first
and last names reversed. The field with comparison type with ‘i’ appended

 7

will be considered as well as the cross values with the next field in the match-
ing field variable list. The comparison type for this next field will be used for
the agreement weight calculations. The field inversion comparison option can
be used only once in a matching fields list. Note that the inclusion of this op-
tion for a pair of string value matching fields can substantially increase the
program running time.

In addition, there is an ‘s’ comparison for numeric street names of the
form “1st” and “143rd.” Preprocessing is needed to put street names in consis-
tent forms (i.e. convert “First” to “1st”). The ‘s’ comparison is used for ad-
dress matching.

The sample file shows 6 lines specifying the matching variables. Again,
the field lengths for the Memory and Record files should agree. Note that for
the second blocking run, the comparison type for “last” (last name) is uoi, in-
dicating that it should be compared using the string comparator and that both
(last, last), (first, first) but also (last, first), (first, last) should be considered for
comparison values for these first two matching fields.
 When using BigMatch for extracting subsets of plausible matches from a
large file, the agreement probabilities can be rough general estimates. The
first number represents the conditional probability that the two records agree
on the matching field value given that the two records represent a match. The
second number represents the conditional probability that the two records
agree on the matching field value given that the two records do not represent a
match. The agreement weight for this field value for two records is based
upon the ratio of these two numbers. A larger ratio implies a stronger distin-
guishing power for that matching fie ld. Presumably the ratio should always
be larger than 1.

When using BigMatch for deduplication of a file, one is trying to
identify specific duplicate pairs, so more precise probability estimates may be
helpful. In the full record linkage program, these conditional probabilities are
computed from maximum likelihood methods based upon the distribution of
the agreement patterns in the set of pairs of records. At this time, the programs
for computing agreement pattern counts require sorting the file by blocking
key values.

After the matching field lines have been completed, if the output cutoff
flag has been set to 1 on the first line of the file, then the next line contains a
pair of numbers representing the comparison weight cutoff values for the out-
put files. For the output cutoff values, actually only the lower cutoff value is
really used, since the program outputs an Record file record as a plausible
match candidate if it finds a Memory file record with an agreeing key which
has a matching weight above the lower output cutoff value. Thus the size of
the matching candidate output files can be adjusted by varying the lower out-
put cutoff.

If the print cutoff flag has been set to 1, then the next line contains a pair
of numbers representing the upper and lower cutoff values for the matching
pair output files. If a record from the Record file has a key value that agrees
with the key of a Memory file record, the matching weight of the record pair is

.

 8

computed. If the matching weight is between the upper and lower print cutoff
values and between the upper and lower output cutoff values, then the match-
ing information of the two records is printed to a print output file. When us-
ing BigMatch to extract plausible matching candidates from the Record file,
this output can be useful for analyzing how the program is performing its
matching comparison computations. By specifying values of upper and lower
print cutoff within the bounds of the output cutoffs, one can reduce the
amount of output and concentrate one’s analysis on a smaller range of the
matching weight comparison function. On the other hand, if the program is
being used for deduplication, these matching pair files are probably the main
output of interest, and the two pairs of output cutoffs should probably have the
same values.

In the sample, the first two blocking runs have both output and print cutoff
values set to 100 and 0, while the last four blocking runs have the lower cutoff
values raised to 4.7.

The listing of blocking fields, matching fields, and cutoff values repeats
for each blocking strategy. As before, the numbers of blocking fields and
matching fields must agree with the numbers indicated in the second and third
lines of the file. These listing are repeated for the number of blocking runs
indicated on the first line of the file.

After all of the blocking and matching field sets have been completed, the
sequence fields are listed. The number of sequence fields must agree with the
number indicated in the second integer of the first line of the file. The total
sequence field should be a unique file record ident ifier. This is necessary
when using the program for deduplication of a single file. Each line should
contain:

1. The sequence field name
2. The start position of the sequence fie ld in the Memory file
3. The length of the sequence field
4. The start position of the sequence field in the Record file
5. The length of the sequence field

The sample file has a single sequence field that starts at the first character
of the record and is 40 characters long. The field lengths for both Memory
and Record files should be the same.

Program Output
There are three types of output files from the Bigmatch program. Record

file subfiles
• Record pair matching field information
• Summary data

The output file names are created from the Memory and Record file
names. If the file parmn.txt lists the Memory file and Record file names
as path/memfile.* and path/memfile.* respectively, then the output
data files will have prefix memfile-recfile. In order for the program to
parse these names, it looks for the last slash ‘/’ in the file path. If the pro-
gram is running on a system that uses a backslash ‘\’ instead for its file path
delimiter, then one needs to use the appropriate preprocessor definition at the

 9

beginning of the program file. If file names without paths are used, then this
is irrelevant.

For the nth blocking strategy, the subfiles memfile-recfile_
Subn.dat contain complete Record file records that have a key that matches
a key of a record in the Memory file where the record pair has a matching
weight above the lower output cutoff value.

For the nth blocking strategy, the program prints out matching information
for each record pair where the keys agree and the matching weight is between
the lower and upper print cutoff values (and the lower and upper output cutoff
values). The program prints out the matching weight, Memory file sequence
number, Record file sequence number, common key value, Memory file re-
cord matching field values, and Record file matching field values. Any such
record pairs get printed out to memfile-recfile_Pairsn.dat.

The file summ.dat contains summary information about the program run
for diagnostic purposes. The file gives the total number of Memory file and
Record file records read. For each blocking strategy, it gives the number of
distinct Memory file keys and the number of Record file records output to the
subfile. Then there is a table which lists each Memory file key, the number of
Memory file records with that key, and the number of Record file records with
that key which were output to the subfile.

