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Abstract 

We develop an approach to estimating variances for X-11 seasonal adjustments that 

recognizes the effects of sampling error and revisions (the latter result from errors in fore- 

cast extension). We assume that both the true underlying,series and the sampling errors 

follow known time series models. In practice these models are estimated using the time 

series data and estimates of the variances and lagged co,variances of the sampling errors. 

The model is used to extend the series with forecasts and backcasts, allowing use of the 

symmetric X-11 filter. In our approach seasonal adjustment error in the central values of 

a sufficiently long series results only from the effect of the X-11 filtering on the sampling 

errors (assuming an additive or log-additive decomposition and using a linear approxima- 



tion to X-11). This agrees with an approach suggested by Walter and LIonsour (1981). 

. However, towards either end of the series. our approach also recognizes the contribution to 

seasonal adjustment error from forecast and backcast errors. Lye extend the approach to 

produce variances of errors in X-11 trend estimates, and to recognize error in estimation of 

regression coefficients used to model. e.g.. calendar effects. me present empirical results for 

several time series. In these series. the contribution of sampling error often dominated the 

seasonal adjustment variances. Trend estimate variances, however. showed large increases 

at the ends of series due to the effects of fore/backcast error. The relative contribution to 

the variances of error in estimating trading-day or holiday regression coefficients tended 

to be small, unless the series had no sampling error. Additive outlier and level shift ef- 

.. fects were substantial but local. Sonstationarities in the sampling errors produced striking 

changes in the patterns of seasonal adjustment and trend estimate variances. 

Disclaimer. This paper reports the general results of research undertaken by Census 

Bureau staff. The views expressed are attributed to the authors and do not necessarily 

reflect those of the Census Bureau. 
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1. Introduction 

The problem of how to obtain variances for seasonally adjusted data is long-standing 

(President’s Committee to Appraise Employment and Unemployment Statistics. 1962). 

Alodel-based methods of seasonal adjustment (see Bell and Hillmer, 1984. for a discus- 

sion). use results from signal extraction theory to produce estimates and associated error 

variances of the seasonal and nonseasonal components. Most official seasonal adjustments, 

however, are made using empirical methods, most notably X-11 (Shishkin. Young. and 

Musgrave, 1967) or X-ll-.ARIMA (Dagum. 1975). These methods are based on fixed 

filters. not models. and so it is not obvious how to calculate variances of the seasonal acl- 

justment errors. Various approaches for obtaining variances for X-11 seasonal adjustments 

-h ave been proposed, as summarized below. 

&‘olter and Monsour (1981) su (rested two approaches. They recognized that many g, 

time series that are seasonally adjusted are estimates from repeated sample surveys. and 

thus are subject to sampling error. Their first approach accounts only for the effect of sam- 

pling error on the variance associated with seasonal adjustments. Their second approach 

tries to also reflect uncertainty due to stochastic time series variation in the seasonal ad- 

justment variances. However, this second approach assumes that, apart from regression 

terms. the time series is stationary. This type of model is now seldom used for seasonal 

time series. Also, their second approach contains a conceptual error: it produces the ;iari- 

ante of the seasonally adjusted estimate, instead of the desired variance of the error in the 

seasonally adjusted estimate. 

Burridge and Wallis (1985) investigated use of the steady-state Kalman filter for cal- 

culation of model-based seasonal adjustment variances, and applied this approach to a 

model they obtained previously (Burridge and Wallis, 1984) for approximating the X-l 1 

filters. They suggested that this approach could be used to, “provide measures of the vari- 

ability of the X-11 method when it is applied to data for which it is optimal,” (p. 551), but 

cautioned against doing this when the X-11 filter would be suboptimal (i.e.. very different 

from the optimal model-based filter). Hausman and Watson (1985) suggested an approach 

to estimating the mean squared error for X-11 when it is used in suboptimal situations. 

Bell and Hillmer (1984, Section 4.3.4) pointed out a problem with the use of model-based 
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approximations to X-11 for calculating seasonal acljustment variances. The problem is 

that S-11 filters (or any seasonal adjustment filter. for that matter) are not sufficient to 

uniquely determine models for the observed series and its components. 

Pfeffermann (1994) developed an approach that recognizes the contributions of sam- 

pling error and irregular variation (time series variation in the irregular component) to 

S-11 seasonal adjustment variances. The properties of the combined error (sampling error 

plus irregular) are estimated using the S-11 estimated irregular. These properties are then 

used to estimate two types of seasonal adjustment variances. ,A drawback to this approach 

is that it relies on an assumption that the X-11 adjustment filter annihilates the seasonal 

component and reproduces the trend component. (Note Pfeffermann (1994, p. 90), dis- 

* cussion surrounding eq. (2.7).) Violations of this assumption in practice compromise the 

approach to an extent which appears difficult to assess. A second drawback is that one 

of thk variance types proposed by Pfeffermann assumes that the X-11 seasonally adjusted 

series. rather than the trend estimate? is taken as an estimate of the trend. Breidt (1992) 

and Pfeffermann, Marry, and Wong (1993) f ur er th d evelop Pfeffermann’s general approach. 

