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Abstract

Many seasonal adjustment procedures decompose time series into trend, seasonal, irregular
and other components using simple non-seasonal �nite moving-average trend �lters. This
report considers the design of such �lters, both in the body and at the ends of series, based
on speci�ed criteria and simple dynamic models operating locally within the span of the
�lter.

In the body of the series a exible family of �nite moving-average trend �lters is developed
from speci�ed smoothness and �delity criteria. These �lters are based on local dynamic
models and generalise the standard Macaulay and Henderson �lters used in practice. The
properties of these central �lters are determined and evaluated both in theory and in
practice.

At the ends of the series the central moving-average trend �lter used in the body needs to
be extended to handle missing observations. A family of end �lters is constructed using
a minimum revisions criterion and based on the local dynamic model operating within
the span of the central �lter. These end �lters are equivalent to evaluating the central
�lter with unknown observations replaced by constrained optimal linear predictors. Two
prediction methods are considered; best linear unbiased prediction (BLUP) and best linear
biased prediction where the bias is time invariant (BLIP). The BLIP end �lters generalise
those developed by Musgrave for the central X-11 Henderson �lters and include the BLUP
end �lters as a special case.

The properties of these end �lters are determined both in theory and practice. In particular,
they are compared to the Musgrave end �lters used by X-11 and to the case where the
central �lter is evaluated with unknown observations predicted by global ARIMA models.
The latter parallels the forecast extension method used in X-11-ARIMA.

Keywords: Moving-average �lters; local trend estimation; dynamic models; �delity; smooth-
ness; minimum revisions; best linear unbiased prediction; best linear biased prediction;
X-11; seasonal time series; seasonal adjustment.
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Preface

The origins of this research project began in the early 1990's having been stimulated to a
large extent by our contribution to the discussion of Cleveland et al. (1990) (see Gray and
Thomson (1990)). Following some prior development work, the project bene�ted in 1993
from two research grants. An application to the New Zealand Foundation for Research
Science and Technology made in 1992 was successful and the second author was awarded a
Research Fellowship at the US Bureau of the Census which he held for six months during
1993 and 1994. Both forms of research support were important, but the period spent at the
US Bureau of the Census with their Time Series Group proved particularly invaluable. Our
ongoing interactions with that group and with sta� within Statistics New Zealand continue
to provide us with an important source of research support and guidance for which we are
most grateful.

To a large extent the title reects the emphasis of our initial ideas. We had thought that
once we developed better central �lters, end �lter design would be straightforward using
best linear unbiased prediction and the resulting BLUP end �lters would be an improvement
on X-11 end �lters. To our surprise X-11 end �lters often had smaller revisions than the
BLUP end �lters. This lead us to study Musgrave's work more closely (see Musgrave (1964)
and Doherty (1991)) and develop BLIP end �lters based on best linear biased prediction
where the bias is time invariant. The investigation of BLIP end �lters took more time than
we had anticipated and was a contributing factor to the delay in the publication of this
report.

The work reported here constitutes a beginning and much remains to be done including
more comprehensive case studies and further analytical development. An ultimate objective
is the construction of a robust semi-parametric seasonal decomposition procedure which
might better handle the more volatile time series experienced by countries such as New
Zealand. This is unlikely to be straightforward. Indeed, our preliminary experience suggests
that embedding these �lters within a seasonal adjustment framework such as X-11 will be
a challenging exercise if signi�cant gains are to be realised.

This research project was partially supported by the New Zealand Foundation for Research
Science and Technology (Project Number VIC-93-36-039). The second author also grate-
fully acknowledges support provided by an ASA/NSF/Census Research Fellowship which
he held at the US Bureau of the Census. In particular, both authors wish to record their
gratitude to Dr David Findley of that organisation for the very helpful advice and en-
couragement he has provided throughout the project. The data was kindly provided by
Statistics New Zealand and the US Bureau of the Census.
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1 Introduction

This report is concerned with the design of local trend estimation �lters for non-seasonal
time series using �nite moving-averages. A particular objective is to try and improve
current methods of trend estimation within seasonal adjustment procedures where non-
seasonal trend �lters play a key role, especially at the ends of series. For example, the
seasonal adjustment procedure X-11 (see Shiskin et al. (1967)) uses trend �lters originally
developed by Henderson (1916) whereas the seasonal-trend decomposition procedure STL
uses loess �lters (see Cleveland et al. (1990)). However local trend estimation is also
important in its own right and is routinely used, for example, in the analysis of �nancial
and other time series.

The design and use of �nite moving-averages for local trend estimation has a long history,
particularly within the actuarial literature where it is referred to as graduation. The
seminal work of Henderson (1916) and Macaulay (1931) is an example of the latter. Useful
background material on this topic from a time series perspective is also given in Kendall
(1973) and the references contained therein. Much of this development has been posited
on simple structural models of the form

�(yt) = Tt + St + �t (1)

where yt denotes the observed time series, �(x) denotes some appropriate transformation,
Tt denotes the trend, St the seasonal and �t the irregular or noise. Typically the unobserved
trend and seasonal components are assumed to evolve slowly with more abrupt changes,
including calendar e�ects, handled via simple adjustments. Recently, after somewhat of a
lull, more attention has been focused on both structural models of the form (1) and the
need for improved �nite moving-average trend �lters.

Structural models have been exploited in a number of global parametric seasonal adjust-
ment procedures. These include BAYSEA (Akaike (1980)) and other related model-based
methods (see Gersch and Kitagawa (1983), Harvey (1989) and Schlicht (1981) for exam-
ple). Bell and Hillmer (1984) also provide a useful review and discussion of unobserved
component seasonal ARIMA models. An explicit and important feature of much of this
work is the use of criteria that optimally weight speci�c measures of �delity and trend
smoothness. The latter is in the spirit of Henderson (1924) and Whittaker (1923).

Impetus to the design of �nite moving-average �lters has recently come from work in scat-
terplot smoothing and local regression models. In particular the work of Cleveland (1979)
has led to the development of lowess and loess which, in the time series context, constitute
�nite moving-average trend �lters. The seasonal decomposition procedures SABL (Cleve-
land et al. (1978)) and more recently STL, are built around the non-seasonal lowess and
loess �lters respectively. See also the discussion following Cleveland et al. (1990) and, in
particular, Gray and Thomson (1990). Other work on �nite moving-average �lter design
has been motivated by the need to control the revision of trend estimates at the ends of
series as new data comes to hand (see Dagum and Laniel (1987), Dagum (1996), Doherty
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(1991), Kenny and Durbin (1982), Laniel (1986) and Wallis (1983) for example). The work
of Cholette (1981) and Leser (1963) is also of interest. They build �nite moving-average
trend �lters for seasonal time series using a criterion based approach that involves explicit
measures of both �delity and smoothness.

In practice the use of �nite moving-average trend �lters in seasonal adjustment and trend
estimation remains the dominant technology. This emphasis needs some justi�cation and
explanation. Firstly, the use of moving data windows forms the basis for simple non-
parametricmodels that apply locally and whose assumptions can, in many cases, be justi�ed
by simple graphical analysis. As a consequence, they have served o�cial statisticians
and many others well over a long period of time. Secondly, they directly control and
limit the revisions to historical trend values as additional data is obtained. This is an
important and over-riding requirement for most o�cial statisticians. Finally, moving local
non-parametric models have the potential to capture both evolutionary change and non-
evolutionary structural change in time series in a more direct and transparent way than
global parametric models. However the two technologies should not be seen as competing.
The non-parametric local procedures are frequently used as exploratory tools prior to the
�tting of a more sophisticated parametric global model.

In the case of economic and o�cial time series it is important to identify trends and
their turning points accurately and so �lter design at the ends of the series is particularly
important. The construction of end �lters from the ones that apply in the body and the
principles by which they should be designed have been discussed by a number of authors
including Cleveland (1979), Doherty (1991), Kenny and Durbin (1982), Geweke (1978),
Greville (1979), Kendall (1973), Lane (1972), Laniel (1986), Musgrave (1964), Pierce (1980)
and Wallis (1983). In the case of X-11 the basis of the Henderson �lters that apply in the
body of the series is relatively well understood, but the derivation of the �lters that apply
at the ends of the series is less clear and has been the subject of some debate in the
literature (see Kenny and Durbin (1982) and Doherty (1991) for example). Because of
known defects such as failure to pass linear trends at the ends of series, the X-11 end �lters
are often avoided in practice by using the original series augmented by predictions, and
then �ltering using the central �lters. In the absence of this device, the X-11 end �lters
continue to be used in X-11 despite their apparent shortcomings.

The principle of using prediction at the ends of series seems a key one which goes back to
DeForest (1877). The review article by Cleveland (1983) provides a useful discussion on this
and other issues in seasonal adjustment. See also Geweke (1978), Greville (1979) and Pierce
(1980). The X-11-ARIMA method, for example, uses relatively sophisticated ARIMA
models to provide predictions (see Dagum (1980)). This sophistication is in contrast to
the relatively unsophisticated local trend smoothing that goes on in the body of the series.
Moreover, by virtue of the order of di�erencing used, many of the ARIMA based models
e�ectively assume only evolving local linearity for the trend whereas the Henderson �lters,
for example, are based on local quadratic or cubic models. In the body of the series this
mismatch does not seem to have been a major cause for concern. However, at the ends,
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the use of higher order local polynomial trends appears to be one of the primary sources
of di�culty in terms of controlling revisions. These di�culties are typically alleviated in
practice by the use of prediction augmented methods such as X-11-ARIMA.

This report attempts to combine some of the virtues of the global parametric models
within the framework of a �nite moving-average trend estimation procedure. In particular
a consistent and exible family of �lters is developed which are derived from local dynamic
models that employ lower order polynomial trends and have stochastic error structures
that enhance short-term prediction at the ends of series. A major thrust of the paper is the
design of variants of standard moving-average trend �lters that are derived from speci�ed
�delity and smoothness criteria.
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2 Trend �lter design

We follow the conventional paradigm and consider a moving window of n = 2r+1 consec-
utive observations within which an estimate of the trend is to be calculated for the central
time point. This central reference point is chosen presumably because of symmetry and
because that is typically where the trend can be determined with greatest precision. At the
ends of the series the window will, by necessity, be truncated due to missing observations.
We �rst describe the form of the local dynamic model adopted and then consider �lter
design both in the body and at the ends.

2.1 Local dynamic model

Within the �nite window, model the observations as

yt = gt + �t (2)

where �t is white noise with variance �2 and the trend gt is given by

gt =
pX

j=0

�jt
j + �t: (3)

The zero mean stochastic process �t is assumed to be correlated, but uncorrelated with �t,
and �t, �2 are assumed to be not both zero. In particular we consider the situation where the
�j and �2 are parameters local to the window, but p, n and the model for �t=� involve global
parameters which are constant across windows. Thus, although the parameters involved
with the mean and variance of yt vary across windows, the autocorrelation structure of yt
will be a function of time invariant parameters in addition to time itself.

Loosely speaking, the �nite polynomial is intended to capture deterministic low order
polynomial trend whereas �t is intended to capture smooth deviations from the polynomial
trend. Note that it is the incorporation of �t which distinguishes this local model from
the standard situation where it is zero. Among the anticipated bene�ts of including �t are
lower values of p and improved performance at the ends of series.

Because the window is not likely to be large the model will need to involve as few parameters
as possible on the one hand, while allowing for a su�ciently exible family of forms for gt
on the other. With these points in mind we choose to model �t as a (possibly integrated)

random walk with initial value zero. In particular, if � denotes the backwards di�erence
operator satisfying �Xt = Xt�Xt�1, we have in mind the situation where �p+1gt = �p+1�t
is a zero mean stationary process. In keeping with this rationale, we shall always assume
that the levels of integration of the random walk components that make up �t do not exceed
p + 1.

This seems an appropriate and parsimonious model which should account for smooth de-
viations from the deterministic polynomial trend component. It also provides a dynamic
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trend model for gt which is essentially of the same form as that used in the ARIMA struc-
tural models that have been successfully applied to economic and o�cial data. (See Bell
(1993) and Kenny and Durbin (1982) for example.) Note that the conventional model is
recovered by eliminating the random walk component �t which is achieved by setting its
innovation variance to zero.

In the local linear case p = 1 a simple dynamic model for gt is given by

�gt = � + �t (4)

where � and g0 are constants, and �t, �t are mutually uncorrelated white noise processes
with di�erent variances. In terms of (3) the �j (j= 0, 1) are given by g0, � respectively and
�t =

Pt
j=1 �j. The local constant case p = 0 is the same as (4), but with � constrained to

be zero. For the local quadratic case p = 2 a suitable dynamic model for gt is

�gt = ht + �t; �ht = � + �t (5)

where �, g0 and h0 are constants, and �t, �t, �t are mutually uncorrelated white noise
processes all with di�erent variances. Again this can be represented in the form (3) with
the �j involving g0, h0, � and �t =

Pt
j=1 �j +

Pt
j=1

Pj
k=1 �k. In this case �t comprises two

components, one a simple random walk and the other a doubly integrated random walk.

Clearly many other dynamic speci�cations for gt and hence �t are possible. For example,
the constant � in both (4) and (5) could be allowed to depend on t and evolve as a simple
random walk without drift. However this leads to an additional random walk component
being incorporated in �t and with a further level of integration. Given the typically modest
number of observations in the window and the need to determine the variances of the
various random walk components in �t, it is important to keep the models as parsimonious
as possible. As a consequence we have focused our attention on models for �t which involve
one or at most two variance parameters. Furthermore, we have chosen to keep the level of
integration of these components as low as possible. This is in keeping with the empirical
evidence for ARIMA structural models where the variances of the higher-order random
walk innovations are typically very small by comparison to the simple random walk term.
Thus, for example, setting the variance of �t equal to zero in (5) yields a simpler version
of this model which may prove to be more useful in practice.

Since the global parametric ARIMA structural models can be viewed as generalisations
of exponential smoothing models (see Harvey (1989)), the models proposed here can be
regarded as variants of exponential smoothing models tailored to a �nite window. Note
that simple truncated exponential smoothing models were considered for gt in Kenny and
Durbin (1982) and met with some success, especially for current trend estimates.
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2.2 In the body

Given a �nite window of width n = 2r + 1 points centred at time point t in the body of
the time series, we now choose to estimate gt by the �nite moving-average

ĝt =
rX

s=�r

wsyt+s (6)

where the ws are constrained by the requirement that

Efĝt � gtg = 0

and yt follows the local dynamic model given by (2) and (3). Thus ĝt is an unconditionally
unbiased predictor of gt. Note that this condition is equivalent to the requirement that the
ws satisfy

rX
s=�r

ws = 1;
rX

s=�r

sjws = 0 (0 < j � p) (7)

so that the moving average �lter passes polynomials of degree p.

To assist in the choice of �lter weights wj we consider the criteria

F = Ef(ĝt � gt)
2g; S = Ef(�p+1ĝt)

2g (8)

where F measures the �delity of ĝt as an estimator of gt and S measures its smoothness. Here
the expectation operator is with respect to the particular local dynamic model adopted.

The smaller F is the better ĝt is as an estimator of gt whereas the smaller S is the closer the
�p+1ĝt are to zero and the closer ĝt is to a smooth polynomial of degree p in t. In particular,
the measure of smoothness S has been explicitly tailored to the degree of curvature (the
degree of the underlying deterministic polynomial local trend) present in the data. Note
that F is the familiar mean squared error criterion whereas S, appropriately normalised,
is referred to as the R2

p+1 criterion in the actuarial graduation literature. See London
(1985) for example and also Ramsay (1991) who considered minimising S in the presence
of correlated yt.

In the spirit of Henderson (1924) and Whittaker (1923) we further de�ne the compromise
criterion

Q = �F + (1 � �)S (9)

where 0 � � � 1 and � is some user speci�ed value. Note that Q includes both F and S

as special cases. We shall adopt the principle that the smaller these three criteria are the
better and determine the �lter weights that optimise Q.

While minimising F is clearly a reasonable criterion to adopt, it is not so clear that this is
appropriate for S. It could be argued that the aim should be to simply control the level
of S rather than minimise it. However this approach again leads to Q as will be shown in
Theorem 3.
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Each local dynamic model describes data with its own intrinsic �delity and smoothness.
Thus the measures de�ned in (8) are model speci�c and would not normally be used to
compare across di�erent, possibly competing, models. Alternative measures that can be
used to compare across models and which will be used later are now de�ned. First note
that the identity �lter with coe�cients w0 = 1 and ws = 0 (s 6= 0) satis�es (7) whatever
the choice of p in the local dynamic model. Thus, for any given window, the �delity of the
data yt to the trend gt is given by

F0 = Ef(yt � gt)
2g = �2

and the smoothness of yt as an estimate of the trend is given by

S0 = Ef(�p+1yt)
2g = Ef(�p+1�t)

2g+ Ef(�p+1�t)
2g

= Ef(�p+1�t)
2g+ 2p+2Cp+1�

2:

The normalised quantities

F � =
F

F0

; S� =
S

S0
(10)

measure the gains in �delity and smoothness of ĝt relative to the �delity and smoothness
of the data and can be used to compare across models. If �t = 0 then F � and S� are
identical to the R2

0 and R2
p+1 criteria respectively that are used in the actuarial graduation

literature. Note also that replacing F by F � and S by S� introduces no essential change in
Q apart from a simple one-to-one transformation of �.

A primary advantage of de�ned measures of �delity and smoothness is that we can now
begin to quantify and classify the e�ects of competing moving-average trend �lters and to
consider trade-o�s between �delity and smoothness. In particular we can determine the
values of wj that satisfy (7) and minimise either F , S or Q. Before establishing these
general results we �rst consider some special cases.

