
BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION

Statistical Research Report Series
 No. RR98/06

Set Covering Algorithms in Edit Generation

Bor-Chung Chen

U. S. Bureau of the Census
Statistical Research Division

Washington D.C. 20233

Report Issued: 9/1/98

Set Covering Algorithms in Edit Generation�

Bor-Chung Chen

Bureau of the Census

SRD, Rm. 3000-4, Washington, DC 20233-9100

September 1, 1998

Abstract

Results are presented from a comparison study of several set cov-
ering algorithms (routines) used in the implicit edit generation al-
gorithms of Gar�nkel, Kunnathur, and Liepins [1986] and Winkler
[1997]. The edit generation algorithms are based on the Fellegi and
Holt model [1976] of editing. Since the set covering routine is called

many times in edit generation, an e�cient routine will signi�cantly
reduce the computing time of the generation process. Unlike most
of the applications of the set covering problem (SCP), in which an
optimal cover is desirable, the edit generation is interested in �nding
all the prime covers to a SCP.

KEY WORDS: Explicit Edits, Redundant Covers, Subcovers, Inte-
ger Programming, Optimization

1. Introduction

The information gathered in any survey may contain inconsistent or incor-

rect data. These erroneous data need to be revised prior to data tabulations

and retrieval. The revisions of the erroneous data should not a�ect the sta-

tistical inferences of the data. One of the important steps of this systematic

revision process is computer editing. Fellegi and Holt [1976] provided the un-

derlying basis of developing a computer editing system. An edit-generation

algorithm, called the EGE algorithm, for the DISCRETE edit system was

described in Winkler [1997]. The EGE algorithm is a much faster alterna-

tive to Algorithm 1, called the GKL algorithm, of Gar�nkel, Kunnathur, and

Liepins [1986]. In both of the EGE and GKL algorithms, the set covering

�This paper reports the results of research and analysis undertaken by Census Bureau sta�. It has

undergone a more limited review than o�cial Census Bureau publications. This report is released to inform

interested parties of research and to encourage discussion. The author thanks Dr. William E. Winkler for

providing the FORTRAN code of the DISCRETE edit system and the examples. He is especially thankful

to him for many helpful conversations in the detailed algorithm of the DISCRETE edit system.

1

routine is invoked many times to generate new implicit edits. Therefore, an

e�cient algorithm for the set covering problem becomes highly desirable to

reduce the computation time of the edit generation. In this paper, a new set

covering algorithm for the edit generation is described. This new algorithm

signi�cantly reduces the edit generation computation in several ways: (1) it

does not produce redundant covers, and therefore avoids generating redundant

edits in the edit generation process; (2) it minimizes the matrix size required

to produce prime covers; (3) it makes the matrix reduction more e�ective; (4)

it uses bitwise operations for more e�cient computations.

The SCP in the DISCRETE edit system is applied twice. The �rst appli-

cation is to �nd the minimal set of �elds (the optimal solution) of a failed

record to be modi�ed to satisfy all explicit and implicit edits. The SCP is

invoked once for each failed record. The second application is to �nd all the

minimal sets of edits that are unioned to cover all possible values of a �eld,

called a generating �eld. Each minimal set is used to generate an essentially

new implicit edit as de�ned in section 2. The second application is NOT to

�nd an optimal solution but to �nd all prime cover solutions to the SCP.

We examine a new set covering algorithm for generating essentially new

implicit edits from a set of explicit edits in this paper. The explicit edits are

initially speci�ed by the subject matter experts for a particular survey.

2. Background

Let �E = fE1; E2; � � � ; Emg be a set of edits failed by a record y with n

�elds, consider the set covering problem:

Minimize
Pn

j=1 cjxj

subject to
Pn

j=1 aijxj � 1; i = 1; 2; � � � ;m (1)

xj =

�
1; if �eld j is to be changed;
0; otherwise,

where

aij =

�
1; if �eld j enters Ei;
0; otherwise,

and cj is a measure of \con�dence" in �eld j. We need to get �E from a

complete set of edits to obtain a meaningful solution to (1). A complete set

of edits is the set of explicit (initially speci�ed) edits and all essentially new

implied edits derived from them.

Notation: a= (a1; a2; : : : ; an) has n �elds. ai 2 Ai for each i 1 � i � n,

where Ai is the set of possible values or code values which may be recorded in

2

Field i. jAij = ni. If ai 2 Ao
i � Ai, we also say

a 2 Ao
i = A1 �A2 � : : :�Ai�1 �Ao

i �Ai+1 � : : :�An:

The code space is A1 �A2 � : : :�An = A.