The goal of this paper is the development and application of an approach to obtaining 

variances for X-11 seasonal adjustments accounting for two sources of error. The first error 

source is sampling error. The second is error that arises from the need to extend the time 

series with forecasts and backcasts before applying the symmetric X-11 filters. These latter 

errors lead to seasonal adjustment revisions (Pierce, 1980). Note that revisions eventually 

vanish as sufficient data beyond the time point being adjusted become available. Also 

note that a seasonally adjusted series will not contain sampling error if the corresponding 

unadjusted series does not. This is the case for certain economic time series, e.g., export 

and import statistics for most countries. 

Our approach assumes that the X-11 seasonal adjustment target (what we assume 

application of X-11 is intended to estimate) is what would result from application of the 

symmetric linear X-11 filter (with no forecast and backcast extension required) if the series 

contained no sampling error. While this definition of target might be criticized for ignoring 

time series variation in the underlying seasonal and nonseasonal components, we think this 

may be appropriate for typical users of X-11 seasonally adjusted data. Such users are most 
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likely to be concerned about uncertainty reflected in differences between initial adjustments 

and final adjustments, i.e., in revisions. Some of these users will also be aware that the 

unadjusted series consists of sample-based estimates of the true underlying population 

quantities, and will realize that the effects of sampling error on adjustments should also 

be reflected in seasonal adjustment variances. 

Our development is based on use of the symmetric linear X-11 filters. We assume that 

the symmetric filters are applied to the series extended with minimum mean squared error 

forecasts and backcasts. In practice, the forecasts and backcasts are obtained from a fitted 

time series model. This is in the spirit of the S-ll-=1RIVr-1 method of Dagum (19i5), 

but with full forecast and backcast extension, as recommended by Geweke (1958), Pierce 

* (1980), and Bobbitt and Otto (1990). 0 ur results apply directly to the use of additive or 

log-additive X-11 (with forecast and backcast extension): and the log-additive results are 

assu:ed to apply approximately (Young 1968) to multiplicative X-11. 

Section 2 of this paper develops our approach, which builds on the first approach of 

Wolter and Monsour (1981). The differences between the two approaches are discussed 

in Section 2.4. Section 3 then discusses three extensions to the results of Section 2. The 

first is to note that our approach works equally well with seasonal, trend. or irregular 

estimates. and that more generality is easily accomodated by allowing different filter choices 

for different months. The second extension produces variances of estimates of month-to- 

month or year-to-year change. Finally, when seasonal adjustment involves estimation of 

regression effects (e.g., for trading-day or holiday variation), the results are extended to 

allow for additional variance due to error in estimating the regression parameters. 

Section 4 then presents several examples illustrating the basic approach and the ex- 

tensions given in Section 3. One thing evident from the examples is that for time series 

with sampling error, our seasonal adjustment variances will often be dominated by the 

contribution of the sampling error. In the center of the series! our results effectively reduce 

to the first approach results of Wolter and Monsour. Our results do differ from those of 

L1-olter and Monsour near the end’ of the series. This is important since the most recent 

seasonally adjusted values receive the most scrutiny. Also, the contribution of forecast 

and backcast error to trend estimate variances can be very large at the ends of a time 
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series. Other results of particular interest are the effects of certain nonstationarities in the 

sampling errors. The examples of Section 4 show that nonstationarities such as sampling 

error I-ariances that change over time. or periodic independent redrawings of the sample. 

can yield striking changes in the pattern of the variances of seasonally adjusted data or 

trend estimates over time. 

Section 5 provides concluding remarks. 

2. X-11 Methodology 

Define the observed unadjusted time series as yt for t = 1. . . . , n. Time series that 

-are seasonally adjusted are often estimates obtained from repeated (monthly or quarterly) 

sample surveys, and thus can be viewed as composed of a true underlying time series Yt, 

and a*series of sampling errors et assumed uncorrelated with F;. (See Bell and Hillmer, 

1990.) In vector notation, y0 = Y, + e,, where the subscript o indicates that the time span 

of these vectors is the set of observed time points 1,. . . , n. In certain cases yt may arise 

from repeated censuses (as is typically the case for national export and import statistics, 

for example), in which case there is no sampling error, i.e., et = 0. 

The development that follows assumes that both Yt and et follow known time series 

models. The model for Yt will generally involve differencing, as in ARIMA (autoregressive- 

integrated-moving average) and ARIM. component (structural) models. The model for 

Y; may be extended to include regression terms. (This will be considered in Section 3.3.) 

The series et is assumed to not require differencing, but it may nonetheless exhibit certain 

nonstationarities, such as variances that change over time. Any such nonstationarities are 

assumed to be accounted for in the model for et. In practice,the models will be developed 

from observed data, as is discussed by, e.g., Bell and Hillmer (1990, 1994), Binder and 

Dick (1989, 1990), and Tiller (1992). 