Consider minimising F in the case where gt is the conventional model given by (3) with �t
equal to zero. From the Gauss-Markov theorem, minimising F subject to (7) is equivalent
to estimating gt by

ĝt =
pX

j=0

�̂jt
j

where the estimates �̂j are obtained from �tting the local polynomial model

yt+s =
pX

j=0

�j(t+ s)j + �t+s (�r � s � r)

by ordinary least squares. The latter procedure was initially advocated by Macaulay (1931)
and forms the basis of many trend estimation �lters. (See Kendall (1973) and Cleveland
(1979) for example.) Thus minimising F with �t equal to zero yields the Macaulay �lters
many of which are tabulated in Kendall (1973). The case where �t is not equal to zero
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leads to local polynomial �tting using generalised least squares. An example of the latter
is loess (see Cleveland et al. (1990)) which uses the tricube function for least squares
weights. In general we shall refer to trend �lters obtained by minimising F as Macaulay

�lters irrespective of the choice of local dynamic model.

Again assume that the model is given by (3) with �t equal to zero and consider the case
p = 2. Then minimising S gives the central Henderson �lters tabulated, for example,
in Dagum (1980). Our proof that this is so follows the treatment given in Kenny and
Durbin (1982) with some key di�erences, the most important of which is that the ws are
not assumed to be symmetric �a priori. Given these more general assumptions (7) and S

become
rX

s=�r

ws = 1;
rX

s=�r

sws = 0;
rX

s=�r

s2ws = 0 (11)

and

S = �2
r+3X
s=�r

(�3ws)
2 (12)

respectively. Here �2 is the variance of �t and the ws satisfy the boundary conditions

ws = 0 (s = �(r + 1);�(r + 2);�(r + 3)): (13)

The criterion S can now be minimised with respect to the ws (�r � s � r) using Lagrange
multipliers to account for the constraints given by (11). This yields

�6ws+3 = a1 + a2s+ a3s
2 (�r � s � r) (14)

where the aj denote the Lagrange multipliers and these equations must now be solved
subject to the boundary conditions (13). As in Kenny and Durbin (1982) the solution to
(14) is a polynomial in s of order 8 with roots �(r + 1), �(r + 2), �(r + 3) and so

ws = ((r + 1)2 � s2)(r + 2)2 � s2)(r + 3)2 � s2)(b1 + b2s+ b3s
2) (15)

with the bj determined from (11). The ws obtained are the central Henderson �lters used
in X-11.

Note that the Henderson �lters derived above follow directly from a simple measure of
smoothness and the assumption that the local model is quadratic (rather than cubic).
No symmetry has been assumed, this property being a consequence of the optimisation
process. The fact that the �lter also passes a cubic is to be regarded as serendipitous and
arising from the fact that this optimal central �lter is symmetric. This latter property will
not hold at the ends of the series where the �lters are asymmetric. In general we refer

to trend �lters obtained by minimising S as Henderson �lters irrespective of the choice of

local dynamic model.

We now determine the �lter weights ws that optimise F , S and Q in the case where �t is
not necessarily zero. Clearly it is su�cient to consider the compromise criterion Q since F
and S can be recovered from Q by setting � = 0 or � = 1 respectively.
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Further notation is needed to establish and present the results. For the local dynamic
model speci�ed by (2) and (3) de�ne covariance matrices 
 and � with typical elements


jk = cov(�t+j � �t; �t+k � �t); �jk = cov(�p+1�t+j;�
p+1�t+k) (16)

where �r � j; k � r and t indexes the central time point of the window concerned.
Furthermore, de�ne the n� (p+1) dimensional matrix C and the p+1 dimensional vector
c by

C =

0
BBBBBBBB@

1 �r : : : (�r)p

1 �r + 1 : : : (�r + 1)p

: : : : : :

: : : : : :

1 r � 1 : : : (r � 1)p

1 r : : : rp

1
CCCCCCCCA
; c =

0
BBBBBBBB@

1
0
:

:

0
0

1
CCCCCCCCA

(17)

and let �2Bk denote the covariance matrix of a sequence of n observations from the sta-
tionary moving average process �k�t. Observe that Bk does not involve �2 the variance
of �t. Finally, let I denote the n-dimensional identity matrix. We now have the following
result.

Theorem 1 Let yt follow the local dynamic model speci�ed by (2) and (3). Then the values

of ws that minimise Q subject to (7) are given by w = (w�r; : : : ; wr)
T where

w = E�1� C(CTE�1� C)�1c

and

E� = �(�2I+
) + (1� �)(�2Bp+1 + �):

Proof

First note that (7) is equivalent to the requirement that w satisfy

CTw = c: (18)

Given this condition,

rX
s=�r

wsyt+s � gt =
rX

s=�r

ws(�t+s � �t) +
rX

s=�r

ws�t+s

and
rX

s=�r

ws�
p+1yt+s =

rX
s=�r

ws�
p+1�t+s +

rX
s=�r

ws�
p+1�t+s:

These yield the quadratic forms

F = wT (�2I+
)w; S = wT (�2Bp+1 + �)w (19)
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and

Q = wTE�w: (20)

We now seek to minimise Q subject to (18).

Using Lagrange multipliers and di�erentiating with respect to the ws yields

w = E�1� C�

where � is the vector of Lagrange multipliers. The constraint (18) yields

� = (CTE�1� C)�1c

and the result follows. 2

Given a local dynamic model, it is of interest to consider the nature of the variation of
the optimal F and S with �. The following result shows, in particular, that the optimal
measures of �delity F and smoothness S decrease and increase respectively as � increases.
Thus the �lter with the best smoothness measure S has the worst �delity measure F and
vice-versa.

Theorem 2 Let yt follow the local dynamic model speci�ed by (2) and (3). If w is given

by Theorem 1 and F , S given by (8) then

�
dF

d�
+ (1 � �)

dS

d�
= 0;

dF

d�
� 0;

dS

d�
� 0

where 0 � � � 1. In particular F and S have zero gradients at � = 1 and � = 0 respectively.

Proof

Let
A = �2I+
; B = �2Bp+1 + �

so that
F = wTAw; S = wTBw

and w is given by Theorem 1. Di�erentiating F and S with respect to � we obtain

dF

d�
= �2uT (I�P)KT

�AK�v;
dS

d�
= �2uT (I�P)KT

�BK�v

where

u = KT
� (A�B)K�v

v = KT
�C(C

TE�1� C)�1c

P = KT
�C(C

TE�1� C)�1CTK�

and E�1� =K�K
T
� . Thus

�
dF

d�
+ (1� �)

dS

d�
= 0 (21)
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and
dS

d�
�
dF

d�
= 2uT (I�P)u � 0 (22)

since P is a projection matrix. From (21) we observe that F has gradient zero at � = 1
and S has gradient zero at � = 0. Moreover, from (21) and (22), we obtain

0 � �(
dS

d�
�

dF

d�
) =

dS

d�
(0 < � � 1)

and

0 � (1 � �)(
dF

d�
�

dS

d�
) =

dF

d�
(0 � � < 1)

as required. 2

As mentioned before, if the aim is to control or impose smoothness on the trend estimate
ĝt, then an alternative strategy might be to minimise F subject to (7) and a given level of
smoothness S = s. This is equivalent to minimising Q as we shall see in Theorem 3.

First, however, note that minimising F subject to (7) alone determines the best linear
unbiased predictor (BLUP) of gt from the observations yt in the window. Thus, minimising
F subject to (7) and S = s gives a constrained BLUP for gt. This estimator will have the
desired smoothness property, but at the cost of a higher value of F than before. Now let
s0 denote the smoothness of the optimum smoothness �lter and s1 denote the smoothness
of the optimum �delity �lter so that

s0 = wT
0 (�

2Bp+1 + �)w0; s1 = wT
1 (�

2Bp+1 + �)w1

where w0 and w1 are the values of w given by Theorem 1 for � = 0 and � = 1 respectively.
If a trend estimator ĝt is sought with better smoothness properties then the user will need
to constrain the smoothness S to lie in the interval [s0; s1].

Theorem 3 Let yt follow the local dynamic model speci�ed by (2) and (3). Then minimising

F subject to both (7) and S = s in [s0; s1] is equivalent to minimising Q subject to (7) alone

where � is a solution of

cT (CTE�1� C)�1CTE�1� (�2Bp+1 + �)E�1� C(CTE�1� C)�1c = s;

E� is given by Theorem 1 and � lies in [0; 1]. The minimisations are with respect to the

�lter weights ws.

Proof

We seek to minimise
~Q = F + �(S � s)� 2�T (CTw � c)

where the scalar � and the vector � are Lagrange multipliers. Di�erentiating and solving
the resulting equations yields

w = ~E�1� C(CT ~E�1� C)�1c

17



where � is a solution of

cT (CT ~E�1� C)�1CT ~E�1� (�2Bp+1 + �)~E�1� C(CT ~E�1� C)�1c = s (23)

and
~E� = (�2I+
) + �(�2Bp+1 + �):

In almost exactly the same way as was done in Theorem 2, it can be shown that the left
hand side of (23) is a non-increasing function of � whose limit, as �!1, is s0. Moreover
� = 0 yields s = s1. Since s0 � s � s1 we conclude that a solution of (23) can be found for
� � 0. The result of Theorem 1 is now retrieved by setting � = 1=(1 + �). 2

In fact, in much the same way as for Theorem 3, it can be shown that minimising smooth-
ness subject to (7) and a given level of �delity F = f is also equivalent to minimising Q.
However this seems a less relevant criterion to adopt in practice.

In practice �t will comprise one or other or possibly the sum of the random walk components
�
(1)
t and �

(2)
t where

�
(1)
t =

tX
j=1

�j; �
(2)
t =

tX
j=1

jX
k=1

�k (24)

and �t, �t are mutually uncorrelated white noise processes with E(�2t ) = �2� , E(�
2
t ) = �2�.

If �t is a linear combination of random walk components such as the above whose levels of
integration do not exceed p+1, then � will be a linear combination of covariance matrices
Bk where k is a nonnegative integer such that k � p.

The matrix
 can be constructed directly from the covariance matrices of the random walk
components that make up �t. However some simpli�cation is possible as we now show for
the two cases of primary interest.

In the case of model (4) or (5) with �2� set to zero, �t is just �
(1)
t . Then we have

�
(1)
t+s � �

(1)
t =

8>><
>>:
Pjsj

j=1 �t+j (s > 0)
0 (s = 0)

�
Pjsj

j=1 �t+1�j (s < 0)

and 
 = 
(1) has typical element



(1)

jk = �2�min(jjj; jkj) (�r � j; k � �1; 1 � j; k � r) (25)

and zero otherwise.

Now suppose that �t = �
(2)
t as would be the case for model (5) with �2� set to zero and

consider the quadratic form

wT
w = Ef(
rX
�r

ws(�
(2)
t+s � �

(2)
t ))2g:
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For s > 0

�
(2)
t+s � �

(2)
t =

sX
j=1

t+jX
k=1

�k

= s
tX

k=1

�k + s�t+1 +
s�1X
j=1

jX
k=1

�t+1+k (26)

and for s < 0

�
(2)
t+s � �

(2)
t = �

jsj�1X
j=0

t�jX
k=1

�k

= s
tX

k=1

�k +
jsj�1X
j=1

jX
k=1

�t+1�k (27)

where the last term on the right hand side of (26) and (27) is interpreted as zero when
jsj = 1. The �rst term on the right hand side of (26) and (27) is eliminated by the �lter
since

Pr
s=�r sws = 0 and the remaining terms of (26) and (27) are uncorrelated. Since the

weights ws satisfy (18) we obtain

wT
w = �2�(
rX

s=1

sws)
2 +wT	w

=
�2�

2
((

rX
s=1

sws)
2 + (

rX
s=1

sw�s)
2) +wT	w

where 	 has typical element

	jk = �2�

min(jjj;jkj)X
s=1

(jjj � s)(jkj � s) (�r � j; k � �1; 1 � j; k � r) (28)

and zero otherwise. Thus, when �t = �
(2)
t , the matrix 
 is given by 
(2) which has typical

element



(2)

jk = 1

2
�2�jjjjkj+	jk (�r � j; k � �1; 1 � j; k � r) (29)

and zero otherwise.

Note, in particular, that 
(1) and 
(2) do not depend on t, the absolute value of time
indexing the origin of the window. This natural and important invariance property holds
for general 
 and is a consequence of (7) and the assumption that the levels of integration
of the random walk components that make up �t do not exceed p+ 1.

So far no requirement has been made that the �lters we consider have symmetric weights.
The following result shows that the �lter with weights given by Theorem 1 is symmetric.

Theorem 4 The values of ws given by Theorem 1 correspond to a symmetric �lter of length

n = 2r + 1.
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Proof

Let u = (w�1; : : : ; w�r)T , v = (w1; : : : ; wr)T and dj = (1j ; 2j; : : : ; rj) for j an integer such
that 0 � j � p.

Consider �rst the �delity measure F and the particular case where �t = �
(2)
t . Let the matrix



(2)
+ have typical element 
(2)

jk (1 � j; k � r). Then the constraints (18) become

w0 + dT
0 u+ dT

0v = 1

dT
j u = dT

j v (0 < j � p)

and F can be written as

�2(w2
0 + uTu + vTv) + �2�(

1

2
(dT

1u)
2 + 1

2
(dT

1v)
2 + uT


(2)
+ u+ vT


(2)
+ v):

Note that both the constraints and F are symmetric in the vectors u and v. A similar
argument holds for more general forms of �t involving sums of integrated random walks of
any �nite order.

Now consider the smoothness measure S. Note that S is of the form

S = wTAw

where A is a Toeplitz matrix with spectral density f(!) and typical element

Ajk =
Z �

��
ei(j�k)!f(!)d! (�r � j; k � r):

Thus

S =
Z �

��
jw0 +

rX
j=1

uje
�ij� +

rX
j=1

vje
ij�j2f(!)d!:

is also symmetric in the vectors u and v. Since Q = �F + (1 � �)S inherits the same
symmetry property we conclude that the value of w minimising Q satis�es u = v and
corresponds to a symmetric �lter. 2

The properties of these �lters are considered and discussed in Section 3.1.

2.3 At the ends

Consider now the ends of the series and, in particular, the most recent time points. Here
the need for high quality estimates of the trend and hence the seasonal is of dominating
and over-riding importance.

Various strategies have been adopted at the ends of series. For exampleMacaulay advocates
using a best-�tting polynomial determined for the last complete window to provide the
required trend values at the ends of the series. This approach is also adopted by Kendall
(1973) and by Cleveland (1979) for the loess and lowess smoothers. Thus the moving
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window paradigm used in the body of the series is supplanted by a static window paradigm
at the ends. This inconsistency can lead to smoothness problems at the ends of the series
(see Gray and Thomson (1990)). The alleviation of these di�culties no doubt lies behind
Macaulay's suggestion (Macaulay (1931), Chapter VIII) that the �tted polynomial for the
last complete window should share a common slope with the most recent trend estimates.
However this suggestion is not adopted by either Kendall (1973) or Cleveland (1979) for
their end �lters.

An alternative strategy is to maintain the same moving window paradigm at the ends
of the series as was adopted in the body. This consistency comes at a price since the
windows adopted at the ends now include future unknown observations. How these missing
observations should be treated is open to question.

A common and natural approach involves forecasting the missing values, either implicitly
or explicitly, and then applying the desired central �lter. The forecasting methods used
range from simple extrapolation to model based methods, some based on the local trend
model adopted, others based on global models for the series as a whole. The latter include
the �tting of ARIMA models to produce forecasts (see Dagum (1980) in particular). As
noted in Section 1, the principle of using prediction at the ends of series seems a key one
which goes back to DeForest (1877). See also the discussion in Cleveland (1983), Greville
(1979) and Wallis (1983).

Yet another way to handle the missing values in the window is to employ additional criteria
speci�c to the ends of the series. An important requirement, especially among o�cial
statisticians, is to keep seasonal adjustment revisions and therefore trend revisions to a
minimum as more data comes to hand. Thus, at the ends of series, a natural criterion to
consider is

Ef(ĝt � ~gt)
2g = Ef(

rX
s=�r

wsyt+s � ~gt)
2g (30)

where ~gt is a predictor of ĝt based on past data and the ws are the weights of the central
�lter that applies once all the data is to hand. In general, given a history of observations
y1; : : : ; yT , it is evident that (30) is minimised when

~gt =
rX

s=�r

wsŷt+s (31)

and ŷt+s = E(yt+sjy1; : : : ; yT ) denotes the best predictor of yt+s in the usual mean squared
error sense. Thus there is a close relationship between the minimum revisions approach
and that of forecasting the missing values in the window.

The minimum revisions strategy appears to have been originally proposed by Musgrave
(1964) for the case where ~gt is restricted to be linear in the observations within the window.
(See the discussion in Doherty (1991).) This approach has also been adopted by Lane
(1972), Laniel (1986) and will also be adopted here. Geweke (1978) and Pierce (1980)
established the result (31) for the case where ~gt is linear in past values of the time series
(not just those within the window) and where the time series follows an appropriate global
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model. However the argument leading to (31) shows that in general ŷt+s, and hence ~gt,
need not necessarily be linear in the observations.

The expectation operator applying in (33) is with respect to the global or local model
adopted for the time series concerned. In this regard note that a local model is implicitly
used by the X-11-ARIMA procedure (Dagum (1980)) to determine trends from forecast
augmented data where the forecasts are based on a global parametric model. Although this
mismatch does not seem to matter in practice, in principle one would like to be consistent
and work within the same model framework. This is our objective here.