Lemma 1 (Fellegi and Holt [1976]): If Er are edits 8 r 2 S, where S is any

index set,

Er :
n\

j=1

Ar
j = F; 8 r 2 S:

Then, for each i (1 � i � n), the expression

E� :
n\

j=1

A�

j = F (2)

is an implied edit, where

A�

j =
\
r2S

Ar
j 6= ; j = 1; � � � ; i� 1; i+ 1; � � � ; n

A�

i =
[
r2S

Ar
i 6= ;:

If all the sets Ar
i are proper subsets of Ai, i.e., A

r
i 6= Ai (�eld i is an entering

�eld of edit Er) 8 r 2 S, but A�

i = Ai, then the implied edit (2) is called an

essentially new edit. Field i, which has ni possible values, is referred to as the

generating �eld of the implied edit.

Let fEr j r 2 Sg be the set of the s edits with �eld i entering, then the set

covering problem related to the generating �eld i is

Minimize
P

r2S xr

subject to
P

r2S g
i
rjxr � 1; j = 1; 2; � � � ; ni (3)

xr =

�
1; if Er is in the cover;
0; otherwise,

r 2 S

where

girj =

�
1; if Er contains the jth element in �eld i;
0; otherwise,

is the jth element in �eld i of edit Er (r 2 S). If x is a prime cover solution to

(3) and K = fr j xr = 1g � S, then [k2KA
k
i = Ai. A prime cover solution is a

nonredundant set of the edits whose ith components cover all possible values

3

of the entering �eld, which is the generating �eld to yield an essentially new

implicit edit. This paper will concentrate on the algorithms that �nd all the

prime cover solutions to the SCP (3), which is also referred to as a SCP with

constraint matrix G= (girj)s�ni
. We will also compare the performance of the

set covering algorithm, referred to as the old algorithm, implemented in the
DISCRETE edit system and the new algorithm described in this paper.

Overview of the old algorithm GivenG = (gi
rj
)s�ni

and its rth row and

jth column vectors are gr� = [gi
r1; g

i

r2; � � � ; g
i

rni
] and g�j = [gi1j; g

i

2j; � � � ; g
i

sj
]T ,

respectively, then the old algorithm is described as following:

1. Search for unit column vectors from g�j, 1 � j � ni. Let the unit column

vectors obtained are Ij1
r1
, Ij2

r2
, � � �, I jk

rk
, where I j1

r1
= g�j1 is a unit column

vector with the r1th element 1 and the other elements 0.

2. Assume that r1; r2; � � � ; rk are k di�erent numbers. Remove rows r1; r2; � � � ;

rk and the l columns with gi
rj

= 1, where r = r1; r2; � � � ; or rk and
j = j1; j2; � � � ; or jl from G to form a reduced matrix G1. Assume that
j1; j2; � � � ; jl are l di�erent numbers. Then G1 with dimension (s � k) �

(ni � l) is the constraint matrix to a newly reduced SCP, where l � k.

3. If l = ni, the set of gr1�, gr2�, � � �, grk� from G is the only prime cover
solution, STOP; otherwise it is part of the cover solution(s) found in the

following steps, CONTINUE.

4. Form an Edit Cover Forest (ECF), as illustrated in Figure 1 for an ex-
ample with (s�k) = 4 edits to the newly reduced SCP. Each node of the

ECF represents a set of row vectors from G1, e.g., node 234 in Figure 1
represents the set of row vectors g2�, g3�, and g4� from G1.

5. Traverse the trees of the ECF in preorder. At each node, test the set of

row vectors to determine if it is a cover solution to the newly reduced
SCP. If it is, combine the set with the set from Step 3 and the combined
set is a cover solution to the SCP (3).

The old algorithm is ine�cient when s � 2ni � 2. This is because there
would be many di�erent edits with Ep 6= Eq, but with gp�=gq�, which makes
Step 1 of the algorithm ine�ective. Also, the number of nodes to be visited
in the ECF becomes large with small k and large s. Another ine�ciency of

the algorithm is that it �nds all the prime and redundant covers. Redundant
covers will generate redundant implicit edits in the edit generation algorithm.

4

1

12

123

1234

13

124

14

134

2

23

234

24

3

34

4

Figure 1. An Edit Cover Forest

3. New Set Covering Algorithm

The performance of the set covering algorithm used in edit generations
can be improved if the size (the number of nodes) of the ECF is signi�cantly

reduced. Each removal of a row vector from G in (3) will reduce the size more
than 50%. The following is the underlying theorem for removing duplicated
row vectors from G:

Theorem 1: In the SCP (3), if gp�= gq� and fgr1�; � � �, grk�,gp�g is a prime
cover solution to the following reduced SCP:

Minimize
P

r2S�fqg xr

subject to
P

r2S�fqg g
i

rj
xr � 1; j = 1; 2; � � � ; ni (4)

then both of fgr1�; � � �, grk�,gp�g and fgr1�; � � �, grk�,gq�g are prime cover solutions
to the SCP (3).