In applying a symmetric X-11 filter of length 2m + 1 for seasonal adjustment with full 

forecast and backcast extension, the vector y,, needs to be augmented by m backcasts and 

m forecasts. The vector holding the m values of yt prior to the observed data, and the 

corresponding m x 1 vectors for Yt, and et, are denoted yb, Yb, and eb. The analogous 

4 



vectors of the m future values of yt. 1;. and et are denoted yf. Yf. and ef. Thus. 

(;;)=(~z)+(r$). (3.1) 

The full vectors in (2.1). hereafter denoted as y. Y, and e. have length n + 2m. 

The backcasts and forecasts used to augment y0 are assumed to be minimum mean 

squared error (LIAISE) 1’ mear predictions of yb and yf (using y,, ) obtained from the known 

time series model. (In practice. the model will be fitted to the data yO.) Cnder normality, 

the backcasts and forecasts are E(ybjyo) and E(yfly,,). The vector of observed data 

augmented with the backcasts and forecasts is denoted jr = (yi, y:, y>)‘. where yb = 

E(ydyd and Yf = E(yflyd. T 0 simplify notation, from now on we will take expressions 

* such as (yb.yo. yf) to mean the column vector (y(,, yL,j$)‘. 

Let the linear symmetric X-11 seasonal adjustment filter be written w( B) = C”, u,Bj, 
* 

where B is the backshift operator and the wj are the filter weights (wj = d-j). Calcula- 

tion of the dj is discussed by Young (1968) and Wallis (1982). Results of Bell and Monsell 

(1992) were used here. Application of w(B) to the forecast and backcast extended series 

can be written as fly, where a is a matrix of dimension n x (n + 2m). Each row of 0 

contains the filter weights (;J-~. . . . ,Wo,.. . , drn ), preceded and followed by the appropri- 

ate number of zeroes such that the center weight of the X-11 filter (~0) multiplies the 

observation being adjusted. Thus, in the first row of 0 there are no preceding zeroes’and 

n - 1 trailing zeroes. in the second row there is one preceding zero and n - 2 trailing zeroes, 

etc. For the default X-11 filter, m = 84. Choice of alternative seasonal or trend moving 

averages in X-11 changes the value of m from a low of i’0 to a high of 149. 

The question arises as to what Qy is estimating. -4s noted in the introduction, we 

define the “target” of the seasonal adjustment as the adjusted series that would result if 

there were no sampling error and there were sufficient data before and after all time points 

of interest for the symmetric filter to be applied. The target is thus w(B)E;, or in vector 

notation 0Y, and the seasonal adjustment error vector is v = 0(Y -9). We are interested 

in the variance-covariance matrix var(v) = S2var(Y - y)0’. This can be easily computed 

once var( Y - y) is obtained. From here through Section 2.3 we discuss the calculation of . . 

var(Y - y). 
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~T;estartbywritingY-~=(y-e)-y=(b.O.f)-e.~vhereb=yb--ybisthemxl 

. vector of backcast errors, and f = yf -jr, is the m x 1 vector of forecast errors. Given the 

models for Y; and et, we calculate var( Y - jr ) by separately computing var( e), var( b, 0, f ). 

and cov [(b. 0. f), e]. as discussed in Sections 4.1 to 2.3. Then, var( Y - y) easily follows as 

var( b, 0. f) + var( e) - cov [(b, 0, f), e] - cov [(b. 0. f), e]‘. Thus. 

var(v) = o{var(b,O,f) + var(e) - cov [(b,O,f),e] - cov[(b.O,f).e]‘}SI’. 

Example- U.S. 5+ Unit Housing Starts. As the computations for each piece of var( Y - 9) 

are explained, we illustrate the results graphically for an example series: housing starts 

. in the U.S. for buildings of five or more units from January 19i5 through November 1988 

(16’7 observations). The original series, seasonally adjusted series, and estimated trend 

are &own in Fig. 1. In practice, seasonal adjustment at the Census Bureau of this series 

uses a multiplicative decomposition with a 3 x 9 seasonal moving average and a 13-term 

Henderson trend filter. The following model for this series was developed in Bell ‘and 

Hillmer (1994): 

(1 - B)( 1 - B1’)Y, = (1 - 0.67B + 0.36B2)(1 - .8i53B12)at. a; = 0.0191 (2.2) 

et = (1 - O.llB - 0.10B2)bt, ai = 0.00714 

Here, yt denotes the logarithms of the original time series (eyt ), so that (2.2) implies a 

multiplicative decomposition for the original series (eYt = eY’ eet ). 

2.1. Computation of Var(e) 

If et follows a stationary ARM.4 model, then var(e) can be computed from stan- 

dard results. e.g., McLeod (1975, 1977), Wilson (1979). If var(et) changes over time, 

we write et = htGt, where hf = var(et ), and et has variance one and the same auto- 

correlation function as et. (See Bell and Hillmer, 1994.) Then, writing e = HG, where 

H = diag( hl-,, . . . , h,+,), we have var(e) = Hvar(l)H’. Var(G) is the autocorrelation 

matrix of e, and it can be computed as just noted using the model for &. 