In this paper we adopt the minimum revisions strategy based on the moving window
paradigm and the local dynamic trend model of Section 2.1. At the ends of the series we
choose to predict ĝt =

Pr
s=�r wsyt+s by the linear predictor

~gt =
qX

s=�r

usyt+s (32)

which minimises
Rq = Ef(ĝt � ~gt)

2g (33)

where q = T � t with 0 � q < r, T denotes the time point of the last observation and
the us are dependent on q. We shall consider two cases. The �rst imposes the condition
that ~gt be an unbiased predictor of

Pr
s=�r wsyt+s. The second weakens this requirement by

considering biased predictors such as those developed by Musgrave (1964) for X-11 (see in
particular Doherty (1991)).

2.3.1 Unbiased predictors

If ~gt is to be an unbiased predictor of
Pr

s=�r wsyt+s then the us must satisfy

qX
s=�r

us = 1;
qX

s=�r

sjus = 0 (0 < j � p): (34)

Thus the asymmetric moving average �lter implied by (32) passes polynomials of degree p.
Moreover Rq is now given by

Rq = vTE1v (35)

where v has typical element

vs =

(
ws � us (�r � s � q)
ws (q < s � r)

(36)

and the central �lter weights ws that apply in the body of the series satisfy (7).

For each q, appropriate values of the us can now be determined by minimising Rq subject
to (34). As we show below, this results in an end �lter that satis�es a particular form of
(31) involving optimal prediction.
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First consider predicting

Y =
rX

s=�r

�syt+s

from yt�r; : : : yt+q by a linear predictor of the form

Ŷ =
qX

s=�r

usyt+s

where q < r and the �s are arbitrary known values. Then, in terms of the local dynamic
model that applies in the window, Ŷ is the best linear unbiased predictor (BLUP) of Y if
the us are chosen so that E(Y � Ŷ ) = 0 (unbiased prediction error) and the mean squared
error criterion Ef(Y � Ŷ )2g is a minimum.

Furthermore, de�ne the n � (q + r + 1) matrix L1 and the n � (r � q) matrix L2 by the
relation

I = [L1;L2] (37)

where I denotes the n-dimensional identity matrix. We now establish the following result.

Theorem 5 Let yt follow the local dynamic model speci�ed by (2) and (3). Given � =
(��r; : : : ; �r)T and observations yt�r; : : : ; yt+q for 0 � q < r, the BLUP of

Pr
s=�r �syt+s isPq

s=�r usyt+s where u = (u�r; : : : ; uq)T is given by

u = LT
1 (I�GL2(L

T
2GL2)

�1LT
2 )�:

Here

G = E�11 �E�11 C(CTE�11 C)�1CTE�11 ;

E1 is E� de�ned in Theorem 1 evaluated at � = 1 and C is given by (17).

In particular the BLUP of
Pr

s=�r �syt+s is given by
Pr

s=�r �sŷt+s where ŷt+s is the BLUP

of yt+s for q < s � r and yt+s otherwise.

Proof

For Ŷ =
Pq

s=�r usyt+s to be an unbiased predictor of Y =
Pr

s=�r �syt+s the us must satisfy

qX
�r

sjus =
rX
�r

sj�s (0 � j � p): (38)

Given (38)

Y � Ŷ =
rX

s=�r

vs(�t+s � �t + �t+s)

where

vs =

(
�s � us (�r � s � q)
�s (q < s � r)

(39)
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and
rX
�r

sjvs = 0 (0 � j � p): (40)

In terms of the vs these conditions can be written as

LT
2 v = LT

2 �; CTv = 0 (41)

where v = (v�r; : : : ; vr)T and C is given by (17). We now need to minimise

Ef(Y � Ŷ )2g = vT (�2I+
)v = vTE1v (42)

subject to (41).

Using Lagrange multipliers, optimising with respect to the vs, and incorporating the con-
straints (41) yields the equations

v = E�11 C� +E�11 L2�

LT
2E

�1
1 C� + LT

2E
�1
1 L2� = LT

2 �

CTE�11 C� +CTE�11 L2� = 0

where �, � are the vectors of Lagrange multipliers. These together with (39) yield

u = LT
1 (I�GL2(L

T
2GL2)

�1LT
2 )�

as stated.

Now the BLUP of yt+s is obtained by setting � = 0 with the exception of the s-th element
which is set to unity. Then the BLUP of yt+s is given by

ŷt+s =

(
yt+s (�r � s � q)
hT
s y (q < s � r)

where hs is the s-th column of �LT
1GL2(LT

2GL2)�1LT
2 and y = (yt�r; : : : ; yt+q)T . Thus,

for arbitrary choice of �,

qX
s=�r

usyt+s = �T (I�GL2(L
T
2GL2)

�1LT
2 )

TL1y =
rX

s=�r

�sŷt+s

as required. 2

Since the vs in Theorem 5 satisfy (40), the same comments that were made concerning the
form of 
 following Theorem 3 apply here also. In particular, 
 and hence (42) do not

depend on t, the absolute value of time indexing the origin of the window. If �t is �
(1)
t or

�
(2)
t then 
 can be replaced by 
(1) or 
(2) respectively.

Replacing the arbitrary �s by the weights ws corresponding to some central �lter chosen
for the body of the series yields the following result.
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Corollary 6 Let yt follow the local dynamic model speci�ed by (2), (3) and let w denote

the vector of weights ws for the central �lter used in the body of the series with the ws

satisfying (7). Furthermore let ~gt =
Pq

s=�r usyt+s be an unbiased predictor of
Pr

s=�r wsyt+s

with the us satisfying (34). Then, for 0 � q < r, the values of us that minimise Rq subject

to (34) are given by Theorem 5 with � = w and

qX
s=�r

usyt+s =
rX

s=�r

wsŷt+s:

Here ŷt+s is the BLUP of yt+s for q < s � r and yt+s otherwise.

Proof

Since � = w it follows from (34) that the us satisfy (38) and Rq = Ef(Y � Ŷ )2g. The
result follows. 2

Because of their dependence on BLUP predictors we shall henceforth refer to the end
�lters speci�ed by Corollary 6 as BLUP end �lters. Their properties are investigated in
Section 3.2.

Theorem 5 and Corollary 6 establish a direct relationship between optimal linear prediction
and minimum revisions. However the nature of these results suggests that there may be
a special link between these two criteria and optimal �delity where � = 1. The following
result makes this connection more precise.

Theorem 7 Let yt follow the local dynamic model speci�ed by (2), (3) and let w specify

the vector of weights for the optimum �delity central �lter given by Theorem 1 with � = 1.
Then, for 0 � q < r and ~gt given by (32), minimising the revisions Rq subject to (34) is

equivalent to optimising the �delity

F = Ef(~gt � gt)
2g = Ef(

qX
s=�r

usyt+s � gt)
2g

subject to (34) where both optimisations are with respect to the end �lter weights us. In

this case the BLUP of
Pr

s=�r wsyt+s equals the BLUP of gt.

Proof

Note that
F = vTE1v

and
Rq = (w � v)TE1(w � v) = wTE1w + vTE1v� 2vTE1w

where E1 is given by Theorem 1 and v has typical element

vs =

(
us (�r � s � q)
0 (q < s � r)

:

Moreover ~gt is an unbiased predictor of gt since the us satisfy (34) or, equivalently, v
satis�es (18).

25



Let � denote the vector with typical element �s, �r � s � r, where �0 = 1 and �s = 0,
s 6= 0. Then, from Theorem 1,

vTE1w = vTC(CTE�11 C)�1c

= �TC(CTE�11 C)�1c = �TE1w

since v and � satisfy (18). Similarly wTE1w = �TE1w. Furthermore E1 = �2I +
 and

s0 = 
0s = 0 for �r � s � r so that �TE1w = �2w0. The result now follows since

Rq = F � �2w0

and �2w0 does not depend on the us. 2

Before concluding this section we briey comment on an alternative approach to the above
that derives from the development given in Section 2.1. Consider directly estimating the
trend gt at the ends of the series by the end �lter (32). Now, maintaining the same balance
of smoothness and �delity that was used in the body of the series, consider determining
the values of us that minimise Q given by (8) and (9) subject to the requirement that ~gt
be an unconditionally unbiased predictor of gt or, equivalently, (34).

Super�cially this seems a reasonable strategy. However a number of caveats apply. First, it
is not at all clear that one should maintain the same balance of smoothness and �delity at
the ends as in the body. End �lters basically deal with a transition problem that ultimately
goes away as time points are subsumed into the body of the series. A criterion, such as
the minimum revisions criterion, that minimises the total cost of this transition has much
to commend it. Secondly, the values of the �delity and smoothness measures F and S

are time invariant in the body, but dependent on time at the ends. Thus controlling the
balance of �delity and smoothness in the body indirectly controls the absolute levels of
F or S (see Theorem 3 for example). This is no longer true at the ends where the end
�lters are time dependent. Furthermore, the smoothness measure S is de�ned in terms of
backwards di�erences. Thus the variation of S with time at the ends may well result in
end �lters with signi�cant phase shifts. Despite these reservations, the requisite end �lters
were derived and these are presented without proof in Appendix A.1.

2.3.2 Biased predictors

Again consider a window of n = 2r + 1 observations yt�r; : : : ; yt+r centred at time t of
which the r� q observations yt+q+1; : : : ; yt+r are missing and 0 � q < r. Assume, as before,
that ~gt is a linear predictor of the form (32), but now no longer required to be unbiased.
Instead we require the bias to be time invariant in the sense that it does not depend on
the absolute time t indexing the origin of the window, whatever the parameters of the
local dynamic model adopted. Unlike the end �lters based on BLUP predictors, the end
�lters we construct will no longer be independent of these parameters. The requirement
that the bias be time invariant does, however, lead to relatively straightforward procedures
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for estimating the parametric quantities involved. By virtue of the local dynamic models
adopted, the end �lters derived generalise and extend the current X-11 end �lters which
were developed by Musgrave (1964) and placed in a prediction context by Doherty (1991).

Following the development in Section 2.3.1 we �rst consider predicting

Y =
rX

s=�r

�syt+s

using a linear predictor of the form

Ŷ =
qX

s=�r

usyt+s

where q < r is given and the �s are arbitrary known values. In general, the mean squared
error criterion Ef(Y � Ŷ )2g is given by

Ef(Y � Ŷ )2g = (
rX

s=�r

vsEyt+s)
2 +Varf

rX
s=�r

vsyt+sg (43)

where v is given by (39) with typical element vs = �s � us when �r � s � q and �s
otherwise. The bias term in (43) can be written as

rX
s=�r

vsEyt+s =
rX

s=�r

vs

pX
j=0

�j(t+ s)j =
pX

k=0

(
p�kX
j=0

�j+k
j+kCk

rX
s=�r

vss
j)tk (44)

and this will be invariant to the location of the window's time origin t if p = 0 or if

rX
s=�r

sjvs = 0 (0 � j < p): (45)

when p > 0. Note that (45) is equivalent to

qX
s=�r

sjus =
rX

s=�r

sj�s (0 � j < p): (46)

If p > 0 and the us satisfy (46) then

Varf
rX

s=�r

vsyt+sg = Ef(
rX

s=�r

vs(�t+s � �t + �t+s))
2g

and (43) becomes

Ef(Y � Ŷ )2g = �2
p(

rX
s=�r

spvs)
2 + vTE1v (47)

with v given by (39) and E1 = �2I +
 given by Theorem 5. As before, it is desirable for
the mean squared error Ef(Y � Ŷ )2g as well as the bias to be time invariant. However, as
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indicated in the discussions following Theorems 3 and 5, this will only be the case if (40)
holds and the levels of integration of the random walk components that make up �t do not
exceed p + 1. Here the vs satisfy (45) rather than (40). Thus, to ensure that the mean
squared error for the biased predictors is time invariant, we need to impose the stronger
condition that the levels of integration of the random walk components that make up �t do
not exceed p. In the case where p = 0 this necessarily leads to the requirement that �t = 0
and so (47) continues to hold for p = 0 with E1 = �2I.

These observations lead us to consider a restricted local dynamic model for the window
centred at t where the levels of integration of the random walk components that make up
�t do not exceed p. For such a model we de�ne Ŷ to be the best linear time invariant
predictor (BLIP) of Y if the us are chosen to satisfy (46) and the mean squared error
criterion Ef(Y � Ŷ )2g is a minimum. Thus the expected prediction error E(Y � Ŷ ) and
the mean squared error Ef(Y � Ŷ )2g do not depend on t whatever the parameters of the
local dynamic model concerned.

Theorem 8

Let yt follow the restricted local dynamic model speci�ed above and let Y =
Pr

s=�r �syt+s

where � = (��r; : : : ; �r)T is known. Given observations yt�r; : : : ; yt+q and q satisfying 0 �

q < r, the BLIP of Y is Ŷ =
Pq

s=�r usyt+s where u = (u�r; : : : ; uq)T is given by

u = LT
1 (I� ~GL2(L

T
2
~GL2)

�1LT
2 )�

with
~G = ~E�11 � ~E�11 Cp�1(C

T
p�1

~E�11 Cp�1)
�1CT

p�1
~E�11 :

Here

~E1 =

(
E1 + �2

pcpc
T
p (p > 0)

�2I+ �2
0c0c

T
0 (p = 0)

:

and E1 is as given by Theorem 5. The n� p matrix Cp�1 and the n dimensional vector cp
are de�ned implicitly by the partitioned matrix

C = [Cp�1; cp]

where C is given by (17) and Cp�1 is null when p = 0.

In particular the BLIP of
Pr

s=�r �syt+s is given by
Pr

s=�r �sŷt+s where ŷt+s is the BLIP of

yt+s for q < s � r and yt+s otherwise.

Proof

The proof of this result proceeds in much the same way as Theorem 5. Consider �rst the
case p > 0. Using Lagrange multipliers we optimise (47) subject to (46) and obtain

v = ~E�11 Cp�1� + ~E�11 L2�

LT
2
~E�11 Cp�1�+ LT

2
~E�11 L2� = LT

2 �

CT
p�1

~E�11 Cp�1� +CT
p�1

~E�11 L2� = 0
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where �, � are the vectors of Lagrange multipliers. Solving these equations together with
(39) yields the stated result. The case p = 0 follows similarly.

Setting � = 0 with the exception of the s-th element which is set to unity, we see that the
BLIP of yt+s is

ŷt+s =

(
yt+s (�r � s � q)
~hT
s y (q < s � r)

where ~hs is the s-th column of �LT
1
~GL2(L

T
2
~GL2)

�1LT
2 and y = (yt�r; : : : ; yt+q)

T . Thus,
for arbitrary choice of �,

qX
s=�r

usyt+s = �T (I� ~GL2(L
T
2
~GL2)

�1LT
2 )

TL1y =
rX

s=�r

�sŷt+s

as required. 2

Note that the BLIP predictor given by Theorem 8 has the form of a shrinkage estimator
since it is exactly the same as the BLUP predictor given by Theorem 5, but withE1 replaced
by E1+�2

pcpc
T
p and C replaced byCp�1. Indeed, when �p = 0, the BLIP predictor becomes

the BLUP predictor for the reduced model where gt is replaced by

gt =

( Pp�1
j=0 �jt

j + �t (p > 0)
0 (p = 0)

;

but �t and �t remain the same.

We now return to the minimisation of the revisions criterion Rq given by (33) where the
ws are the known central �lter weights that apply in the body of the series and the ws

satisfy (7). Given a restricted local dynamic model, we consider predicting
Pr

s=�r wsyt+s

by a linear predictor ~gt of the form (32) subject to the requirement that the bias of ~gt is
time invariant. The latter quantity is given by (44) with ws = �s (�r � s � r). Thus,
from (46) and (47), ~gt is a linear time invariant predictor of

Pr
s=�r wsyt+s if

qX
s=�r

us = 1;
qX

s=�r

sjus = 0 (0 < j < p) (48)

when p > 0 and, for p � 0,

Rq = �2
p(

qX
s=�r

spvs)
2 + vTE1v (49)

with

�2
p(

qX
s=�r

spvs)
2 =

(
�2
p(
Pq

s=�r s
pus)2 (p > 0)

�2
0(1�

Pq
s=�r us)

2 (p = 0)
:

Here v is given by (36) and Rq is also time invariant. This leads to the following result.
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Corollary 9 Let yt follow the restricted local dynamic model speci�ed in Theorem 8 and let

w denote the vector of weights ws for the central �lter used in the body of the series with the

ws satisfying (7). Furthermore, let ~gt =
Pq

s=�r usyt+s be a linear predictor of
Pr

s=�r wsyt+s

with time invariant bias so that the us satisfy (48) when p > 0. Then, for 0 � q < r,

the values of us that minimise Rq subject to these conditions are given by Theorem 8 with

� = w and
qX

s=�r

usyt+s =
rX

s=�r

wsŷt+s:

Here ŷt+s is the BLIP of yt+s for q < s � r and yt+s otherwise.

Proof

Since the us and ws satisfy (46) when p > 0, the result is a direct application of Theorem 8.
2

Because of their dependence on BLIP predictors we shall henceforth refer to the end �lters
speci�ed by Corollary 9 as BLIP end �lters. Their properties are investigated in Section 3.2.

Now E1=�
2 does not depend on �2 and ~E1 need only be known up to a constant of pro-

portionality. Thus, unlike the BLUP end �lters speci�ed by Corollary 6, the BLIP end
�lters speci�ed by Corollary 9 can only be made operational when �2

p=�
2 is known. Since

this will rarely, if ever, be the case, estimates of �2
p=�

2 of one form or another need to be
determined from the data. Such estimates will, necessarily, di�er from their true values
and it is therefore important to determine the e�ects of mis-speci�cation of �2

p=�
2. This

issue is addressed below in Theorem 10 and also Sections 3.2.2 and 4.1 where the properties
of these end �lters and the estimation of �2

p=�
2 are discussed.