Note that BigMatch keeps track of the Memory file records that have been
compared to a given Record file record, so that it does not recompute match-
ing weights for the same records pairs for later blocking strategies. For exam-
ple, if the sequence of blocking strategies is chosen to be initially most restric-
tive and subsequently less restrictive for each blocking run, then the subse-
quent output files will contain only new records found from the widening
search and will not contain records printed out for previous blocking runs.

Reformatting Program Output
 The output to the files memfile-recfile_Pairsn.dat is not very
analyst- friendly. The records are in the order that they were computed and the
output is not easily readable. The matching data, the Memory file match field
values, and the Record field values are separated by a tilde character ‘~’. If
the files are on a UNIX system, there are two scripts that can format the out-
put in a more usable form. The script detil removes the tildes and replaces
them with a new line and the script printpairs sorts the records by decreasing
match weight and pipes the result to detil. The resulting output file is called
pairs.out and it

• Is sorted by decreasing matching weight
• Has each set of record pair information printed on 3 lines

o First line has matching weight, sequence numbers, and key
value

o Second line has A record matching field values
o Third line has B record matching field values

.

 10

These programs are used with the full matching program to aid the user in
determining cutoff values for designated links and non- links. We should note
that unlike the full matching program, the output of the BigMatch program
does not necessarily have to be one-to-one. That is, the output file of record
pairs may have Memory file records paired with more than one Record file re-
cord and Record file records paired with more than one Memory file record.
In order to use the programs you need to:

1. Use chmod to make the scripts detil and printpairs executable
2. Enter printpairs filename on the command line
3. If several such files are to be reformatted, rename the output file

pairs.out to something that indicated the source of the origi-
nal file.

Evaluating Blocking Strategies
The time that the BigMatch program takes to run is most affected by the

number of Memory file records that have the same key. Each time an Record
file record is found with a given key, the matching weight is computed with
every Memory file record that has this key. A particularly inefficient case can
occur when a blocking strategy produces a large number of Memory file key
records with a blank key. Every time a Record file record is found with a
blank key, it will be compared with all of these Memory file key records even
though there is not much evidence of the records being similar. As noted
above, if it is known that this is happening, it can be avoided by using the
blocking null flags, as noted above.

As a tool to help the user formulate more efficient blocking strategies, one
can use the program blokstats. The blokstats program reads in only the
Memory file and the parameters for the Memory file blocking strategies. It
prints out a report file that indicates the number of Memory file records per
key value and the number of blank keys. The user can use this information to
adjust the blocking strategies or the blocking null flags before reading the
large Record file.

The program blokstats.c can be compiled with a C compiler. On the
UNIX machine, there is no need to link in the math library. As with the Big-
Match program, there are two input parameter files. One file is
parmn1.txt, which contains one line that gives a path to the smaller Mem-
ory file. The second input parameter file is parmb.txt, which gives a de-
scription of the Memory file layouts. The first line has a sequence of 3 inte-
gers that provide the fo llowing information:.

1. The number of sets of blocking criteria or blocking strategies—
There is not a hard-coded upper limit for the number, but more
blocking strategies require more memory

2. The number n of desired most common Memory file keys to be
reported out

3. The total length of a record in the Memory file
The next line contains the number of blocking fields for each blocking

strategy, so that the number of entries on this line equalsw the first number in

 11

the line above. The sum of the numbers on this line equals the number of
blocking fields listed on the lines below. The next lines list the blocking
fields. They have the blocking field name, the starting position of the field in
the Memory record, and the length of the blocking field.
 The output file is blkrpt.dat. It lists the total number of Memory file
records read, then for each blocking strategy it lists the number of distinct
keys, the average number of Memory file records per key, the number of re-
cords with blank keys (if any), and the n keys with the largest number of re-
cords, where n is the number specified in the parameter file above. A blank
key is defined to be one that consists entirely of space characters or entirely of
‘0’ characters.

Sample Parameter File

6 1 1 0 1 1 0 100 100

6 6 2 3 3 4

6 6 6 6 6 6

st 5 2 5 2 1

cou 7 3 7 3 1

tract 10 6 10 6 1

block 16 6 16 6 1

nf_init 60 1 60 1 1

l_init 44 1 44 1 1

last 44 15 44 15 0 uo 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 0

100 0

st 5 2 5 2 1

cou 7 3 7 3 1

tract 10 3 10 3 1

.

 12

block 16 6 16 6 1

mob 80 2 80 2 1

dob 83 2 83 2 1

last 44 15 44 15 0 uoi 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 0

100 0

fname 60 13 60 13 1

lname 44 15 44 15 1

last 44 15 44 15 0 uoi 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 4.7

100 4.7

fname 60 13 60 13 1

linit 44 1 44 1 1

age 76 2 76 2 1

last 44 15 44 15 0 uoi 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

 13

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 4.7

100 4.7

finit 60 1 60 1 1

last 44 15 44 15 1

age 76 2 76 2 1

last 44 15 44 15 0 uoi 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 4.7

100 4.7

finit 60 1 60 1 1

linit 44 1 44 1 1

mob 80 2 80 2 1

dob 83 2 83 2 1

last 44 15 44 15 0 uoi 0.90 0.10

first 60 13 60 13 0 uo 0.90 0.10

middle 74 1 74 1 0 c 0.70 0.30

age 76 3 76 3 0 p 0.80 0.20

mob 80 2 80 2 0 c 0.80 0.20

dob 83 2 83 2 0 c 0.80 0.20

100 4.7

100 4.7

seq 1 40 1 40

	Cover.pdf
	Page 1
	Page 2