Although the maximum number of di�erent row vectors is 2ni � 2, the

actual size is much smaller due to the limited number of edit patterns for each
�eld in fEr j r 2 Sg. When gp�= gq�, it means that the pth and qth edits in
fEr j r 2 Sg take exactly the same set of values for the entering �eld i.

5

Example (Fellegi and Holt [1976]): If a questionnaire contains three �elds:

Field Number i Field Name Possible Codes Ai

1 Age 0{14(1), 15+(2) f1, 2g

2 Marital Status
Single(1),Married(2)
Divorced(3),Widowed(4)
Separated(5)

f1,2,3,4,5g

3
Relationship
to Head of
Household

Head(1),
Spouse of Head(2),
Other(3)

f1,2,3g

and there are three edits:

Edit i Ai

1 Ai

2 Ai

3

1 f1g f2, 3, 4, 5g f1, 2, 3g
2 f1, 2g f1, 3, 4, 5g f2g
3 f1g f1, 2, 3, 4, 5g f2g

Edits 1 and 3 (E1 and E3) are two di�erent edits with entering �eld 1, but
g1� = g3� = [1, 0]. In this example, the SCP (3) has s = 2 but has only one
distinct row vector of gr�.

Lemma 2 (Gar�nkel and Nemhauser [1972]): If g�u � g�v (i.e., g
i

ru
� gi

rv
8

r 2 S) for some u and v, then every cover of column v covers column u.
The objective of Theorem 1 and Lemma 2 is to reduce the matrix size of

G and therefore minimize the size of the ECF before an actual set covering

routine is invoked. A new set covering routine is described below to minimize
the number of nodes to be visited in the ECF. The new routine is not interested
in any cover other than the prime covers. As in the old set covering algorithm,
the ECF is traversed in preorder.

Figure 1 shows that if a node is found to be a cover, its o�spring nodes
are not prime covers and will not be visited at all. Therefore, unlike the old
algorithm, we would like to �nd a cover node as close as possible to any of the
root nodes. This will minimize the number of nodes needed to be visited and

the computation to �nd a prime cover. For example, if node 12 is found to
be a cover, nodes 123, 1234, and 124 will be skipped because they won't be a
prime cover. The next node to be visited will be node 13. At each cover node,

redundant row vectors will be removed to form a prime cover. If the number
of redundant row vectors is 0 or 1, no additional computation is needed to
�nd a prime cover. If it is more than 1, new covers are obtained by removing
the redundant row vectors one at a time. This same procedure of removing

redundant row vectors is applied to each of the new covers.
At each cover node, if a subcover of the cover node is found to be a cover

6

and the node representing the subcover is not yet visited, then the node and
its o�spring nodes are marked visited. For example, if the current node 123
in Figure 1 is found to be a cover and 23 is a subcover, then nodes 23 and 234

are marked visited. Also, the procedure just described will not miss any prime
covers. If we use the same example, node 1234 will not be visited because the
current node 123 is a cover. If 34 is a subcover of the node 1234, it will be
visited at node 34 unless it is marked visited before it is reached in preorder.

As described above, we would like to �nd a cover node in the ECF as
close as possible to any of the root nodes. This can be accomplished by
performing an additional step before the ECF is formed. The row vectors,
gr�, are sorted based on the number of 1's in descending order. The following

example provides information about the computation saved at the expense of
sorting.

Example Suppose a reduced matrix G1 is

G1 =

0
BBBBBBBBBBBB@

0 0 1 0
1 1 0 1
1 0 1 1
0 1 1 0
0 1 1 0
0 0 0 1
1 1 0 0
0 1 1 1

1
CCCCCCCCCCCCA

and Ga

1 =

0
BBBBBBBBBBBB@

0 0 1 0
0 0 0 1
0 1 1 0
0 1 1 0
1 1 0 0
1 1 0 1
1 0 1 1
0 1 1 1

1
CCCCCCCCCCCCA

Gd

1 =

0
BBBBBBBBBBBB@

1 1 0 1
1 0 1 1
0 1 1 1
0 1 1 0
0 1 1 0
1 1 0 0
0 0 1 0
0 0 0 1

1
CCCCCCCCCCCCA

are two matrices sorted with gr� based on the number of 1's in ascending and
descending order, respectively. The number of nodes of the ECF for the three
matrices is 28 � 1 = 255. The following table shows the number of nodes

visited and the number of nodes visited which have the number of redundant
row vectors less than 2 for the three matrices:

Matrix Ga

1 G1 Gd

1

Number of nodes in ECF 255 255 255
Number of nodes visited 70 36 21

Number of nodes visited with
< 2 redundant row vectors

33 24 16

Percentage 47.1% 66.7% 76.2%

The table also shows the percentage of the cover nodes visited with less than

two redundant row vectors. This indicates that the computing time is sig-
ni�cantly reduced with Gd

1, a sorted matrix of the row vectors based on the
number of 1's in descending order.