Note that Corollary 9 yields the X-11 end �lters derived by Musgrave (1964) and Doherty
(1991) when �t = 0, p = 1, �2

p=�
2 = 4=(�(3:5)2) and w contains the X-11 Henderson central

�lter weights. Thus Corollary 9 provides a generalisation and extension of the current X-11
end �lters to any of the local dynamic models speci�ed in Section 2.1 provided the levels
of integration of the random walk components that make up �t do not exceed p.

The following result considers an alternative form of the BLIP end �lters given by Corol-
lary 9 which explicitly builds on the corresponding BLUP end �lters given by Corollary 6.
In addition the result provides a means of exploring the e�ects of mis-speci�cation of �2

p=�
2.

Theorem 10

Let yt follow the restricted local dynamic model speci�ed in Theorem 8 and let w denote

the vector of weights ws for the central �lter used in the body of the series with the ws

satisfying (7). Given observations yt�r; : : : ; yt+q and q satisfying 0 � q < r, let ~gt(�) =Pq
s=�r us(�)yt+s be a linear predictor of

Pr
s=�r wsyt+s where � is an arbitrary scalar, u(�) =

(u�r(�); : : : ; uq(�))T is given by

u(�) = LT
1 (I�GL2(L

T
2GL2)

�1LT
2 )(w + �)

and

 = E�11 C(CTE�11 C)�1d:
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Here L1, L2, G, E1 and C are as given in Theorem 5, and the p+1 dimensional vector d

is zero save for the last element which is unity. Then

(a) ~gt(�) is a linear time invariant predictor of
Pr

s=�r wsyt+s with squared bias �2
p�

2

and the us(�) satisfy (48) when p > 0;

(b) the revisions criterion Rq is given in this case by

Rq(�) = wTHw + 2�THw + �2(�2
p + dT (CTE�11 C)�1d+ TH)

where

H = L2(L
T
2GL2)

�1LT
2 ;

(c) the optimal end �lters of Corollary 6 and Corollary 9 are given by u(0) and

u(�0) respectively where

�0 = �
THw

�2
p + dT (CTE�11 C)�1d+ TH

minimises Rq(�).

Proof

First observe from Theorem 5 that ~gt(�) is the BLUP of
Pr

s=�r(ws+�s)yt+s and CT = d

so that
qX

s=�r

sps = 1;
qX

s=�r

sjs = 0 (0 � j < p):

Thus, from (38),

qX
s=�r

sjus(�) =
rX

s=�r

sj(ws + �s) =

8><
>:

1 (j = 0)
0 (0 < j < p)
� (j = p)

when p > 0 and
Pq

s=�r us(�) = 1 + � when p = 0. Moreover

Ef
rX

s=�r

wsyt+s � ~gt(�)g = ��
rX

s=�r

sE(yt+s) = ���p

since CT = d. This establishes (a).

Now, from (49) and (36),
Rq(�) = �2

p�
2 + vTE1v

where
v = w � L1u(�):
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Noting that LT
2 (I�GH) = 0 we can write v as

v = w � (I�GH)(w + �)

= GHw � �(I�GH) (50)

and Rq(�) becomes

Rq(�) = wTHGE1GHw � 2�T (I�HG)E1GHw (51)

+�2(�2
p + T (I�HG)E1(I�GH)T ): (52)

Since GE1G = G, HGH = H and TE1G = 0, the above now reduces to the expression
for Rq(�) given by (b).

From the form of u(�) it follows directly that u(0) is the optimal end �lter given by
Corollary 6. All that remains to prove is that u(�0) is the optimal end �lter given by
Corollary 9. Consider again minimising (49) with respect to the us where now v is de�ned
by (36) and the us satisfy (48) if p > 0. This is equivalent to optimising

~Rq = �2
p�

2 + vTE1v� 2�T (CTv+ �d)� 2�TLT
2 (v �w)

with respect to v, � and the Lagrange multipliers �, �. Here � is a function of v de�ned
by

� = �
rX

s=�r

spvs =

( Pq
s=�r s

pus (p > 0)Pq
s=�r us � 1 (p = 0)

: (53)

where the latter equality follows from (7) and (36). Optimising ~Rq �rst with respect to v,
� and � we obtain the equations

v = E�11 C� +E�11 L2�

LT
2E

�1
1 C� + LT

2E
�1
1 L2� = LT

2w

CTE�11 C� +CTE�11 L2� = ��d

and these, together with (36), yield u = u(�). Substituting this solution back into ~Rq gives
Rq(�) which must now be optimised with respect to �. Since Rq(�) is a quadratic in � and
takes its minimum value when � = �0 result (c) follows. 2

An immediate consequence of Theorem 10 is that end �lters based on BLIP predictors
will generally have smaller mean squared revisions than those based on the corresponding
BLUP predictors since Rq(�0) � Rq(0). Moreover

Rq(�0) = wTHw �
(THw)2

�2
p + dT (CTE�11 C)�1d+ TH

= Rq(0) � j�0)jj
THwj

so that Rq(�0) is a monotonically increasing function of �2
p=�

2 and a linearly decreasing
function in j�0j. In particular

lim
�2p=�

2�!1

Rq(�0) = Rq(0); lim
�2p=�

2�!1

�0 = 0
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so that BLIP end �lters converge to their corresponding BLUP end �lters as �2
p=�

2 in-
creases. The best possible mean squared revisions are achieved when �2

p=�
2 = 0. Then

Rq(�0) is least and, as noted following Theorem 8, the BLIP end �lters become BLUP end
�lters for the local dynamic model with order p � 1, but the same stochastic structure.

From the representation (50) and the properties of G and H, observe in passing that

covf
rX

s=�r

wsyt+s � ~gt(0);
rX

s=�r

wsyt+s � ~gt(�0)g = wTHw + �0
THw = Rq(�0)

so that the normalised quantity

Rq(�0)

Rq(0)
= 1 � j�0j

jTHwj

wTHw

represents the regression coe�cient of the BLIP revisions
Pr

s=�r wsyt+s � ~gt(�0) on the
BLUP revisions

Pr
s=�r wsyt+s � ~gt(0). Moreover, as noted in the proof to Theorem 10,

~gt(�) is the BLUP of
Pr

s=�r wsyt+s + �
Pr

s=�r syt+s. Here
Pr

s=�r syt+s is the best linear
unbiased estimator (BLUE) of �p given yt�r; : : : ; yt+r.

Both the BLIP and BLUP end �lters are dependent on the global parameters speci�ed by
p, n and the model for �t=�. Although these global parameters are su�cient to determine
the BLUP end �lters, the BLIP end �lters further require knowledge of �2

p=�
2. The latter

is a function of local parameters whose values will not normally be known in practice and
which will need to be estimated from the data. In this case it is possible that a mis-speci�ed
value of �2

p=�
2 could result in a BLIP end �lter which has greater mean squared revisions

than its corresponding BLUP end �lter.

Now ~gt(�0) depends only on �2
p=�

2 through �0 which is a one-to-one function of �2
p=�

2.

Thus Theorem 10 enables us to consider the e�ects of mis-speci�cation of �2
p=�

2. Let �̂0

denote �0 evaluated at �̂2
p=�̂

2, some estimated or target value of �2
p=�

2, so that �̂0 lies

between 0 and �THw=(dT (CTE�11 C)�1d + TH). Then, since Rq(�) is a quadratic in

�, it is evident that Rq(�̂0) � Rq(0) if and only if �̂0 lies between 0 and 2�0. The BLIP end
�lters will therefore have better mean squared revisions than their corresponding BLUP
end �lters when

�2
p

�2
< 2

�̂2
p

�̂2
+ (dT (CTE�11 C)�1d+ TH)=�2: (54)

In particular, if
�2
p

�2
< (dT (CTE�11 C)�1d+ TH)=�2;

then any value of �̂2
p=�̂

2 will yield BLIP end �lters which have better mean squared revisions
than the corresponding BLUP end �lters.

Since Rq(�0 + �) = Rq(�0 � �), it is su�cient to select �̂2
p=�̂

2 so that �̂0 is between 0 and
�0 or, equivalently,

�̂2
p=�̂

2 � �2
p=�

2:
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In practice this choice should lead to values for �̂2
p=�̂

2 that, if anything, over-estimate
�2
p=�

2 thus controlling the mis-speci�cation error by shrinking the BLIP end �lter towards

its BLUP counterpart. Note that if �̂2
p=�̂

2 � �2
p=�

2 then

~gt(�̂0) = (1 �
�̂0

�0
)~gt(0) +

�̂0

�0
~gt(�0) (0 �

�̂0

�0
� 1)

so that ~gt(�̂0) is a convex combination of the two optimal end �lters.

Further discussion on the properties of these end �lters is given in Section 3.2.

34



3 Properties of the �lters

In this section we focus attention on two particular local dynamic models likely to be used
in practice. Preliminary analysis indicates that these models have properties that can be
regarded as representative of other more general models of the type discussed in Section 2.1.
The models considered for the window are the local linear model (p =1) given by

yt = gt + �t = �0 + �1t+ �t + �t (55)

and the local quadratic model (p =2) given by

yt = gt + �t = �0 + �1t+ �2t
2 + �t + �t: (56)

In both cases �t is a simple random walk satisfying

�t = �t�1 + �t

with �0 = 0 and �t, �t are mutually uncorrelated white noise processes with variances �2,
�2� = ��2 respectively.

Unless otherwise stated, we also restrict attention to the case where the window is of length
13 so that r = 6.

3.1 In the body

The impulse response functions of the �lters given by Theorem 1 for the local linear model
(55) and the local quadratic model (56) are plotted in Figure 1 for selected values of �
and �. Note that the 13 point X-11 Henderson �lter corresponds to the case where � = 0,
� = 0, p = 2 and is shown in the top right hand plot of Figure 1.

As � varies the Henderson �lters that optimise smoothness S (� = 0) di�er only slightly
whereas the Macaulay �lters that optimise �delity F (� = 1) show much greater variation.
In particular the Macaulay �lters become more adaptive as � increases with the weights
at central lags being progressively increased at the expense of those for extreme lags. The
mixture of smoothness and �delity corresponding to � = 0:5 yields a compromise between
the Henderson and Macaulay �lters as expected.

The optimal impulse response function given by Theorem 1 converges to a limit �w as �
increases where �w is given by Theorem A2 in Appendix A.2. This limit corresponds to
the case where �2 = 0 or, in practice, where �2� is very much larger than �2. In such cases
the model has no noise component so that yt is just the trend gt. The limiting impulse
response functions are plotted in Figure 2.

Thus, as � increases and for given �, the impulse response functions of the �lters given by
Theorem 1 smoothly vary from a mixture of Henderson and Macaulay �lters through to
the impulse response functions of the �lters speci�ed by Theorem A2.
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Figure 1: Plots of the impulse response functions of the 13 point �lters given by Theorem 1
for the speci�ed local linear and quadratic models and selected values of � and �. The solid
lines correspond to � = 0 (smoothness criterion only), the dashed lines to � = 1 (�delity
criterion only) and the dotted lines to � = 0:5 which gives a comprise between smoothness
and �delity. The 13 point X-11 Henderson �lter corresponds to the case where � = 0,
� = 0, p = 2 and is shown in the top right hand plot.
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Figure 2: Plots of the limiting (� =1) impulse response functions of the 13 point �lters
given by Theorem 1 for the speci�ed local linear and quadratic models and selected values
of �. The solid lines correspond to � = 0 (smoothness criterion only), the dashed lines
to � = 1 (�delity criterion only) and the dotted lines to � = 0:5 which gives a comprise
between smoothness and �delity.

Figure 3 shows the gain functions of the �lters given by Theorem 1 for the local linear
model (55) and the local quadratic model (56) for selected values of � and �. The gain
function of the 13 point X-11 Henderson is shown in the top right hand plot of Figure 3
and corresponds to the case where � = 0, � = 0 and p = 2.

The broader pass band in the case of p = 2 follows from the fact that any linear �lter
constrained to pass a polynomial of degree p has a gain function whose �rst p derivatives
are zero at the origin. (See Brillinger (1965).) This leads to greater restrictions on the
curvature of the gain function at the origin as p increases.

Note that the Henderson �lters that optimise smoothness S (� = 0) show little leakage
over the frequency band [0.1,0.5] when p = 1 and [0.2,0.5] when p = 2. By comparison the
Macaulay �lters that optimise �delity F (� = 1) have signi�cant side lobes in these fre-
quency bands. Clearly optimal �delity comes at a price. Again the mixture corresponding
to � = 0:5 has the expected compromise e�ect.

The phase functions of the �lters were also examined for a variety of values of �. It would
appear that the Henderson and mixture �lters in general together with the Macaulay �lters
for � = 0 are not positive de�nite. However, for � > 0, the Macaulay �lters are frequently
positive de�nite and this improvement in phase characteristics carries through in part to
the mixture �lters.

For the purposes of graphical display we now consider alternative measures of smoothness
and �delity based on F � and S� given by (8), (19) and (10). Recall that F � and S� measure
the gains in �delity and smoothness of the trend estimate ĝt relative to the �delity and
smoothness of the data. Thus, given a vector of central �lter weightsw and a local dynamic
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Figure 3: Plots of the gain functions of the 13 point �lters given by Theorem 1 for the
speci�ed local linear and quadratic models and selected values of � and �. The solid
lines correspond to � = 0 (smoothness criterion only), the dashed lines to � = 1 (�delity
criterion only) and the dotted lines to � = 0:5 which gives a comprise between smoothness
and �delity. The gain function of the 13 point X-11 Henderson �lter is shown in the top
right hand plot of Figure 3 and corresponds to the case where � = 0, � = 0 and p = 2.
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model, F � and S� are given by the quadratic forms

F � = wT (�2I+
)w=�2 S� = wT (�2Bp+1 + �)w=S0 (57)

where S0 = Ef(�p+1yt)2g. Since the local models considered in this section have �xed
window length n = 13 and are speci�ed by p and �, we denote the values of F � and
S� evaluated at the �lter speci�ed by Theorem 1 as F �(�jp; �) and S�(�jp; �) respectively
where the notation reects the fact that � is user speci�ed.

To compare gains in �delity and smoothness across di�erent values of � and di�erent models
indexed by �, we consider the e�ciency measures

Feff(�jp; �) =
F �(1jp; 0)

F �(�jp; �)
; Seff(�jp; �) =

S�(0jp; 0)

S�(�jp; �)
: (58)

Here Feff measures the e�ciency of the trend estimate ĝt in terms of its �delity gains
relative to those of the Macaulay �lter with � = 1, � = 0. Similarly Seff measures the
e�ciency of ĝt in terms of its smoothness gains relative to those of the Henderson �lter with
� = 0, � = 0. The reference Macaulay (� = 1; � = 0) and Henderson �lters (� = 0; � = 0)
are used as convenient, but somewhat arbitrary, benchmarks.

In practice we will typically have only one model available. Thus we also consider the
following relative e�ciency measures which compare gains in �delity and smoothness across
di�erent values of � for the same model. These measures are de�ned as

Frel(�jp; �) =
F �(1jp; �)

F �(�jp; �)
; Srel(�jp; �) =

S�(0jp; �)

S�(�jp; �)
: (59)

In this case Frel measures the e�ciency of the trend estimate ĝt in terms of its �delity
gains relative to those of the optimal �delity or Macaulay �lter for the model indexed by
�. Similarly Srel measures the e�ciency of ĝt in terms of its smoothness gains relative to
the optimal smoothness or Henderson �lter for the same model.

Perspective plots of Feff and Seff are given in Figure 4. For given � greater than 0.1
(p = 1) or 0.3 (p = 2) smoothness e�ciency improves as � increases from 0 to around 0.1
(p = 1) or 0.2 (p = 2), and then deteriorates thereafter as � increases. Thus a modest
amount of positive correlation in yt allows for greater gains in the smoothness of the trend
estimate. However �delity e�ciency appears to uniformly deteriorate as � increases.

Perspective plots of Frel and Srel are given in Figure 5. For both p = 1 and p = 2 relative
�delity e�ciency is less variable than relative smoothness e�ciency. In particular, relative
�delity e�ciency exceeds 90%, approximately, for � > 0:3. In general relative smoothness
e�ciency decreases more rapidly than relative �delity e�ciency as � increases with the
e�ect more marked for p = 1 than p = 2. For � < 0:3 relative smoothness e�ciency
exceeds 80% when � is near 0.1 (p = 1) and for all values of � considered (p = 2). A more
detailed picture of the trade-o� between relative �delity e�ciency and relative smoothness
e�ciency for given � and selected values of � is illustrated in Figure 6.
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Figure 4: Perspective plots of the �delity e�ciency Feff and the smoothness e�ciency Seff

for the 13 point �lters given by Theorem 1 and the speci�ed local linear and quadratic
models. Here Feff measures the e�ciency of the trend estimate ĝt in terms of its �delity
gains relative to those of the Macaulay �lter with � = 1, � = 0. Similarly Seff measures
the e�ciency of ĝt in terms of its smoothness gains relative to those of the Henderson �lter
with � = 0, � = 0. .
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Figure 5: Perspective plots of the �delity relative e�ciency Frel and the smoothness relative
e�ciency Srel for the 13 point �lters given by Theorem 1 and the speci�ed local linear and
quadratic models. Here Frel measures the e�ciency of the trend estimate ĝt in terms of
its �delity gains relative to those of the optimal �delity or Macaulay �lter for the model
indexed by �. Similarly Srel measures the e�ciency of ĝt in terms of its smoothness gains
relative to the optimal smoothness or Henderson �lter for the same model.
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Figure 6: Plots of the �delity relative e�ciency Frel and the smoothness relative e�ciency
Srel of the 13 point �lters given by Theorem 1 for the speci�ed local linear and quadratic
models, and selected values of � and �. Here Frel (dashed lines) measures the e�ciency of
the trend estimate ĝt in terms of its �delity gains relative to those of the optimal �delity
or Macaulay �lter for the model indexed by �. Similarly Srel (solid lines) measures the
e�ciency of ĝt in terms of its smoothness gains relative to the optimal smoothness or
Henderson �lter for the same model. The plots illustrate the trade-o� between relative
�delity e�ciency and relative smoothness e�ciency for given �.
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Finally, we consider the performance of the X-11 Henderson �lter (� = 0, p = 2) in terms
of both �delity and smoothness. The �delity F � and smoothness S� of the X-11 Henderson
�lter are given by (57) for each of the local models p = 1 and p = 2 considered and with
w containing the vector of X-11 Henderson �lter weights. Plots of these measures relative
to the optimal S�(0jp; �) and F �(1jp; �) are given in Figure 7. Note that S�(0jp; �) gives
the smoothness of the optimal Henderson �lter for the particular local dynamic model
concerned and F �(1jp; �) gives the �delity of the optimal Macaulay �lter for the same
model.