6 



If the sample is independently redrawn at certain times. then var( e) will be block 

. diagonal, with blocks corresponding to the time points when each distinct sample is in 

effect. Each diagonal block of var(e) can be computed as just discussed. These two types 

of nonstationarities in et--variance changing over time and “covariance breaks” due to 

independent redrawings of the sample-are those that arise in the examples of Section 4. 

Example- U.S. 5+ Unit Ho,using Starts (continued). -4utocovariances for the L.I.A( ‘3) 

model for et given in ( 3.2) are easily computed. The resulting var( e) is a band matrix, 

with var(et) = 0.007398 on the diagonal, cov(et, et-l) = -0.000707 on the first sub- and 

super-diagonals, and cov( et. et-2 ) = -0.000714 on the second sub- and super-diagonals. 

* The rest of var(e) is zero. Following pre- and post multiplication by the seasonal adjust- 

ment filter matrices 0 and 0’, the contribution of the sampling error to the variance of the 

seaszally adjusted series is constant for each observation (Fig. 2). This occurs because the 

result of a time invariant linear filter applied to a stationary series (u( B)et ) is a stationary 

series, which has a constant variance. 

2.2. Computation of Var( b, 0, f) 

The central n rows and n columns of var( b, 0, f) are all zeroes. We require computation 

of var( b), var( f), and cov( b, f) for the corner blocks of var( b, 0, f). -4lthough computation 

of variances of forecast (or backcast) errors for given models is standard in time series 

analysis, it is complicated here by the component representation of yt as Yt + et, and 

by differencing in the model for Yt. Although computations for such models are often 

handled by the Kalman filter (Bell and Hillmer, 1994; Binder and Dick. 1989, 1990; Tiller. 

199’3). this is inconvenient here since we require covariances of all distinct pairs of random 

variables from among the m forecast and m backcast errors. We instead use a direct matrix 

approach due to Bell and Hillmer (1988). 

.4ssume that the differencing operator required to render Y; stationary is 6(B), which 

is of degree d. Since et is assumed not to require differencing, 5(B) is also the differencing 

operator required by yl. Define S( B)y, = wt, thus wt = S( B)Yt + 6( B)et . We introduce the 

matrix A. corresponding to d(B), defined such that Ay = w is the vector of differenced 
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y. The vector W = (wt,, w,, wf), which is of length 12 + 2m - d. is partitioned so that wb 

and wf are m x 1 vectors, and w, is the n - d vector of differenced observed data. Thus. 

A has dimensions (n + 4m - d) x (n, + Zm). Sote that, because d observations are lost in 

differencing. wb and W, start d time points later than yb and yO. respectively. That is. yb 

and yO start at time points 1 - m and 1. but wb and w, start at time points 1 - m + d 

and d + 1. 

Define u = (u~-~+d.. . . ,u,+,)’ = AY. The time series lit is stationary. Since 

w = u + Ae. with u and e uncorrelated with each other, var(w) = var(u) + Avar(e)A’. 

We partition var(w) as 

. var(w) = 

whereCll is var(wb), c12 is Cov(wb,wO), etc. 

Since y, when differenced to w using 6(B), has lost d data values, y cannot be obtained 

from w without also knowing a sequence of d “starting values”. Consider obtaining yf 

from wf and starting values y* = (yn+l -d, . . . , yn)‘. Theorem 1 in Bell (1984a) can be 

used to show that 

yf = Ay, -I- Cwf (2.3) 

for matrices A and C determined by S(B). Th e rows of the m x m matrix C consist of 

the coefficients of c(B) = 1 + [I B + <2B2 + . . . = 5(B)-’ in the form , 

C 

A is an m x d matrix which accounts for the effect of the d starting values in y* on yf. The 

exact form of A is given in Bell (1984a) and, since it will exactly cancel in our application, 

it will not given here. In (2.3) y* is known since it is part of yO, the observed data. Thus, 

from (2.3) the MMSE forecast of yf is ;irf = Ay, + Cvi’f , where Gf is the MMSE forecast 

of wf. Therefore, f = yf - 9, = Ay, + Cwf - (Ay, + Cif) = C(wf - vi’!), and var(f) 

= Cvar(wf - yi’f)C’. 
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Cnder .4ssumption A of Bell (198Aa). which leads to the standard results for forecast- 

ing nonstationary series (as in. e.g.. Box and Jenkins. 1976. Chapter 5). Wf = C3LC;21w,. 

Note that this uses only the differenced data w, in forecasting wf. Then. from stan- 

dard results on linear prediction. var(wf - *f) = 2233 - C32C.;;Ci.,. Thus, var(f) 

= C( cxc - ~&z&l cl,, )C’. 