Description of the new algorithm The new algorithm is designed for
reducing the number of row vectors needed to �nd prime covers for the SCP (3).

7

The reduction of the row vectors inG will reduce the size of the corresponding
ECF formed by the row vectors. The following is a step by step description of
the new algorithm:

1. Use the quick sorting algorithm to remove the duplicate row vectors from
the matrixG in the SCP (3). LetH= (hi

rj
)t�ni be the reduced matrix, in

which no two row vectors are equal, where t � s and the rth row and jth

column vectors are hr� = [hi
r1; h

i

r2; � � � ; h
i

rni
] and h�j = [hi1j; h

i

2j; � � � ; h
i

tj
]T ,

respectively.

2. (Lemma 2) For each pair (u; v), 1 � u 6= v � ni, test if h�u �h�v. If yes,

remove the column vector h�u from H. Let B= (bi
rj
)t�mi

be the further
reduced matrix, where mi � ni and the rth row and jth column vectors
are br� = [bi

r1; b
i

r2; � � � ; b
i

rmi
] and b�j = [bi1j; b

i

2j; � � � ; b
i

tj
]T , respectively.

3. Search for unit column vectors from b�j, 1 � j � mi. Let the unit column
vectors obtained are Ij1

r1
, I j2

r2
, � � �, Ijk

rk
, where I j1

r1
= b�j1 is a unit column

vector with the r1th element 1 and the other elements 0.

4. Assume that r1; r2; � � � ; rk are k di�erent numbers. Remove rows r1; r2; � � � ;
rk and the l columns with bi

rj
= 1, where r = r1; r2; � � � ; or rk and

j = j1; j2; � � � ; or jl from B to form a reduced matrix B1. Assume that
j1; j2; � � � ; jl are l di�erent numbers. Then B1 with dimension (t� k) �

(mi � l) is the constraint matrix to a newly reduced SCP, where l � k.

5. If l = mi, the set of br1�, br2�, � � �, brk� from B is the only prime cover
solution to the reduced SCP with the constraint matrix B, GO TO Step

12; otherwise it is part of the cover solution(s) found in the following
steps, CONTINUE.

6. Use the quick sorting algorithm to rearrange the row vectors of B1 based

on the number of 1's in the row vectors in descending order. Let D=
(di

rj
)(t�k)�(mi�l) be the new matrix and the rth row and jth column vec-

tors are dr� = [di
r1; d

i

r2; � � � ; d
i

r(mi�l)
] and d�j = [di1j; d

i

2j; � � � ; d
i

(t�k)j]
T , re-

spectively.

7. Form an ECF, as illustrated in Figure 1 for an example with (t� k) = 4
edits to the SCP with constraint matrix D. Each node of the ECF rep-

resents a set of row vectors from D, e.g., node 234 in Figure 1 represents
the set of row vectors d2�, d3�, and d4� from D.

8. Traverse the trees of the ECF in preorder. At each unvisited node, test

the set of row vectors to determine if it is a cover solution to the newly
reduced SCP. If it is, GO TO Step 9.

8

9. Identify the redundant row vectors of the cover solution. If the number of
the redundant row vectors is less than 2, the set of the nonredundant row
vectors is a prime cover solution. Otherwise new subcovers are obtained

by removing a redundant row vector one at a time and GO TO Step 9 for
each new subcover. If there is an unvisited node in the ECF corresponding
to one of the subcovers, mark the node and its o�spring as visited.

10. Skip the o�spring nodes of the cover node just identi�ed and GO TO
Step 8.

11. All the prime cover solutions, if any, to the SCP with constraint matrix

D are found. Trace back to the original indices in B of the row vectors
in the prime cover solutions in D and combine with br2�, � � �, brk� in Step
5 to form prime cover solutions to the SCP with constraint matrix B.

12. For each prime cover solution to the SCP with constraint matrixB, trace
back to the original indices inG of the row vectors in the cover solution. If
any row vector has duplicates, replace the row vector with each duplicate

to form a new prime cover solution to the SCP with constraint matrixG.