In terms of smoothness, it is clear in the case p = 2 that there is little to di�erentiate the X-
11 Henderson (� = 0) from its generalisation based on the local dynamic model where � > 0.
However, in the case p = 1, the smoothness of the X-11 Henderson �lter is substantially less
than that of the Henderson �lter tailored for the local linear model concerned. This is not
entirely unexpected since the conventional Henderson �lter is designed to accommodate
quadratic rather than linear trends and so its trends exhibit greater variation in curvature.

In terms of �delity, the X-11 Henderson �lter performs poorly when � is less than 0.1 and
p = 1, but otherwise its relative �delity exceeds 80% for � in excess of around 0.2 (p = 1)
and for all � considered (p = 2).

3.2 At the ends

This section considers the properties of the end �lters speci�ed by Corollary 6 and Corol-
lary 9 which are designed to minimise the expected mean squared revisions between the
output of these �lters and that of the central �lters on which they are based. As stated
previously, these end �lters deal with a transition problem that ultimately goes away as
the current time points are subsumed into the body of the series. The minimum revisions
criterion therefore provides a measure of the total cost of this transition.

In parallel with Section 2.3, the following subsections address the two cases where the end
�lters are based on unbiased and biased predictors respectively.

3.2.1 Unbiased predictors

Here we consider the properties of the BLUP end �lters based on Corollary 6 and speci�ed
central �lter weights ws.

Examples of BLUP end �lters based on the central �lters given by Theorem 1 and the local
dynamic models (55) and (56) are given in Figures 8 and 9 for the cases q = 3, q = 0 and
selected values of �. In much the same way as the central �lters that they are based on,
the BLUP end �lters for the central Henderson �lters that optimise smoothness (� = 0)
di�er only slightly whereas those for the central Macaulay �lters that optimise �delity
(� = 1) show greater variability especially for the case q = 3. In the latter case note that,
as � increases, progressively more weight is placed on the observation at the origin of the
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Figure 7: Plots of the �delity and smoothness of the X-11 Henderson 13 point �lter relative
to the optimal �delity and smoothness �lters respectively for the speci�ed local dynamic
models considered. The latter are indexed by p and �. Note that the smoothness of the
X-11 Henderson �lter is close to 100% in the case of p = 2 as expected, but is far from
being smooth by comparison to the optimal smoothness �lter tailored for the local linear
model p = 1. For � in excess of around 0.2 (p = 1) and for all � (p = 2), the relative
�delity of the X-11 Henderson �lter exceeds 80%.
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window so that the end �lters become more adaptive.

For any given central �lter with weights given by w, the BLUP end �lters converge as �
increases to a limit speci�ed by Corollary 6 with G replaced by �G. Here

lim
�!1

�G = �G

is given by (71) of Appendix A.2 where the proof of this result is also given. The limiting
impulse response functions of the BLUP end �lters for q = 3 and q = 0 are plotted in Fig-
ure 10. These are based on the limiting central �lters of Theorem 1 given by Theorem A2.
Note that, as in the case of the limiting central �lters, the pure �delity case (� = 1) yields
a limiting end �lter with all its weight concentrated at the origin of the window so that
~gt = yt.

Now consider the mean squared revisions criterionRq given by (35) evaluated for the BLUP
end �lters based on speci�ed central �lters.

Figure 11 shows Rq=�
2 for the BLUP end �lters based on the optimum central �lters given

by Theorem 1 and the local dynamic models (55) and (56). For comparative purposes
and because of its central role within X-11, Figure 11 also includes a plot of Rq=�

2 for
the BLUP end �lters based on the central X-11 Henderson �lter. As expected, the mean
squared revisions are greatest when q is least with q = 0 yielding the greatest revisions
followed by q = 1. The mean squared revisions for the other values of q are typically
negligible by comparison.

Consider the plots of Rq=�
2 for the BLUP end �lters based on the optimum central �lters

of Theorem 1. Note that individual plots are based on di�erent central �lters which are
shown in Figure 1. For local dynamic models with � less than 0.1 (p = 1) and 0.3 (p = 2),
the BLUP end �lters based on central Macaulay �lters with optimal �delity (� = 1) show
higher mean squared revisions than those based on central Henderson �lters with optimal
smoothness (� = 0). Given the comments made in Section 3.1 concerning the properties
of the central �lters on which these end �lters are based, it would appear that the use of
central Henderson �lters is favoured in this case.

For values of � � 0:1 (p = 1) and � � 0:3 (p = 2) the situation is reversed with the
BLUP end �lters based on the central Henderson �lters (� = 0) showing higher (in some
cases signi�cantly higher) mean squared revisions than those based on the central Macaulay
�lters (� = 1). Thus, if yt exhibits signi�cant local positive correlation (� su�ciently large),
it would appear that there is a need for more adaptive end �lters whose central �lters have
good �delity properties if revisions are to be minimised.

As a general observation, it would appear from Figure 11 that the mean squared revisions
Rq=�

2 increase as � increases for the BLUP end �lters based on central Henderson �lters
(� = 0), and decrease as � increases for the BLUP end �lters based on central Macaulay
�lters (� = 1). Moreover, although smoothness plays the inuential role in the body
(see Figures 5 and 6), it would appear that it is �delity that plays the dominant role in
minimising expected revisions at the ends.
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Figure 8: Plots of the impulse response functions of the BLUP end �lters for q = 3 based on
the 13 point central �lters given by Theorem 1. These end �lters are evaluated for selected
values of � and the local linear and quadratic models speci�ed by p and �. The solid lines
correspond to � = 0 (smoothness criterion only), the dashed lines to � = 1 (�delity criterion
only) and the dotted lines to � = 0:5 which gives a compromise between smoothness and
�delity.
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Figure 9: Plots of the impulse response functions of the BLUP end �lters for q = 0 based on
the 13 point central �lters given by Theorem 1. These end �lters are evaluated for selected
values of � and the local linear and quadratic models speci�ed by p and �. The solid lines
correspond to � = 0 (smoothness criterion only), the dashed lines to � = 1 (�delity criterion
only) and the dotted lines to � = 0:5 which gives a compromise between smoothness and
�delity.
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Figure 10: Plots of the limiting (� =1) impulse response functions for the end �lters given
by Corollary 6 based on the limiting central �lters of Theorem 1. Here the cases q = 0 and
q = 3 are given for selected values of � and the local linear and quadratic models speci�ed
by p. The solid lines correspond to � = 0 (smoothness criterion only), the dashed lines to
� = 1 (�delity criterion only) and the dotted lines to � = 0:5 which gives a compromise
between smoothness and �delity.
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Figure 11: Plots of the mean squared revisions criterion Rq=�
2 for the BLUP end �lters

based on the optimum central �lters given by Theorem 1 and selected values of � and
�. Here the local linear and quadratic models are speci�ed by � and p, the solid lines
correspond to the central �lter with � = 0 (smoothness criterion only), the short dashed
lines to the central �lter with � = 1 (�delity criterion only) and the dotted lines to the
central �lter with � = 0:5 which gives a compromise between smoothness and �delity. The
long dashed lines correspond to Rq=�

2 for the BLUP end �lters based on the central X-11
Henderson �lter. This has been included for comparative purposes.
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A common feature of all the plots is the smaller values of Rq=�
2 for the local quadratic

model (p = 2) when q > 0 by comparison to the local linear model (p = 1). This is a direct
consequence of the central �lters involved. To see this note that

Rq = Ef(
rX

s=�r

ws(yt+s � ŷt+s))
2g

where thews are the central �lter weights and ŷt+s is the BLUP of yt+s based on observations
yt�r; : : : ; yt+q. From Figure 1 note that the ws for p = 1 are positive whereas those for p = 2
are typically negative for jsj � 5. In addition, the ws for p = 2 are typically small for jsj = 4
and are identically zero in this case for the X-11 Henderson �lter. Since the forecast errors
yt+s � ŷt+s will typically be positively correlated, there is more likely to be a cancellation
of errors when p = 2 and q is 1 or 2 than for the corresponding case when p = 1. This
di�erence decreases as � increases due to the increasing adaptivity of the p = 1 �lters which
place progressively more weight on the observations at the origin of the window. Thus,
although the p = 1 local model may well provide better predictions ŷt+s, the mean squared
revisions will typically be better for p = 2 and q > 0 due to the shape of the central �lters
involved.

It is clear that the choice of the central �lter has a direct bearing on the size of the
expected revisions at the ends of the series. In particular, the choice of a central �lter with
an appropriate balance of smoothness and �delity may well result in lower mean squared
revisions. However care must be exercised since better mean squared revisions obtained by
using high values of � may well lead to central �lters with inferior smoothness properties
(see Figure 6 for example). A balance must be struck between the desired smoothness and
�delity properties in the body of the series and the desire for minimum revisions at the
ends. For example, in practice it may well prove that a local linear model with large � will
provide a comparable explanation of the data by comparison to a local quadratic model
with small �. In this case the plots of Rq=�

2 for p = 1, � = 0:7, � = 0:5 and p = 2, � = 0,
� = 0 suggest that the local linear model is to be preferred since it has better mean squared
revisions.

Now consider the plots of Rq=�
2 for the BLUP end �lters based on the same central X-

11 Henderson �lter. Examination of these particular plots in Figure 11 reveals that mean
squared revisions increase as p and � increase. This is what one would expect given standard
results from prediction theory with the scale of the increases moderated by the common
central �lter adopted.

For p = 2 and all values of � it would appear that the BLUP end �lters based on the
central X-11 Henderson �lter give much the same mean squared revisions as the BLUP
end �lters based on the central Henderson �lters with optimal smoothness (� = 0). This
is as expected since the central �lters concerned are identical when � = 0 and di�er only
slightly when � > 0 (see Figure 1 for example). When p = 1 and � > 0:4 the BLUP end
�lters based on the central �lters given by Theorem 1 turn out to have better mean squared
revisions than those based on the central X-11 Henderson �lter. However, for p = 1 and
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� < 0:4 the reverse is true and the BLUP end �lters based on the central X-11 Henderson
�lter perform signi�cantly better. Note, however, that this improvement in performance
at the ends comes at the expense of decreased performance in the body of the series as
Figure 7 attests. Once again an appropriate balance must be struck, in this case between
the desired mean squared revisions properties of the BLUP end �lters and the �delity and
smoothness properties of the central �lter on which they are based.

3.2.2 Biased predictors

Here we consider the properties of the BLIP end �lters based on Corollary 9 and speci�ed
central �lter weights ws. To evaluate the BLIP end �lters we need to know the parameters
required to specify the BLUP end �lters together with the value of �2

p=�
2. Since the latter

is typically unknown, in practice the BLIP end �lters are evaluated with �2
p=�

2 replaced

by some estimated or target value �̂2
p=�̂

2.

Three end �lters are considered: �̂2
p=�̂

2 = 1 (this yields the BLUP end �lters), �̂2
p=�̂

2 =
4=(�(3:5)2) (this value gives the X-11 end �lter in the case where p = 1, � = 0 and the
central �lter concerned is the X-11 13 point Henderson �lter), and �̂2

p=�̂
2 = 0. When �2

p = 0

the latter choice for �̂2
p=�̂

2 corresponds to the BLUP end �lter for the reduced model of
order p � 1. As noted in the discussion following Theorem 10, this particular end �lter
yields the best mean squared revisions possible in the sense that the smallest value of Rq(�)

is achieved when � = �0 and �2
p=�

2 = �̂2
p=�̂

2 = 0. Also, if �̂2
p=�̂

2 is chosen so that (54) is

satis�ed or �̂2
p=�̂

2 � �2
p=�

2, then the largest value of Rq(�̂0) is Rq(0) which is the minimum

revisions for the BLUP end �lter. These values serve as useful bounds for Rq(�̂0).

Examples of the three BLIP end �lters based on the central �lters given by Theorem 1 and
the local dynamic models (55) and (56) are given in Figures 12{15 for the cases q = 3,
q = 0 and selected values of � and �. In terms of the general shape of the impulse response
functions, it is clear that � and � are the dominant parameters when q = 3, but �̂2

p=�̂
2 is

the dominant parameter when q = 0 and prediction within the window is most important.
In general it would appear that �̂2

p=�̂
2 has greatest e�ect when � is small. Note also that

the X-11 based value of �̂2
p=�̂

2 = 4=(�(3:5)2) would seem to be too close to �̂2
p=�̂

2 =1 to

make any real di�erence. In terms of variation with � and � for a given value of �̂2
p=�̂

2,
similar comments apply here as were made for the BLUP end �lters given in Figures 8 and
9.

In much the same way as before, the limiting impulse response functions when �!1 can
be determined. Details are given in Theorem A4 of Appendix A.2. A key feature of these
end �lters is that they do not depend on the choice of �̂2

p=�̂
2. The limiting BLIP end �lters

are given in Figure 16 for selected values of �, q and the local linear and quadratic models
speci�ed by p. Although the central �lters on which they are based could have been held
�xed, the limiting 13 point central �lters given by Theorem 1 have been used. Again, the
pure �delity case (� = 1) yields a limiting end �lter with all its weight concentrated at the

51



lambda =  0 , theta = 0

W
ei

gh
ts

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0 , theta = 0.5

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0 , theta = 1

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.1 , theta = 0

W
ei

gh
ts

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.1 , theta = 0.5

-6 -4 -2 0 2
-0

.1
0.

1
0.

3

lambda =  0.1 , theta = 1

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.3 , theta = 0

W
ei

gh
ts

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.3 , theta = 0.5

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.3 , theta = 1

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.7 , theta = 0

Lag

W
ei

gh
ts

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.7 , theta = 0.5

Lag

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

lambda =  0.7 , theta = 1

Lag

-6 -4 -2 0 2

-0
.1

0.
1

0.
3

Figure 12: Plots of the impulse response functions of the BLIP end �lters for q = 3 based
on the local linear model (p = 1) and the 13 point central �lters given by Theorem 1.
These end �lters are evaluated for selected values of � and �. The solid lines correspond
to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the dashed lines to �̂2

p=�̂
2 = 4=(�(3:5)2)

(this value gives the X-11 end �lter in the case where p = 1, � = 0 and the central �lter
concerned is the X-11 13 point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0. When

�2
p = 0 the latter choice for �̂2

p=�̂
2 corresponds to the BLUP end �lter for the reduced

model of order p� 1 and represents the best mean squared revisions possible.
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Figure 13: Plots of the impulse response functions of the BLIP end �lters for q = 0 based
on the local linear model (p = 1) and the 13 point central �lters given by Theorem 1.
These end �lters are evaluated for selected values of � and �. The solid lines correspond
to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the dashed lines to �̂2

p=�̂
2 = 4=(�(3:5)2)

(this value gives the X-11 end �lter in the case where p = 1, � = 0 and the central �lter
concerned is the X-11 13 point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0. When

�2
p = 0 the latter choice for �̂2

p=�̂
2 corresponds to the BLUP end �lter for the reduced

model of order p� 1 and represents the best mean squared revisions possible.
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Figure 14: Plots of the impulse response functions of the BLIP end �lters for q = 3 based
on the local quadratic model (p = 2) and the 13 point central �lters given by Theorem 1.
These end �lters are evaluated for selected values of � and �. The solid lines correspond
to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the dashed lines to �̂2

p=�̂
2 = 4=(�(3:5)2)

(this value gives the X-11 end �lter in the case where p = 1, � = 0 and the central �lter
concerned is the X-11 13 point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0. When

�2
p = 0 the latter choice for �̂2

p=�̂
2 corresponds to the BLUP end �lter for the reduced

model of order p� 1 and represents the best mean squared revisions possible.
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Figure 15: Plots of the impulse response functions of the BLIP end �lters for q = 0 based
on the local quadratic model (p = 2) and the 13 point central �lters given by Theorem 1.
These end �lters are evaluated for selected values of � and �. The solid lines correspond
to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the dashed lines to �̂2

p=�̂
2 = 4=(�(3:5)2)

(this value gives the X-11 end �lter in the case where p = 1, � = 0 and the central �lter
concerned is the X-11 13 point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0. When

�2
p = 0 the latter choice for �̂2

p=�̂
2 corresponds to the BLUP end �lter for the reduced

model of order p� 1 and represents the best mean squared revisions possible.
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origin of the window so that ~gt = yt.