To obtain var(b) and cov( b, f) we note that results obtained by Bell (1984a. p. 651) 

imply similar calculations hold for the backcast errors b. In fact, it can be shown that 

b = ( -l)rC’(~b - “iTb), where tib is the MMSE backcast of wb, and r is the number of 

times (1 - B) appears in the polynomial 6(B). (The appearance of C’ in this expression 

instead of C stems from the indexing of wt, and Vi’b forward through time although the 

W backcasting process proceeds backwards through time.) Thus, var( b) = C’var( wb - tib)C 

= C’(S1 - C12CyLC’,2)C. Similarly cov(f,b) = (-l)TC(Csl - &2CG.Ci2)C. In 

pracfice, to avoid inverting X22. var( f), var(b), and cov(f, b) can be computed using the 

Cholesky decomposition of &. (See -4ppendix A.) 

Example-U.S. 5+ Unit Housing Starts (continued). The contribution to seasonal adjust- 

ment variance from var( b, 0, f) is shown in Figure 2. This is zero or essentially zero for 

observations in the middle of the series, where no or few fore/backcasts need be made to 

apply the symmetric adjustment filter. Towards the ends of the series, the contribution of 

fore/backcast error becomes more substantial since an increasing number of observations 

need to be fore/backcast to apply the filter. The jumps in the graph occur when an addi- 

tional fore/backcasted observation is multiplied by a weight in the adjustment filter that 

is a multiple of the seasonal period, since these weights have the greatest magnitude (Bell 

and Monsell, 1992). Note that the contributions from var(b, 0, f) at the very ends of the 

series are smaller than the contributions from var(e), but are not negligible. 
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2.3. Computation of Cov [(b 0 f).e] 

To compute cov(f.e), we first note from results of the preceeding section that f = 

Yf - yf = C(Wf -“f) = c (Wf - G2~.~;wo) = c[o -c&y Im]W = c[o ~ 

-l&.&Y,1 I I,]Ay. Since cov(y.e) = cov(Y +e,e) = O+var(e). we see that cov(f.e) 

= C[O~-Cs2E,Ti iI,]Avar(e). Cov(b, ) e is computed in an analogous fashion by noting 

that b = (-1)‘C’ ( wb -*b) = (-l)‘c’ (wb - &&;;W,) = (-l)‘c’[I, -&&; i 

0] Ay. so that cov (b. e) = (-1)‘C’ [I* ~ -E12CL. j 0] Avar(e). 

Example-U.S. 5+ Unit Housing Starts (continued). Figure 2 shows that the contribution 

- ofcov[(b 0 f),e] is zero or near zero in the middle of the series, but it becomes increasingly 

negative towards the ends of the series, in a pattern similar, though opposite in sign and 

of s;aller magnitude, to that of var(b, 0, f). -At the very ends of the series, however, 

the pattern reverses and the covariance increases. The elements of cov [(b, 0, f), e] are 

mainly positive, so its contribution to the seasonal adjustment variance is negative because 

cov [(b, 0, f), I e and its transpose are subtracted from var(e) + var(b, 0, f). The net effect 

is that subtracting ~{COV [(b, 0, f). e] + cov [(b,O, f),e]‘}S2’ tends to offset the effect of 

adding S2var( b, 0, f)S2’, except near the very ends of the series. Thus, the graph of the 

variances of the seasonally adjusted series in Figure 2 is very similar to the graph of the 

contribution of var(e), except near the very ends of the series. We observed this type of 

**cancellation effect” in several other examples, including those of Section 4. 

2.4 Comparison with the First Approach of Wolter and Monsour 

The first approach of Walter and Monsour (1981) proposed use of flwWMvar(e, )Q’wn/r 

as the variance-covariance matrix of the X-11 seasonal adjustment errors, where 0w.v is 

an n x n matrix whose rows contain the X-11 linear filter weights, both symmetric and 

asymmetric. That is, the middle rows (rows t such that m < t < n - m + 1, assuming 

n > 2m) of Qw,v contain the X-11 symmetric filter weights, but the first and last m rows 

of 32~“~~ contain X-11’s asymmetric filter weights. The middle rows of Qw.v and 3-2 thus 

contain the same filter weights, but the first and last m rows do not. This means that our 
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approach will give the same results as that of WYalter and LIonsour for m < t < n - m + 1.’ 

that is, for time points at which the symmetric filter is being used. The results of the two 

approaches will differ for the first and last m time points. Since the most recent seasonally 

adjusted data receive the most attention. this difference is potentially important. 

\V7olter and Llonsour also considered use of a matrix Q* instead of $2~~~.~~ where 0* is 

(n + 12) x (n + 13) t o include 12 additional rows of weights corresponding to year-ahead 

seasonal adjustment filters. Though year-ahead adjustment was the common practice 

through the early 1980s. it has now mostly been replaced in the United States by concurrent 

adjustment (McKenzie. 1984). 

The differences between our approach and that of Walter and Monsour can be viewed 

* in two ways. One view is that since Wolter and Monsour did not consider forecast and 

backcast extension, their approach ignores the contribution of forecast and backcast er- 
w 

rors to seasonal adjustment error. This contribution affects results for the first and last 

m time points, although the examples of Section 4 show that this contribution is often 

small. However, in some cases it is not small, including those time series not subject to 

sampling error. For such series Wolter and Monsour’s approach would assign zero variance 

to the adjustments. even though initial adjustments would be revised as new data became 

available. 