4. Implementation of the Algorithms and their Performance

The old set covering algorithm in the DISCRETE system was written in
FORTRAN 77. The new algorithm is implemented with C++ and bitwise

operations are used to �nd the cover solutions.
The intent of the new algorithm is for the application of the SCP used in edit

generation. Therefore, the computational experience discussed in this section
is based on edit generation examples. The computations were performed on a

Sun UltraSparc. The �rst example has 33 �elds and 252 explicit edits. One
of the 33 �elds is not an entering �eld for all 252 explicit edits. The following
table shows the dimensions of the constraint matrixG to the SCP (3) and the

number of matrices (under the heading \#") for each dimension listed, which
is also the number of entering �elds that have a constraint matrix with that
dimension.

dim(G) # dim(G) # dim(G) # dim(G) #
1� 12 1 11 � 2 1 16 � 2 2 30 � 2 2
40� 12 1 12 � 2 1 17 � 2 3 31 � 2 1
44� 12 1 13 � 2 2 25 � 2 4 55 � 2 1
2� 2 2 14 � 2 2 26 � 2 1 70 � 2 1
8� 2 2 15 � 2 3 27 � 2 1 - -

For example, there is an entering �eld that has the constraint matrix with
dimension 40 � 12. And it has 40 of the 252 explicit edits that has the �eld

9

entering and 12 value states for the �eld. The input data were repeated 100,
200, and 300 times to have a better measurement in seconds. Table 1 shows
the performance of the two algorithms and the new algorithm is about 166

times faster than the old algorithm.

Table 1. Performance of the Two Algorithms for Example 1

number of times
input data repeated

old algorithm
CPU time (seconds)

new algorithm
CPU time (seconds)

100 83.0 0.5
200 166.0 1.0
300 250.0 1.5

The second example uses the decennial census long form questionnaire.
It has 52 �elds and 523 explicit edits. Six of the 52 �elds are not entering
�elds for all 523 explicit edits. The following table shows the dimensions of

the constraint matrix G to the SCP (3) and the number of matrices for each
dimension listed.

dim(G) # dim(G) # dim(G) # dim(G) # dim(G) #
1� 14 1 28 � 3 1 34 � 3 3 39 � 3 3 58 � 3 1
29� 14 2 30 � 3 1 35 � 3 3 40 � 3 2 80 � 3 1
1� 3 10 31 � 3 1 36 � 3 2 41 � 3 1 84 � 3 1
3� 3 2 32 � 3 1 37 � 3 2 42 � 3 1 88 � 3 1
27 � 3 1 33 � 3 2 38 � 3 1 47 � 3 1 91 � 3 1

Table 2 shows the performance of the two algorithms. The new algorithm is
about 49 times faster than the old algorithm.

Table 2. Performance of the Two Algorithms for Example 2

number of times
input data repeated

old algorithm
CPU time (seconds)

new algorithm
CPU time (seconds)

100 66.0 0.9
200 132.0 2.7
300 198.0 3.8

5. Discussion and Summary

Most of the �elds have two value states in Example 1 and three in Example
2. However, the number of explicit edits which have the �elds entering can
be as many as 70 for Example 1 and 91 for Example 2. For instance, the

constraint matrix G with dimension 91� 3 in Example 2 has many duplicates
of row vectors. The maximum number of di�erent row vectors of the matrix is

10

23� 2 = 6. The number of nodes in the ECF with the old algorithm is 291� 1
and the maximum number of nodes with the new algorithm is 26 � 1 = 63.
The new algorithm requires additional computations in the order of 91 log 91

for sorting. Therefore, for a constraint matrix with dimension m� n the new
algorithm is very e�cient if m � 2n � 2. Also, Step 1 of the old algorithm
is not e�ective because there are so many duplicates of row vectors in the
matrix G and it is almost impossible to locate a unit column vector when

m � 2n � 2. Another advantage of the new algorithm is that it �nds the
prime cover solutions only. The redundant cover solutions found with the old
algorithm result in unnecessary computations of the edit generations in the
DISCRETE edit system.

References

[1] I. P. Fellegi and D. Holt. A systematic approach to automatic edit and
imputation. Journal of the American Statistical Association, 71:17{35,
1976.

[2] R. S. Gar�nkel, A. S. Kunnathur, and G. E. Liepins. Optimal imputation
of erroneous data: Categorical data, general edits. Operations Research,
34:744{751, 1986.

[3] R. S. Gar�nkel and G. L. Nemhauser. Integer Programming. John Wiley
& Sons, New York, 1972.

[4] W. E. Winkler. Set-covering and editing discrete data. Technical report,
Bureau of the Census, 1997.

11