We now consider the performance of the BLIP end �lters as measured by the mean squared
revisions Rq(�̂0). This is a function of both �2

p=�
2 and �̂2

p=�̂
2 as well as other parameters.

To provide a range of possible values of �2
p=�

2 we briey consider the so-called �I= �C ratio
used by X-11 to specify the length of the trend moving average adopted. Here �I and �C
are the respective averages of the absolute values of the month to month changes in the
(estimated) irregular �t and trend gt. Thus the �I= �C ratio measures the importance of
month to month changes in �t relative to those in the trend gt. X-11 recommends that the
central 9 point Henderson �lter be used when �I= �C < 1, the central 13 point Henderson
trend �lter when 1 � �I= �C < 3:5, and the central 23 point Henderson trend �lter when
�I= �C � 3:5. Following Musgrave (1964) and Doherty (1991) we consider the local linear
model (p = 1) and

I

C
=

Ej��tj

Ej�gtj
(60)

which can be thought of as the population parameter that �I= �C is estimating. Under
Gaussian assumptions

I

C
=

2q
� ~�2

1

(�(
j~�1jp
�
)� �(�

j~�1jp
�
) +

vuut 2�

� ~�2
1

exp(�
~�2
1

2�
))�1 (61)

where ~�1 = �1=�, �(x) is the standard normal cumulative distribution function and the
result follows from Theorem A5 given in the Appendix. A plot of I=C is given in Figure 17
as a function of j~�1j for selected values of �. The horizontal lines correspond to the bound-
aries I=C = 1 and I=C = 3:5. From the graph and (61) it can be seen that the sets of
feasible values for j~�1j lie in [0; 2=

p
�].

It would appear (see Musgrave (1964) and Doherty (1991)) that the guidelines given by
X-11's �I= �C ratio were based on the local linear model with � = 0. To extend this measure
to higher order models consider

Ip

Cp

=
Ej�p�tj

Ej�pgtj

which is identical to I=C when p = 1. It can be thought of as a noise to signal ratio for
the di�erenced series �pyt. For the local quadratic model (p = 2) and under Gaussian
assumptions

I2

C2

=

vuut 3

� ~�2
2

(�(j~�2j

s
2

�
)� �(�j~�2j

s
2

�
) +

vuut �

� ~�2
2

exp(�
~�2
2

�
))�1 (62)

where ~�2 = �2=�. This result also follows from Theorem A5 in the Appendix. A plot of
I2=C2 is given in Figure 17 as a function of j~�2j and for selected values of �. If the same
I=C limits are retained (a possibly dubious presumption) it would seem that the interval
[0; 2=

p
�] again provides a feasible set of values for j~�2j.
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Figure 16: Plots of the limiting (� =1) impulse response functions of the BLIP end �lters
for selected values of p, �, q and the limiting 13 point central �lters given by Theorem 1.
The solid lines correspond to the limiting BLIP end �lters and, for comparison, the dotted
lines to the limiting BLUP end �lters.
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Figure 17: Plots of the I=C ratio against j�1j=� and the I2=C2 ratio against j�2j=� for
the local linear (p = 1) and quadratic (p = 2) models respectively and selected values of
�. The solid line corresponds to � = 0, the dotted line to � = 0:1, the short dashed line
to � = 0:3 and the long dashed line to � = 0:7 The horizontal lines correspond to the
boundaries I=C = 1 and I=C = 3:5.
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On the basis of the above analysis we now examine the mean squared revisions of the given
end �lters for �2

p=�
2 in [0; 4=�]. Note that it is su�cient to consider the extremes of this

interval since, from Theorem 10, Rq(�) is linearly increasing in �2
p over the interval for

given �.

The mean squared revisions criterion Rq(�̂0)=�2 is plotted as a function of q in Figures 18{
19 for each of the three BLIP end �lters concerned. These are based on the central �lters
given by Theorem 1, the local dynamic models (55) and (56), and selected values of �
and �. In each case the mean squared revisions are plotted for �2

p=�
2 = 0 (a lower limit

representing the best obtainable result for that particular end �lter) and �2
p=�

2 = 4=� (a
nominal upper limit based on X-11's I=C ratio). For each model speci�ed by p and � the
least possible revisions occur when �̂2

p=�̂
2 = �2

p=�
2 = 0. Note also that the mean squared

revisions for the BLIP end �lters with �̂2
p=�̂

2 = 1 do not depend on the choice of �2
p=�

2

since they are BLUP end �lters which are unbiased.

The same general comments made before concerning Figure 11 and the BLUP end �lters
apply here also. Bearing in mind that individual plots are based on di�erent central �lters
(see Figure 1), mean squared revisions generally increase as � increases for end �lters based
on central Henderson �lters (� = 0), and decrease as � increases for end �lters based on
central Macaulay �lters (� = 1). For low values of �, end �lters based on central Macaulay
�lters with optimal �delity (� = 1) show higher mean squared revisions than those based
on central Henderson �lters with optimal smoothness (� = 0). Again, it would appear that
whereas smoothness plays the inuential role in the body of the series, it is �delity that
plays the dominant role in minimising expected revisions at the ends.

As expected, the mean squared revisions are greatest when q is least with q = 0 yielding
the greatest revisions followed by q = 1. The mean squared revisions for the other values
of q are typically negligible by comparison. Although not entirely apparent on this scale,
Rq(�̂0)=�2 is not necessarily a monotonic function of q. For example the local quadratic
model yields mean squared revisions when q = 2 that are typically smaller than those for
q = 3. This is a consequence of the shape of the central �lters adopted.

If �̂2
p=�̂

2 has been selected appropriately, Rq(�̂0)=�2 will be bounded above by the mean
squared revisions for the BLUP end �lter and below by the mean squared revisions for the
BLIP end �lter with �2

p=�
2 = �̂2

p=�̂
2 = 0. From Figures 18{19 these bounds show that

there are gains to be had using BLIP end �lters in preference to BLUP end �lters. When
� is small (say � � 0:1) these gains are likely to be greatest for BLIP end �lters based on
central Macaulay �lters (� = 1). For larger values of � (say � > 0:1) the reverse is true
with the greatest gains occurring for BLIP end �lters based on central Henderson �lters
(� = 0).

If �̂2
p=�̂

2 has been selected inappropriately then the mean squared revisions Rq(�̂0)=�2 can

become very large indeed. This e�ect is best seen in the plots of Rq(�̂0)=�2 evaluated at the
upper limit �2

p=�
2 = 4=�. Thus a good prior knowledge of �2

p=�
2 is necessary if signi�cant

gains are to be made over the BLUP end �lters.
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Figure 18: Plots of the mean squared revisions criterion Rq(�̂0) for the BLIP end �lters
based on the local linear model (p = 1), the optimum central �lters given by Theorem 1
and selected values of � and �. Here the solid line corresponds to �̂2

p=�̂
2 =1 (this yields

the BLUP end �lters), the dashed lines to �̂2
p=�̂

2 = 4=(�(3:5)2) (this value gives the X-11
end �lter in the case where p = 1, � = 0 and the central �lter concerned is the X-11 13
point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0 (this value gives the BLUP end

�lter for the reduced model of order p � 1). In each case the mean squared revisions are
plotted for the �2

p=�
2 = 0 (lower limit) and �2

p=�
2 = 4=� (upper limit). Since it is unbiased,

the mean squared revisions for the BLUP end �lter do not depend on the choice of �2
p=�

2.
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Figure 19: Plots of the mean squared revisions criterion Rq(�̂0) for the BLIP end �lters
based on the local quadratic model (p = 2), the optimum central �lters given by Theorem 1
and selected values of � and �. Here the solid line corresponds to �̂2

p=�̂
2 =1 (this yields

the BLUP end �lters), the dashed lines to �̂2
p=�̂

2 = 4=(�(3:5)2) (this value gives the X-11
end �lter in the case where p = 1, � = 0 and the central �lter concerned is the X-11 13
point Henderson �lter), and the dotted lines to �̂2

p=�̂
2 = 0 (this value gives the BLUP end

�lter for the reduced model of order p � 1). In each case the mean squared revisions are
plotted for the �2

p=�
2 = 0 (lower limit) and �2

p=�
2 = 4=� (upper limit). Since it is unbiased,

the mean squared revisions for the BLUP end �lter do not depend on the choice of �2
p=�

2.

61



For the remainder of this section we restrict attention to the important case where the

central �lter used in the body of the series is the central X-11 Henderson �lter. Plots of
the impulse response functions of the three BLIP end �lters based on the central X-11
Henderson �lter are given in Figures 20{21 for q = 3, q = 0 and the local dynamic models
(55) and (56). As before, it would appear that the di�erence between the BLIP end �lters
based on the X-11 value �̂2

p=�̂
2 = 4=(�(3:5)2) and the BLUP end �lters is modest, especially

when p = 1. In general, the BLIP end �lters show greater variation in the important case
where q = 0 and also when � is small.

The mean squared revisions criterion Rq(�̂0)=�2 for the various BLIP end �lters based on
the central X-11 Henderson �lter is plotted in Figure 22 as a function of q for a selection
of models. Recall that when p = 1, � = 0 and �̂2

p=�̂
2 = 4=(�(3:5)2), the BLIP end �lters

given by Corollary 9 are just the X-11 end �lters derived by Musgrave (1964) and Doherty
(1991).

Similar comments apply as before. If �̂2
p=�̂

2 has been selected appropriately then Rq(�̂0)=�
2

will be bounded above by the mean squared revisions for the BLUP end �lter and below
by the mean squared revisions for the BLIP end �lter with �2

p=�
2 = �̂2

p=�̂
2 = 0. These

bounds indicate that there are gains to be had using BLIP end �lters, although these are
likely to be modest in the case of the local linear model.

Note that the mean squared revisions generally increase as � and p increase. This is of
marginal utility in practice, since the local dynamic model chosen is determined from the
particular time series concerned. However it is possible that a local linear model with
large � might describe a time series as well as a local quadratic model with small �. From
Figure 20 it would appear that, in such cases, the BLIP end �lter for the quadratic model
may have greater capacity to achieve lower revisions.

Consider now the BLIP end �lters based on the X-11 value �̂2
p=�̂

2 = 4=(�(3:5)2). For the
local linear model, these end �lters appear to o�er only marginal gains over the BLUP
end �lters when �2

p=�
2 satis�es (54). In the local quadratic case, they are clearly too

conservative and a lower value of �̂2
p=�̂

2 might more pro�tably be considered. For both
models, the upper limit of �2

p=�
2 = 4=� for these particular end �lters lead to end �lters

with unacceptably high revisions. This may explain, in part, the reason why forecast
extension using ARIMA models has largely superseded the use of the X-11 end �lters in
practice. The former yield (global) BLUP end �lters with properties that one might expect
are close to the (local) BLUP end �lters considered here. On the other hand, for the
local linear model, the �I= �C guidelines imply that the X-11 end �lters are inexibly applied
whenever �2

p=�
2 satis�es �2

p=�
2 � 4=� rather than (54).

It is of interest to consider the ranges of values of (j�̂pj=�̂; j�pj=�) that satisfy (54) and to

ascertain the general shape of Rq(�̂0)=�2 as a function of (j�̂pj=�̂; j�pj=�) or, equivalently,
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Figure 20: Plots of the impulse response functions of the BLIP end �lters for q = 3 based
on the central X-11 Henderson �lter and the local linear and quadratic models speci�ed by
� and p. The solid lines correspond to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the

dashed lines to �̂2
p=�̂

2 = 4=(�(3:5)2) (this value gives the X-11 end �lter in the case where

p = 1, � = 0), and the dotted lines to �̂2
p=�̂

2 = 0 (this value gives the BLUP end �lter for
the reduced model of order p � 1).
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Figure 21: Plots of the impulse response functions of the BLIP end �lters for q = 0 based
on the central X-11 Henderson �lter and the local linear and quadratic models speci�ed by
� and p. The solid lines correspond to �̂2

p=�̂
2 =1 (this yields the BLUP end �lters), the

dashed lines to �̂2
p=�̂

2 = 4=(�(3:5)2) (this value gives the X-11 end �lter in the case where

p = 1, � = 0), and the dotted lines to �̂2
p=�̂

2 = 0 (this value gives the BLUP end �lter for
the reduced model of order p � 1).
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Figure 22: Plots of the mean squared revisions criterionRq=�
2 for the BLIP end �lters based

on the central X-11 Henderson �lter and the local linear and quadratic models speci�ed by
� and p. The solid lines correspond to the BLUP end �lters or the BLIP end �lters with
�̂2
p=�̂

2 =1. The dashed lines correspond to �̂2
p=�̂

2 = 4=(�(3:5)2) (this value gives the X-11
end �lters when p = 1, � = 0) in the two cases where �2

p=�
2 = 0 and �2

p=�
2 = 4=�. The

dotted lines correspond to �̂2
p=�̂

2 = 0 in the case where �2
p=�

2 = 0. This is the BLUP end
�lter for the reduced model of order p� 1 and represents the best mean squared revisions
possible.
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(�̂2
p=�̂

2; �2
p=�

2). Plots of the lines

j�pj

�
=

vuut
2
�̂2
p

�̂2
+ (dT (CTE�11 C)�1d + TH)=�2

are given in Figure 23 for q = 3, q = 0 and the local dynamic models (55) and (56) based on
the central X-11 Henderson �lter and selected values of �. From (54) the BLIP end �lters
have better mean squared revisions when (j�̂pj=�̂; j�pj=�) lies below the lines. For large

values of j�̂pj=�̂ the BLIP end �lters approach the BLUP end �lters and the boundary

becomes j�pj=� =
p
2j�̂pj=�̂. However, for smaller values of j�̂pj=�̂ a somewhat greater

range of possibilities is evident, especially for the larger values of �. There is less latitude
when p = 2 as might be expected. Given a range of (time-varying) values of j�pj=� one

would wish to select j�̂pj=�̂ as low as possible in order to maximise the gains in terms of
expected revisions.

Now consider Figure 24 which plots Rq(�̂0)=Rq(0), the mean squared revisions of the BLIP
end �lters normalised by the mean squared revisions of the BLUP end �lters, as a function
of (j�̂pj=�̂; j�pj=�). Here only q = 0 is shown and the BLIP end �lters are based on the
local dynamic models (55) and (56), the central X-11 Henderson �lter and selected values
of �, j�pj=�. From these plots and Theorem 10 a three dimensional picture of Rq(�̂0) can

be visualised. Looking out from the origin along the line j�pj=� = j�̂pj=�̂, Rq(�̂0) has the
appearance of a rising valley with a sharply increasing left hand side (representing the
unacceptably high mean squared revisions incurred when (j�̂pj=�̂; j�pj=�) does not satisfy
(54)) and a right hand side that levels out at the BLUP limitRq(0). Note that the optimum

mean squared revisions Rq(�0) occur when j�pj=� = j�̂pj=�̂ and, as noted in the discussion
following Theorem 10, Rq(�0) is a monotonically increasing function of j�pj=�. Clearly the

greatest gains are to be had when �2
p=�

2 and hence �̂2
p=�̂

2 are small.

If the BLUP end �lters yield results that are comparable to ARIMA forecast extension, then
it would appear that judiciously selected BLIP end �lters may o�er modest performance
gains in terms of improved revisions. However the price of this improvement is a better
understanding of the time varying values of �2

p=�
2.
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Figure 23: Plots of the lines in the (j�̂pj=�̂; j�pj=�) plane below which BLIP end �lters
have better mean squared revisions than BLUP end �lters. Here the BLIP end �lters are
based on the central X-11 Henderson �lter, and the local linear and quadratic models are
speci�ed by p and �. The solid lines correspond to q = 0, the dotted lines to q = 3 and
the dashed line to the case j�pj=� = j�̂pj=�̂ when the optimum revisions are achieved for a
given value of j�pj=�.

67



lambda =  0 , p =  1

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0 , p =  2

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.1 , p =  1

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.1 , p =  2

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.3 , p =  1

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.3 , p =  2

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.7 , p =  1

betahat/sigmahat

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

lambda =  0.7 , p =  2

betahat/sigmahat

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
8

1.
2

Figure 24: Plots of Rq(�̂0)=Rq(0), the mean squared revisions of the BLIP end �lters
normalised by the mean squared revisions of the BLUP end �lters, as a function of
(j�̂pj=�̂; j�pj=�). Here q = 0 and the BLIP end �lters are based on the local linear (p = 1)
and quadratic (p = 2) models, the central X-11 Henderson �lter and selected values of �,
j�pj=�. The solid lines correspond to �2

p=�
2 = 0 (this yields the best mean squared revi-

sions possible for any given value of �̂2
p=�̂

2), the dotted lines to �2
p=�

2 = 4=(�(3:5)2) and
the dashed lines to �2

p=�
2 = 4=�. These values of �2

p=�
2 are derived from recommendations

made by X-11 concerning I/C ratios.
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4 Practical Study

We briey report on the outcomes of a study on selected o�cial time series where the central
�lters given by Theorem 1 were compared with conventional Macaulay or Henderson �lters,
and where the end �lters given by Corollary 6 and Corollary 9 were compared with X-11
end �lters and ARIMA forecast extension.

All the time series we examined were seasonal and some of them had large outliers. Since
the trend �lters under study are for non-seasonal time series and have not yet been modi�ed
to handle outliers, the �rst task in this analysis was to remove the seasonal component and
large outliers from the time series so that we could examine the relative performance of
these �lters. For simplicity we used the modi�ed seasonally adjusted series from the X-11
seasonal adjustment method as the data for this study. For the New Zealand series we
chose a window of the series which we believed would give a good X-11 decomposition.
Other than choosing the commonly used limits of 1.8 and 2.8 for treating outliers we used
the default options of X-11 to produce the seasonally adjusted data.