The other way to view the differences between the approaches centers on the difference 

in “targets”. The seasonal adjustment error under Walter and Monsour‘s approach can 

be thought of as s2w,v(Y, - yO) = -OLvlMeo. Since this results in zero error for series 

with no sampling error (Y 0 = y,), Wolter and Monsour implicitly define the seasonal 

adjustment target to be C~WWMY~. This definition of target has the undesirable property 

that the target value for a given time point changes as additional data are acquired. since 

the rows of QWM contain different filter weights. Our target value for any given time point 

t is always d(B)Y,. 

Example-U.S. 5f Unit Housing Starts (continued). We compared results using our 

methodology with that of Wolter and Monsour’s using the defazllt X-11 seasonal adjust- 

ment filter aIthough, as noted earlier, this example series is adjusted using the optional 
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3 x 9 seasonal moving average filter. This comparison used the default filter for convenience: 

asymmetric X-11 filter weights are needed to obtain results for the Welter-Monsour ap- 

proach and we were given a computer program by I%ash 1Ionsour that produced them only 

for the default filter. Figure 3 gives the results for both approaches. The non-constant vari- 

ances over time from the Nolter-LIonsour approach result from applying different filters at 

different time points. An interesting consequence of this is that, despite the stationarity of 

the sampling error. the Walter-!Jonsour seasonal adjustment variance is noticeably higher 

in the middle of the series than for many time points toward (but not close to) either end of 

the series. This carries the implausible implication that use of less data produces estima- 

tors with lower variance. Similar behavior can be observed in several examples presented 

* by Pfeffermann ( 1994). 

The results from using the default X-11 seasonal adjustment filter with our approach 
* 

are also useful for comparing with the 3 x 9 seasonal moving average filter, for which results 

are given in Figure 2. Differences between results from using the two filters are not great. 

The contribution of the sampling error is somewhat lower and that of the fore/backcast 

error somewhat higher when using the default seasonal adjustment filter. 

3. Extensions to the Methodology 

This section discusses three extensions to the general methodology of Section 2.‘.The 

first two extensions are straightforward, the third more involved. 

3.1 Variances for Seasonal, Trend, and Irregular Estimates; Variances with 

Time-Varying Filters 

The only way the nonseasonal (seasonally adjusted) component is distinguished in the 

derivation of Section 2 is through the filter weights placed in the matrix 0. Therefore, 

corresponding variances for X-11 estimates of the seasonal, trend, and irregular components 

follow from the same expressions simply by changing the matrix 0 to contain the desired 

filter weights. This also changes the dimension of Cl, since the length of the seasonal 

adjustment, trend, and irregular filters (for given options) differs, and the filter length 

determines the size of 52. 
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.A similar extension handles the case of different seasonal moving averages (AI-As) se- 

lected for different months (or quarters). an option allowed by X-11. This changes the 

seasonal adjustment (and seasonal, trend. and irregular) filters applied in the different 

months. The results of Section 3 also accomodate this extension through a simple modifi- 

cation of $2. Since the rows of !2 correspond to the time points being adjusted, we simply 

define row t of $2 to contain the weights (along with sufficient zeroes) from whatever filter 

is being applied in month t. Some care must be taken to dimension 0 appropriately if the 

longest selected M-4 is not used in the first and last months of the series. 

* Example- U.S. 5f Unit Housing Starts (continued). Figure 4 shows the variance of the X- 

11 trend estimate, using the 3 x 9 seasonal M-A and 13-term Henderson. The most obvious 

differznce from the seasonal adjustment results is the substantial effect of fore/backcast 

error at the very ends of the series. This occurs because the largest weights of the trend 

filter (W(~)(B)) are the center weight (wi”) and the adjacent weights (QJ!~),LJ$~),~~,~~)) 

that are applied to data immediatedly before and after the observation being adjusted 

(Bell and Vonsell. 1992). At the very ends of the series, the weights (~j~),,i~),di~)) 

apply to fore/backcasted observations, which results in large increases in the contribution 

of fore/backcast error there. The result is that uncertainty about the trend increases 

sharply at the ends of the series. In the center of the series, however, the trend variances 

of Figure 4 are substantially lower than the seasonal adjustment variances of Figure 3. due 

to the smoothing of the sampling error by the trend filter. 

3.2 Variances for Seasonally Adjusted Month-to-Month and Year-to-Year 

Changes 

The variances of the errors of the seasonally adjusted estimates of month-to-month 

change are the quantities var( ut - Q-I), t = 2,. . . , n. Given var(v), the complete error 

covariance matrix for the seasonally adjusted month-tolmonth changes can be calculated 
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as Arvar(v)A’, . where 

A, = I! -1 o-1 0 0 0 0 1 ...... 0 0 1 -1 ... ... ... -1 00 0 0 10 0 0 1 

is of dimension (n - 1) x n. The error covariance matrix for the seasonally acljustecl 

year-to-year changes in a quarterly series is calculated similarly as A4var( ,)A:. where 

A4 = 
. 

ii -1 o-1 0 0 0 0 0 ... ... 0 0 0 -1 ... 0 0 -10 00 ol~*~oo lo...00 0 0 . . 0 0 10 0 1 

is of dimension (n - 4) x n. The corresponding (n - 12) x n matrix A12 for monthly series 

follows a similar pattern with additional zeroes. 