The resulting non-seasonal times series presented di�erent types of short and long term
trends and their local dynamic models included random walk components with a range of
variances. In this section we shall discuss �ve monthly series representing this range of
trend behaviour. These are as follows.

Building Permits New Zealand data on the number of Building Permits issued by Local
Authorities for the construction of private houses and ats. A subset of the data has
been taken in an attempt to get a consistent series where for example there was no
Government intervention in Housing Policy.

Merchandise Exports New Zealand data on the value of Merchandise Exports. A subset
of the data has been taken in an attempt to get a consistent series where the economy
has adjusted to the impact of deregulation in the mid 1980s.

NZ Furniture Sales New Zealand data on the value of Retail Sales in Furniture Stores.

Permanent Migration New Zealand data on the Net Permanent and Long Term Migra-
tion.

US Furniture Sales United States of America data on the value of Retail Sales in Fur-
niture Stores in the North West Region.

4.1 Fitting the Local Dynamic Model

To study the �lters given by Theorem 1, the window length n = 2r + 1, the order of the
polynomial p, and a value of �must be determined from the data. These parameters specify
the local dynamic model concerned. Once the local dynamic model has been identi�ed,
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the user will need to decide on a value for �, the balance between �delity and smoothness.
Although subjective, the choice of � will typically be inuenced by the overall objectives
of the smoothing, as is to some extent, the choice of n.

Typically n and p are identi�ed from a simple graphical analysis of the data although
more formal methods could be used. Given n and p, there are a variety of methods for
determining �. These range from trial and error and simple variational arguments based
on quantities like X-11's I=C ratio, through to likelihood analysis based on �tting the local
dynamic model within non-overlapping windows, etc. Which approach turns out to be
most useful is still very much an open question and the subject of further research.

Consider for example the local dynamic model given by (55). For this model the �rst
di�erence of the data is given by

�yt = �1 + �t +��t; (63)

which is locally an MA(1) process with non-zero mean �1. Here the local parameters �1
and �2 are regarded as constant within any window, but can evolve slowly across windows,
and � = �2�=�

2 is a �xed global parameter. If there were no evolution in �1 and �2 across
windows then one could �t a global MA(1) model to the data to estimate �. However, any
signi�cant time evolution in �1 and �2 will bias the estimates of � obtained in this way.

More generally one might write (63) as

�yt = mt + stut; (64)

where the location and scale parameters mt = �1 and st are evolving slowly over time, but
ut is a a global MA(1) process with time invariant parameters and lag one autocorrelation
�1=(�+2). This suggests recovering � by �tting a global MA(1) model to the standardised
series (�yt � m̂t)=ŝt where m̂t and ŝt are simple non-parametric estimates of mt and st.
Typically, we would expect mt to be highly correlated and the variance of mt to be much
smaller than the variance of �yt.

To get an idea of the global behaviour of mt and st we estimated mt non-parametrically by
smoothing �yt with a standard low pass �lter (a 2�12 moving average) to give m̂t, and then
estimated st by smoothing j�yt�m̂tj with the same �lter to obtain ŝt. These quantities and
their autocorrelation functions are given in Figures 25{27 for Building Permits, Exports and
Permanent Migration respectively. Of course these plots should be interpreted with care
due to the �ltering that has taken place. However, they do provide a good indication of the
potential �t of the local dynamic model in practice. In particular, and as might be expected,
mt is typically smooth with strong positive autocorrelation and the autocorrelation of �yt is
modi�ed to a greater or lesser degree depending on the relative magnitudes of the variances
ofmt and �yt�m̂t (i.e. the signal to noise ratio). The Building Permits data (see Figure 25)
is a good example of a highly correlated mt with low signal to noise ratio. Here the global
ARIMA model proved hard to �t and had poor �t, whereas the local ARIMA structure
is simple and seems appropriate. The Permanent Migration data (Figure 27) again has a
highly correlated mt, but a higher signal to noise ratio and more variable st.
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Figure 25: Building Permits data. The top graph shows the location estimate m̂t superim-
posed on the the �rst di�erences of the data and the second graph shows the standardised
series (�yt � m̂t)=ŝt. Here m̂t and ŝt are obtained by smoothing �yt and j�yt � m̂tj re-
spectively with a standard low pass �lter (a 2�12 moving average). The remaining graphs
are the autocorrelation functions of �yt, m̂t and (�yt � m̂t)=ŝt respectively.
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Figure 26: Merchandise Exports data. The top graph shows the location estimate m̂t

superimposed on the the �rst di�erences of the data and the second graph shows the
standardised series (�yt�m̂t)=ŝt. Here m̂t and ŝt are obtained by smoothing �yt and j�yt�
m̂tj respectively with a standard low pass �lter (a 2� 12 moving average). The remaining
graphs are the autocorrelation functions of �yt, m̂t and (�yt � m̂t)=ŝt respectively.
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Figure 27: Permanent Migration data. The top graph shows the location estimate m̂t

superimposed on the the �rst di�erences of the data and the second graph shows the
standardised series (�yt�m̂t)=ŝt. Here m̂t and ŝt are obtained by smoothing �yt and j�yt�
m̂tj respectively with a standard low pass �lter (a 2� 12 moving average). The remaining
graphs are the autocorrelation functions of �yt, m̂t and (�yt � m̂t)=ŝt respectively.
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However, the �tting of a global ARIMA model to data standardised in this way needs to
be handled with care. Rather than follow this strategy, we adopted a simpler and more
direct method of estimating � that took advantage of the unbiased BLUP predictors.

Consider the family of BLUP end �lters based on Corollary 6 for a given central �lter and
given values of n and p. Note that since these end �lters are unbiased they depend only
on q and �. Applying the end �lters to the data yields the revisions

rt(q; �) =
rX
�r

wsyt+s �
qX
�r

us(�)yt+s

where the ws are the given central �lter weights and the us(�) are the BLUP end �lter
weights given by Corollary 6. An appropriate cost function such as

P =
r�1X
q=0

�qr
2
t (q; �) (65)

can now be constructed with the given positive weights �q reecting the relative costs of
the respective revisions. Finally � is determined by minimising P with respect to �.

For our study n = 13, p = 1 and the central �lter chosen was the central X-11 Henderson
�lter. Moreover we chose �0 = 1 and �q = 0 for q 6= 0 yielding a cost function which
focused on the case of worst revisions. However, other central �lters and other values for
the �q could have been chosen and would lead to di�erent results. Again, more research
is needed, but it is believed that the results presented here are indicative of what might
be achieved more generally. With these caveats, this procedure was applied to Building
Permits, Exports and Permanent Migration, yielding values for � of 0.046, 0.52, and 3.8
respectively.

Finally we consider the estimation of the ratio �p=� which involves the local parameters �p
and �. Again, local smoothing should provide reasonable measures of �p, � and, in turn,
the ratio �p=�. Consider the local linear model (55) and the approach described earlier
with regard to determining � from the standardised data (�yt � m̂t)=ŝt. In this case m̂t

should give a reasonable estimate of �1 and ŝt should estimate

Ej�yt � �1j = �

s
2

�
(�+ 2) (66)

under (local) Gaussian assumptions. Thus an appropriately scaled form of m̂t=ŝt should
provide a reasonable measure of �1=� and its evolution.

Examples of estimated j�pj=� ratios for the local linear model given by (55) and obtained
in this way are plotted in Figures 28{30 for Building Permits, Exports and Permanent
Migration respectively. It is clear that these ratios undergo considerable evolution relative
to their means with signi�cant variation associated with the inection points of the original
series (see, for example, Permanent Migration in Figure 30). Clearly the greater one's
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knowledge of this local variation, the greater the gains using BLIP end �lters, especially
at turning points.

Although local estimates of j�pj=� should be explored in order to minimise revisions from
BLIP end �lters, this option was left for further study. Instead we adopted the more con-
servative strategy of estimating a common value for j�pj=� for each of the series considered.
A natural �rst choice would be the mean (or median) of the estimated ratios plotted in
Figures 28{30. However, consideration of the plots in Figures 23 and 24 for given values of
� suggests that this will not, in general, be an optimal choice because of the complex and
non-symmetric nature of the mean squared revisions as a function of j�̂pj=�̂ and j�pj=�.
Given a range of values for j�pj=� (such as those indicated in Figures 28{30), any increase

in j�̂pj=�̂ will involve a trade o� between the reduction in the (high) revisions experienced
by large values of j�pj=� with the increase in (low) revisions experienced by the low val-

ues of j�pj=�. Thus an overall choice for j�̂pj=�̂ requires a complex balancing of marginal
gains and losses. This clearly depends on the value of � as evidenced, for example, by the
nature of the mean square revisions function for p = 1, � = 0 and p = 1, � = 0:7 given in
Figure 24.

To determine a global value for j�̂pj=�̂ from the data we adopted a similar approach to
that used for determining �, but now focused on the BLIP end �lters given by Corollary 9.
Here we determined the revisions

~rt(q; j�̂pj=�̂) =
rX
�r

wsyt+s �
qX
�r

us(j�̂pj=�̂)yt+s

where the ws are the known central �lter weights, the us(j�̂pj=�̂) are the BLIP end �lter
weights given by Corollary 9 and n, p are given. The value of � is set at its previously
estimated value. Now the cost function ~P given by (65) with rt replaced by ~rt can be
evaluated and minimised with respect to j�̂pj=�̂.

As before we chose �0 = 1, �q = 0 for q 6= 0 and set n = 13, p = 1 with the central
�lter chosen to be the central X-11 Henderson �lter. Minimising ~P in this way for Building
Permits, Exports and Permanent Migration, yielded global values for j�̂pj=�̂ of 0.22, 0.3,
and 0.32 respectively. Note that in the case of Exports we chose between two competing
local minima on the basis of Figure 29; in the other two cases the minima were clearly
delineated. As was noted before in relation to the estimation of �, di�erent central �lters
and di�erent values of �q could have been chosen and would give di�erent results. The

determination of �, j�̂pj=�̂ globally and j�̂pj=�̂ locally remain topics for further research.

4.2 In the body

Here we discuss the behaviour of the central trend �lters given by Theorem 1 on the data
sets described in the introduction to Section 4. The e�ects on the trend estimates for
these series of varying � for given choice of � are displayed in Figure 31{35 for the local
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Figure 28: The top graph is Building Permits data and the smooth solid line is the trend
from the 13 point �lter given by Theorem 1 for the local linear model with � = :046 and
� = 0. The bottom graph is the j�̂pj=�̂ ratio where �p is estimated by m̂t, a 2� 12 moving
average of �yt, and � is estimated by a scaled 2�12 moving average of the absolute residuals

j�yt � m̂tj where the scale factor is 1=
q

2

�
(� + 2) (see (66)). The solid line is the mean of

the j�̂pj=�̂ ratios (0.19) which is well under the default X-11 value of 0.31. These ratios
undergo considerable evolution relative to their mean with signi�cant variation associated
with the inection points of the original series.
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Figure 29: The top graph is Merchandise Exports data and the smooth solid line is the
trend from the 13 point �lter given by Theorem 1 for the local linear model with � = :52
and � = 0. The bottom graph is the j�̂pj=�̂ ratio where �p is estimated by m̂t, a 2 � 12
moving average of �yt, and � is estimated by a scaled 2 � 12 moving average of the

absolute residuals j�yt � m̂tj where the scale factor is 1=
q

2

�
(� + 2) (see (66)). The solid

line is the mean of the j�̂pj=�̂ ratios (0.12) which is well under the default X-11 value of
0.31. These ratios undergo considerable evolution relative to their mean with signi�cant
variation associated with the inection points of the original series.
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Figure 30: The top graph is Permanent Migration data and the smooth solid line is the
trend from the 13 point �lter given by Theorem 1 for the local linear model with � = 3:8
and � = 0. The bottom graph is the j�̂pj=�̂ ratio where �p is estimated by m̂t, a 2 � 12
moving average of �yt, and � is estimated by a scaled 2 � 12 moving average of the

absolute residuals j�yt � m̂tj where the scale factor is 1=
q

2

�
(� + 2) (see (66)). The solid

line is the mean of the j�̂pj=�̂ ratios (0.88) which is well under the default X-11 value of
0.31. These ratios undergo considerable evolution relative to their mean with signi�cant
variation associated with the inection points of the original series.
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linear model given by (55) and for window length n = 13. Two choices of � are displayed;
� = 0 which maximises smoothness and � = :5 which maximises a compromise between
smoothness and �delity.

The results obtained are as expected from the discussion given in Section 3. An example
is given in Figure 31. Here, as � varies, the Henderson �lters which optimise smoothness
S (� = 0) di�er only slightly. However, the �lters based on a mixture of smoothness and
�delity become more adaptive as � increases with this e�ect becoming more marked the
closer � is to 1.

In particular note that the e�ect of varying � is greatest at turning points. In Figures 31{
35 the central �lters based on a mixture of �delity and smoothness (� = 0:5) and large
� were more faithful to the data than those based on � = 0:5 and small �. Indeed, in
Figure 35, the central �lter based on the local linear model (p = 1) with large � and
� = 0:5 approaches the central X-11 Henderson �lter which is based on a local quadratic
model (p = 2) with � = 0 and � = 0. This feature is also evident in Figures 31{34. In this
sense, the local dynamic model is able to explore trend variation in the window that lies
somewhere between the pure linear and pure quadratic case.

4.3 At the ends

In this subsection we consider the comparative performance of the BLIP, BLUP, X-11 and
ARIMA forecast extension �lters on the data sets under study. Here, as before, the window
length is n = 13 and only the local liner model (p = 1) is considered with � and a global
value for j�̂pj=�̂ determined by the methods described in Section 4.1. As mentioned in that

section, a more appropriate procedure would have been to determine local values for j�̂pj=�̂
and use these in the BLIP end �lters. However this was not done and remains a research
topic for further study. It might be expected that the use of local values for j�̂pj=�̂ would
lead to BLIP end �lters with improved performance over those using a global value for
j�̂pj=�̂.

The following empirical comparison of the competing end �lters was undertaken. First, for
each local window we calculated the trend for the central point of that window using the
central �lter (6). Next, for each q and for each local window, we calculated the trend using
the appropriate end �lter. For the BLUP and BLIP cases, this meant predicting the trend
as in (32), where the us are the weights of the end �lter determined by Corollary 6 and
9 respectively. For the X-11 case the standard X-11 end �lters were applied. Recall that
these are given by Corollary 9 using the central X-11 Henderson �lter, �̂2

p=�̂
2 = 4=(�(3:5)2)

and the local linear model with � = 0. For the ARIMA forecast extension case this meant
predicting the trend as in (31) with yt+s now predicted using the forecast function of a
global ARIMA model restricted to data up to and including the local window. To obtain
appropriate ARIMA model parameters we �tted global ARIMA models to all the data.
This was done for reasons of simplicity and to provide stable estimates. Using standard
diagnostics we selected ARIMA (0,1,1) models for Building Permits and Permanent Mi-
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Figure 31: The Building Permits data is characterised by many local turning points, with
a general downward drift. In the top graph, the data is �ltered by the 13 point X-11
Henderson �lter and the 13 point �lters given by Theorem 1 for the local linear model and
� = 0. In the bottom graph, the data is �ltered by the 13 point X-11 Henderson �lter
and the 13 point �lters given by Theorem 1 for the local linear model and � = :5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson �lter, the dotted and
dashed lines to the 13 point �lters given by Theorem 1 with � = :1; :2; :3; :4; :5 respectively.
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Figure 32: The Merchandise Exports data is characterised by a few weak local turning
points, with a generally large upward drift. In the top graph, the data is �ltered by the
13 point X-11 Henderson �lter and the 13 point �lters given by Theorem 1 for the local
linear model and � = 0. In the bottom graph, the data is �ltered by the 13 point X-11
Henderson �lter and the 13 point �lters given by Theorem 1 for the local linear model and
� = :5. In both graphs, the solid line corresponds to the 13 point X-11 Henderson �lter, the
dotted and dashed lines to the 13 point �lters given by Theorem 1 with � = :1; :2; :3; :4; :5
respectively.
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Figure 33: The NZ Furniture Sales data is characterised by a strong turning point with a
large downward drift still continuing. In the top graph, the data is �ltered by the 13 point
X-11 Henderson �lter and the 13 point �lters given by Theorem 1 for the local linear model
and � = 0. In the bottom graph, the data is �ltered by the 13 point X-11 Henderson �lter
and the 13 point �lters given by Theorem 1 for the local linear model and � = :5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson �lter, the dotted and
dashed lines to the 13 point �lters given by Theorem 1 with � = :1; :2; :3; :4; :5 respectively.
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Figure 34: The Permanent Migration data is characterised by many local turning points,
with almost zero drift long term. In the top graph, the data is �ltered by the 13 point
X-11 Henderson �lter and the 13 point �lters given by Theorem 1 for the local linear model
and � = 0. In the bottom graph, the data is �ltered by the 13 point X-11 Henderson �lter
and the 13 point �lters given by Theorem 1 for the local linear model and � = :5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson �lter, the dotted and
dashed lines to the 13 point �lters given by Theorem 1 with � = :1; :2; :3; :4; :5 respectively.
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Figure 35: The US Furniture Sales data is characterised by many local turning points,
with a general upward drift. In the top graph, the data is �ltered by the 13 point X-11
Henderson �lter and the 13 point �lters given by Theorem 1 for the local linear model and
� = 0. In the bottom graph, the data is �ltered by the 13 point X-11 Henderson �lter
and the 13 point �lters given by Theorem 1 for the local linear model and � = :5. In both
graphs, the solid line corresponds to the 13 point X-11 Henderson �lter, the dotted and
dashed lines to the 13 point �lters given by Theorem 1 with � = :1; :2; :3; :4; :5 respectively.
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gration, and an ARIMA (2,1,0) model for Exports. Means were �tted in each case. The
di�erence between the central �lter trend estimates and the end �lter trend estimates give
the revisions which occur as predictions of missing data are replaced by their actual values.
Finally we made boxplots of the absolute value of the revisions and these are given in
Figures 36{38.