Variances of month-to-month or year-to-year changes in the trend are also easily ob- 

tained. as can be seen from this discussion and that of Section 3.1. 

Example- U.S. 5f Unit Howing Starts (continued). We produced the standard errors for 

seasonally adjusted month-to-month and year-to-year changes for this series (Fig. 5). Since 

this time series has been log transformed. standard errors can be approximately interpreted 

as percentages on the original (unlogged) scale. Compared to the standard errors for the 

seasonally adjusted series, there are slight increases in the standard errors of the month- 

to-month changes near the ends of the series, but the standard errors of the year-to-year 

changes show almost no such increase. Thus, for this series and filter, the uncertainty 

about month-to-month and year-to-year percent change in the seasonally adjusted data is 

almost constant across the series. The standard errors of the month-to-month and year- 

to-year changes are both about 50 percent higher than those for the seasonally adjusted 

series. 
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3.3 Variances of X-11 Seasonal Adjustments wjth Estimated Regression Effects 

Seasonal adjustment often involves the estimation of certain regression effects to ac- 

count for such things as calendar variation. known interventions, and outliers (Young, 1965: 

Cleveland and Devlin. 1982: Hillmer, Bell. and Tiao. 1983: Findley. et al.. 1996). (Outlier 

effects are often estimated in the same way as known interventions even though inference 

about outliers should ideally take account of the fact that the series was searched for the 

most *‘significant” outliers.) This section shows how the results already obtained can be 

extended to include the contribution to seasonal adjustment error of error in estimating 

regression parameters. We still assume the other model parameters, which determine the 

covariance structures of Y and e, are known. In practice these other model parameters 

- will also be estimated. but accounting for error in estimating them is much more difficult. 

=1 Bayesian approach for doing so in the context of model-based seasonal adjustment is 

investygated by Bell and Otto (1993). 

We extend the model for Y; to include regression terms by writing Yt = x:/?+Zt, where 

xt is the vector of regression variables at time t, B is the vector of regression parameters, 

and Zt is the series of true population quantities with regression effects removed. Extending 

our mat.rix-vector notation, we write Y = X3 + Z, Y,= X,/3 + Z,, etc. The regression 

matrix X can be partitioned by its rows corresponding to the backcast, observation, and 

forecast periods: X = (Xi I XL I X;)‘. W e assume et has mean zero, so its model doesnot 

involve any regression effects. We then have y = Y + e = (X/3 + Z) + e, with the usual 

partitioning applying. Letting it denote the series yt with the regression effects removed, 

we have z = y - X/3 = Z + e. 

-in additional partition is needed of the matrix X and vector @, This is because 

some of the regression effects in xip may be assigned to the nonseasonal component while 

others, such as trading day or holiday effects, may be removed as part of the seasonal 

adjustment. See Bell (198413) for a discussion. Partition xi as (x’s, 1 x;\i,) where xlvt 

represents the regression variables assigned to the nonseasonal and xst the variables whose 

effects are to be removed in the seasonal adjustment. Correspondingly partition /? so 

x:$ = ~~~;l's+x~~~jj~ and XP = XS/~S+XNP~~ = (Xs / XN)(~; I &)‘. (xst/3s is assigned 
* . 

to the “combined” seasonal component.) The matrix X can thus be partitioned two ways: 
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by seasonal versus nonseasonal regression effects. and by the backcast. observation, and’ 

. forecast periods. Thus we write 

If 3 were known we could compute zO= y,-X0,3 = Z,+e,, forecast and backcast extend 

this series (call the extended series i), adjust i by X-11 (S), and add back the required 

regression effects X.Y~,~.V~. The target of the seasonal adjustment would be X.V~~.V~ + 

s-lz = X~~JV,f~(Y -X3), and the seasonal adjustment error would then be ( X1\70,3.v0 + 

aZ) - (X,,,Y~, + i-hi) = a( Z - ii). Th us, if the regression parameters were known they 

.. would not contribute to the seasonal adjustment error, and the results already given could 

be uzd to compute var(O(Z - i)). 

In practice. 3 will be estimated as part of the model fitting, say by maximum likelihood 

assuming normality. Given the estimates of the other model parameters, and taking these 

parameters as if they were known, the maximum likelihood estimate of /? and its variance 

are given by 

j = [Xl,A$,-, A,,X,]-‘X,‘A;C;. A,y, (3.1) 

var($) = [Xl,ak&.. AoX,]-‘, (3.2) 

where A, is of dimension (n - d) x n, containing that part of the larger matrix A 

which differences the observed series y,,. The expressions (3.1) and (3.2) are general- 

ized least squares results using the regression equation for the differenced data, w, = 

AY, = ~A~JP + (w + A4, where the error term, u, + Ae,, has covariance matrix 

var(w,) = x22, which is determined by the other model parameters. 