In accord with the discussion of the theoretical properties of these �lters, the greatest
revisions and spread of revisions occurred when q = 0 followed by q = 1. It is not clear in
making comparisons whether one should focus on the median or the lower quartile of the
distribution of the revisions, or the upper quartile or the interquartile range, or even the
outliers. Depending on the cost function associated with revisions, a case can be made for
each of these. Here we focus on the median because that provides a robust estimate of the
square root of the mean squared revisions (up to a scale factor). The mean squared revisions
criterion was used to evaluate the theoretical performance of the �lters in Section 3. To
further assist comparison, Table 1 provides the values of the medians for each of the series
for the various values of q.

As expected from Theorem 10, the BLIP end �lters where j�̂pj=�̂ is determined from the
data generally have smaller revisions than BLUP end �lters and smaller revisions than the
Musgrave end �lters used in X-11. (These are BLIP end �lters based on the central X-11
Henderson �lter, a local linear model with � = 0 and �̂2

p=�̂
2 set to 4=(�(3:5)2).) For the

Exports and Permanent Migration series, although the choice of j�̂pj=�̂ is similar to the
X-11 value, the value of � used in the X-11 end �lters is inappropriate and so here, in the
main, the X-11 end �lters have larger revisions than the BLUP end �lters. For all cases
when q = 0 and for Building permits and Permanent Migration when q = 1, the BLIP end
�lter with j�̂pj=�̂ determined from the data performed at least as well as if not better than
ARIMA forecast extension. One might hope that that these encouraging results will be
further improved by using local (adaptive) estimates of j�̂pj=�̂.
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Building Exports Permanent
Permits Migration

median % di�erence median % di�erence median % di�erence
q = 5 L 1.8 -7.8 1503 21.0 3.7 -44.6

X 1.9 - 1242 - 6.6 -
H 1.9 -0.6 1562 25.7 4.3 -35.7
A 1.6 -15.0 1247 0.4 3.7 -43.9

q = 4 L 4.2 -0.6 2804 2.5 10.4 -37.2
X 4.2 - 2737 - 16.5 -
H 4.5 6.7 2852 4.2 10.4 -37.0
A 3.3 -21.1 2827 3.3 10.4 -37.4

q = 3 L 5.7 -4.3 2818 1.6 14.4 -26.3
X 6.0 - 2775 - 19.5 -
H 5.8 -2.1 2889 4.1 15.0 -23.1
A 4.7 -20.8 3299 18.9 13.9 -28.7

q = 2 L 5.9 -0.5 3931 6.6 13.6 -8.2
X 5.9 - 3688 - 14.8 -
H 5.9 -0.7 3866 4.8 13.3 -10.6
A 5.0 -16.1 5557 50.7 13.6 -8.5

q = 1 L 13.8 -3.1 13459 8.0 29.2 -34.8
X 14.2 - 12570 - 44.8 -
H 13.9 -2.5 13534 7.7 30.7 -31.5
A 14.1 -1.1 11777 -6.3 29.3 -34.5

q = 0 L 27.5 -9.3 19187 -27.4 71.3 -34.6
X 30.3 - 25472 - 108.9 -
H 32.1 5.7 21201 -16.8 73.2 -32.8
A 27.5 -9.2 20584 -19.2 74.9 -31.3

Table 1: Using the central X-11 Henderson �lter in the body and the local linear model,
comparisons are made between the various end �lters and for the various values of q. The
medians of the absolute value of the revisions are shown, as are the percentage di�erences
(on unrounded values) between the median for the standard X-11 end �lter and the medians
for the other end �lters. Here L refers to the BLIP end �lter based on the local linear model
and the choices of � and �̂2

p=�̂
2 given in Section 4.1. Likewise, X refers to the standard

X-11 end �lter and H refers to the BLUP end �lter based on the local linear model. Note
that the X-11 end �lters are BLIP end �lters based on the central X-11 Henderson �lter,
a local linear model with � = 0 and �̂2

p=�̂
2 = 4=(�(3:5)2) or .104. Finally A refers to the

�lter obtained by using the central �lter with unknown observations predicted by a global
ARIMA model.
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Figure 36: Building Permits data. Using the central X-11 Henderson �lter in the body
and the local linear model, comparisons are made between the various end �lters and for
the various values of q. The choice of � = 0:046 is determined by searching for values
which improve the revisions for the BLUP end �lter for the q = 0 case. The choice of
�̂2
p=�̂

2 = 0:22 is determined by searching for values which improve the revisions given �.
Here L refers to the BLIP end �lter based on the local linear model and the choices of �
and �̂2

p=�̂
2 given above. Likewise, X refers to the standard X-11 end �lter and H refers to

the BLUP end �lter based on the local linear model. Note that the X-11 end �lters are
BLIP end �lters based on the central X-11 Henderson �lter, a local linear model with � = 0
and �̂2

p=�̂
2 = 4=(�(3:5)2) or .104. Finally A refers to the �lter obtained by using the central

�lter with unknown observations predicted by a global ARIMA model.
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Figure 37: Merchandise Exports data. Using the central X-11 Henderson �lter in the body
and the local linear model, comparisons are made between the various end �lters and for
the various values of q. The choice of � = 0:52 is determined by searching for values which
improve the revisions for the BLUP end �lter for the q = 0 case. The choice of �̂2

p=�̂
2 = 0:30

is determined by searching for values which improve the revisions given �. Here L refers
to the BLIP end �lter based on the local linear model and the choices of � and �̂2

p=�̂
2

given above. Likewise, X refers to the standard X-11 end �lter and H refers to the BLUP
end �lter based on the local linear model. Note that the X-11 end �lters are BLIP end
�lters based on the central X-11 Henderson �lter, a local linear model with � = 0 and
�̂2
p=�̂

2 = 4=(�(3:5)2) or .104. Finally A refers to the �lter obtained by using the central
�lter with unknown observations predicted by a global ARIMA model.
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Figure 38: Permanent Migration data. Using the central X-11 Henderson �lter in the body
and the local linear model, comparisons are made between the various end �lters and for
the various values of q. The choice of � = 3:8 is determined by searching for values which
improve the revisions for the BLUP end �lter for the q = 0 case. The choice of �̂2

p=�̂
2 = 0:32

is determined by searching for values which improve the revisions given �. Here L refers
to the BLIP end �lter based on the local linear model and the choices of � and �̂2

p=�̂
2

given above. Likewise, X refers to the standard X-11 end �lter and H refers to the BLUP
end �lter based on the local linear model. Note that the X-11 end �lters are BLIP end
�lters based on the central X-11 Henderson �lter, a local linear model with � = 0 and
�̂2
p=�̂

2 = 4=(�(3:5)2) or .104. Finally A refers to the �lter obtained by using the central
�lter with unknown observations predicted by a global ARIMA model.
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5 Conclusions

A exible family of semi-parametric, �nite, moving-average �lters has been developed,
both in the body and at the ends of series, based on suitably chosen local dynamic models
operating within the span of the central �lter.

For the body of the series, the central �lters are constructed using �delity and smoothness
criteria with �, the balance between �delity and smoothness, speci�ed by the user. Through
� the analyst can (subjectively) impose an estimate of trend on the data whose smoothness
conforms to other criteria such as the overall objectives of the analysis. Of the two criteria,
it is smoothness that plays the dominant role in terms of its variation with �.

For the ends of the series, the end �lters are constructed using a minimum revisions cri-
terion and optimal linear (biased) prediction. It is shown that a suitable choice of a bias
term related to X-11's I=C ratio can lead to minimum revisions that are competitive and
sometimes better than those achieved using ARIMA forecast extension. These gains are
dependent on the choice of central �lter adopted. In particular, the choice of a central
�lter with an appropriate balance of smoothness and �delity may well result in lower mean
squared revisions. It would appear that whereas smoothness plays the inuential role in
the body of the series, it is �delity that plays the dominant role in minimising expected
revisions at the ends.

This work constitutes a beginning and much remains to be done. The latter include more
case studies, a more thorough analysis of ways to �t local dynamic models to time series,
the incorporation of these non-seasonal trend �lters within seasonal adjustment procedures
such as X-11, and the extension of these �lters to handle outliers and structural changes.
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A Appendix

A.1 Minimising Q at the ends

The following result considers the minimisation of Q at the ends of the series where now Q

is de�ned by (8), (9) with ĝt replaced by ~gt and ~gt is given by (32). In particular it shows
that the minimum revisions end �lters speci�ed by Corollary 6 will not be the same as
the end �lters obtained from minimising the criterion Q. Thus the minimum revisions end
�lters will not preserve the same balance of smoothness and �delity at the ends as in the
body; conversely �lters that maintain the same balance of �delity and smoothness at the
ends as in the body will not minimise the revisions. An important exception to the latter
is the case of the Macaulay �lters where � = 1. In this case the minimum revisions end
�lters are exactly the same as the optimum �delity end �lters as established in Theorem 7.

Theorem A1 Consider a time point t at the end of the series where q = T � t and

0 � q < r. The value of u = (u�r; : : : ; uq)T that minimises Q subject to (34) is given by

u(t) = LT
1 (I�GL2(L

T
2GL2)

�1LT
2 )u

(0)(t)

where

u(0)(t) = E�11 C(CTE�11 C)�1c+ (1 � �)G�v(t)

with E1, C, c and G given by Theorems 1 and 5 respectively. Moreover the (2r + 1)�
(2r + p + 2) matrix � has typical element E1;ij with �r � i � r;�r � p � 1 � j � r. and

v(t) has typical element

pX
k=1

(�1)k+1(pk)us+k(t� k) (�r � p� 1 � s � r):

Here us(t�k) is the typical element of u(t�k) and v(t) is de�ned to be zero when t � T�r.
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A.2 Limiting forms of the �lters

From Theorem 1 the optimal central �lter that minimises Q has weights given by

w = E�1� C(CTE�1� C)�1c

where
E� = �(�2I+
) + (1� �)(�2Bp+1 + �):

We consider the special case where

E� = �2(A� + �B�) (67)

with

A� = �I+ (1� �)Bp+1

B� = �
0 + (1 � �)�0 (68)

and 
 = �
0, � = ��0. Note that this family includes the local dynamic models (55),
(56) where � = �2�=�

2 and the cases for �t given by (24). It would be a straightforward
exercise to extend the results that follow to handle more general forms for �t. However
this has not been done, partly for simplicity of presentation and partly because the cases
considered should cover most situations met in practice.

With these quali�cations we now consider the limiting forms of the optimal central and
end �lters as � increases. In the context of (55) and (56) this limit corresponds to the case
where �2 = 0 or, in practice, where �2� is very much larger than �2. In such cases the model
has no noise component so that yt is just the trend gt.

Theorem A2 The optimal impulse response function given by Theorem 1 with E� given

by (67) converges as �!1 to

�w =

(
B�1

� C(CTB�1
� C)�1c (0 � � < 1)

�0 (� = 1)
: (69)

where B� is given by (68) and �0 has zero elements with the exception of the central element

which is unity.

Proof

For 0 � � < 1
lim
�!1

E�=� = �2B�

so that
�w = B�1

� C(CTB�1
� C)�1c:

For � = 1 note that B� is singular. In this case

E1 = �2(I+ �
0)
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and 
0 can be partitioned as


0 =

0
B@ 
� 0 0

0 0 0
0 0 
+

1
CA

where the r � r dimensional matrices 
�, 
+ are both positive de�nite. Partition C

accordingly as

C =

0
B@ C�

cT

C+

1
CA

where C�, C+ are r � (p + 1) matrices and c is given by (17). Then

CTE�11 C = (D� + ccT )=�2

where
D� = CT

�
(I+ �
�)

�1C� +CT
+(I+ �
+)

�1C+

and
lim
�!1

�D� = �D = CT
�

�1
�
C� +CT

+

�1
+ C+: (70)

In this case the optimal impulse response function is given by

w = E�11 C(CTE�11 C)�1c =

0
B@ (I+ �
�)�1C�D

�1
� c

cTD�1
� c

(I+ �
+)�1C+D
�1
� c

1
CA =(1 + cTD�1

� c)

and so
lim
�!1

w = �0

as required.

2

Now consider the BLUP end �lters based on Corollary 6 and speci�ed central �lter weights
given by w. De�ne the n� n dimensional partitioned matrix �G as

�G =

0
B@

�G11 �g1 �G12

�gT1 �g0 �gT2
�GT
12 �g2 �G22

1
CA (71)

where the r � r dimensional matrices �G11, �G12, �G22 are given by

�G11 = 
�1
�

� 
�1
�
C�

�ECT
�

�1
�

�G12 = � 
�1
�
C�

�ECT
+


�1
+

�G22 = 
�1
+ � 
�1

+ C+
�ECT

+

�1
+

with
�E = �D�1 � ( �D�1c)( �D�1c)T=cT �D�1c
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and �D is de�ned by (70). Moreover the r dimensional vectors �g1, �g2 are given by

�g1 = �
�1
�
C�

�D�1c=cT �D�1c

�g2 = �
�1
+ C+

�D�1c=cT �D�1c

and the scalar �g0 is given by �g0 = 1=cT �D�1c. With this notation in place we now establish
the following result.

Theorem A3 The BLUP end �lter given by Corollary 6 with central �lter weights speci�ed

by w and E� given by (67) converges as �!1 to a limit speci�ed by Corollary 6 with G

replaced by �G where lim�!1 �G = �G is given by (71).

Proof

Observe that the BLUP end �lter speci�ed in Corollary 6 and Theorem 5 does not depend
on the scale parameter �2. Thus, for the purposes of determining these end �lters, it is
su�cient to consider the case �2 = 1.

Assuming �2 = 1 and the notation of Theorem A2 we further note that

�E�11 =

0
B@ (��1I+
�)�1 0 0

0 � 0
0 0 (��1I+
+)�1

1
CA :

Furthermore �E�11 C(CTE�11 C)�1CTE�11 is given by

��1

0
B@

(��1I+
�)�1C�

�cT

(��1I+
+)�1C+

1
CA (D� + ccT )�1

0
B@

(��1I+
�)�1C�

�cT

(��1I+
+)�1C+

1
CA

T

and
(D� + ccT )�1 = D�1

� � (D�1
� c)(D�1

� c)T=(1 + cTD�1
� c):

Thus, for example,

(��1I+
�)
�1C�(D� + ccT )�1(��1I+
+)

�1C+

and
� � �cT (D� + ccT )�1c = 1=(��1 + cT (�D�)

�1c)

converge to �G12 and �g0 respectively as � increases. The other elements of �G follow similarly.

2

Finally we consider the BLIP end �lters based on Theorem 10, a given value for �̂2
p=�̂

2 and
speci�ed central �lter weights w. Once again further notation is necessary. De�ne

� =

0
B@ 
�1

�
C�

�Ed
cT �D�1d=cT �D�1c


�1
+ C+

�Ed

1
CA ; �� = �

�T �Hw

dT �Ed+ �T �H�
(72)
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where �H = L2(LT
2
�GL2)�1LT

2 and �E, �G are given by (71). Then we have the following
result.

Theorem A4 The BLIP end �lter given by Theorem 10, a given value for �̂2
p=�̂

2, speci�ed

central �lter weights w and E� given by (67) converges as � ! 1 to a limit speci�ed by

Theorem 10 with G, , �, replaced by �G, �, �� respectively. Here lim�!1 �G = �G is given

by (71) and �, �� are given by (72).

The proof of this result is established in essentially the same way as that for Theorem A3.
Note, in particular, that the limit does not depend on the value chosen for �̂2

p=�̂
2.
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A.3 Evaluating the I=C ratio

We consider evaluating ratios of the form

Ip

Cp

=
Ej�p�tj

Ej�pgtj

where yt = gt + �t follows the local dynamic model (2) of order p and it is further assumed
that �t and gt are independent Gaussian processes. Note that when p = 1 this gives the
population analogue of X-11's �I= �C ratio.

Given these assumptions it is evident that �p�t and �pgt are independent Gaussian random
variables with means zero and p!�p respectively. Their variances are given by

Varf�p�tg =
2pCp�

2 Varf�pgtg = Ef(�p�t)
2g

where the latter quantity depends on the particular form of the local dynamic model
adopted. In the case of the local linear model (55), Ef(��t)

2g = ��2 and in the case of
the local quadratic model (56), Ef(�2�t)2g = 2��2. Using the following result the forms
(61) and (62) can now be determined.

Theorem A5 If X is a Gaussian random variable with mean � and unit variance then

EjXj = j�j(�(j�j)� �(�j�j)) +

s
2

�
exp(�

1

2
�2)

where �(x) is the standard normal cumulative distribution function.

Proof

Here

EjXj =
Z
1

0
x

1
p
2�

e�
1

2
(x��)2dx �

Z 0

�1

x
1
p
2�

e�
1

2
(x��)2dx

=
Z
1

��
(x+ �)

1
p
2�

e�
1

2
x2dx +

Z
1

�
(x� �)

1
p
2�

e�
1

2
x2dx

= �(�(�) ��(��)) + 2
Z
1

j�j
x

1
p
2�

e�
1

2
x2dx

= j�j(�(j�j)� �(�j�j)) +

s
2

�
exp(�

1

2
�2)

as required. 2
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