Given the estimated regression parameters b, the seasonally adjusted series would be 

obtained by subtracting the estimated regression effects from-the data (call the resulting 
^ 

series i, = yO - X,,L?), extending this series with forecasts and backcasts using the model 

(denote this extended series i = [&, &,, if]), applying X-11 to the extended series (S%). 

and adding back the estimated regression effects assigned to the nonseasonal component 

(02% + XN~,/?!V,,). The target of the seasonal adjustment is still X~~,f3~~~ + f2Z, as discussed 
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above. The seasonal adjustment error is then v = (X,V~J.~~ + 02) - (0; + X.L-Oj.~O) = 

. X.5J35bJ - ii‘%) + n(z - tl,. 

The expression for v can be simplified by rewriting z. First. let G = [B’ I I / F’]‘, 
I / 

where F is the matrix that produces forecasts yf from y0 and B is the corresponding 

matrix that produces backcasts yb from yO. W-e will not need explicit expressions for F or 

B. G applied to z, produces z. while G applied to z, produces %. Therefore. z = z -(i -z) 

= z - [G(yO - X,3) - G(yO - X0>)] = i + GX,( 3 - 13). ?u’ote that GX, is obtained by 

appll-ing the procedure for forecast and backcast extension (from the model for zt) to each 

column of X,. The approach we used to do this is described in Appendix B. Continuing, 

we have 

. v = X.kh(.34.0 - &o, + O[(Z - i) - GX,($ - j)] 

= i-l(Z - ii) + { [0 / X,,] - S-tGX,}(+3 - 3). 

To~:Z-i=z-e-i=[b~O~f]- e. Note that [b / 0 / f]. the error vector from projecting 

z on z0 or yO, is orthogonal to (uncorrelated with) d - 2, since 13 is a linear function of 

the data yO. Therefore, letting K = [0 / X,,,] - OGX,, we have the variance-covariance 

matrix of the seasonal adjustment error allowing for error in estimating p: 

var(v) = 0var( Z - i)n’ + Kvar(fi)K’ + Ckov(e, .?)K’ + Kcov(,~, e)fl’ (3.3) 

where var( ,j) is given by (3.2). In (3.3) S2var( Z - i)s2’ . is computed by the results of Section 

3 and computation of Kvar($)K’ -3 is straightforward once GX, has been computed. To 

compute the other two terms requires 

cov( 3. e) = cov( [X~A~E~~ A,XO]-‘X,‘AblYE~~ AOyO, e) 

= cov([X’,A’,~~~A,X,]-‘X,‘A’,c,;’ [uO + AOeO], e) 

= [XbAb)=~~A,X,]-lX,‘AbC~~A,[O,,, /I,,, ~ O,xm]var(e). (3.4) 

Yote that [O,., j I,,, i O,,, ]var(e) = [cov(e,,eb) j var(e,) / cov(e,,ef)] is the middle n 

rows of var(e). Using (3.4) and the aforementioned results, (3.3) can be computed. We can 

compare the resulting diagonal elements of var(v) with those of the sum of the last three 

terms in (3.3), to see if allowing for the error due to estimating the regression parameters 

is important. 
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There is an important qualification to make about the results of this section. Since’ 

the first term on the right hand side of (3.3). %-ar( Z - 2)W, is the seasonal adjustment 

variance we would get by ignoring error in estimating the regression parameters. it is 

tempting to interpret the sum of the last three terms in (3.3) as the contribution to seasonal 

adjustment variance of error due to estimating regression parameters. Unfortunately, this 

sum is not itself a variance (it can in fact be written as var( KJ + Oe) -var( Oe)), and so it 

can actually be negative. When this happens the seasonal adjustment variances that allow 

for error due to estimating regression parameters are actually lower than those that ignore 

this error. We were in fact able to achieve such a result by artificially modifying model 

parameters in the following example with trading-day variables (though, as in the results 

*shown, the effects were quite small). This situation contrasts with comparable results for 

model-based approaches which express the seasonal adjustment error as the sum of two 

orthogonal terms: the error when all parameters are known, plus the contribution to error 

from estimating regression parameters. The seasonal adjustment variance in this case is 

thus the sum of the variances of these two terms, and so the “regression contribution” is 

always nonnegative. This result is analogous to Slvar(Z - 8)W + Kvar(b)K’ in (3.3). The 

problem in (3.3) is that the X-11 estimate s2z is not an optimal (MMSE) estimator of the 

target OZ, hence the error f2(Z - 2) is correlated with $ through the sampling error e, 

leading to the two covariance terms in (3.3). This situation results partly from our choice 

of target (X,5 + OZ) and partly from the fact that X-11 cannot be assumed to produce an 

optimal estimator of anything (note comments related to this in the Introduction). 

Example- U.S. 5f Unit Housing Starts (continued). We use the same example to illustrate 

the contribution to seasonal adjustment error of adding trading-day variables (Bell and 

Hilmer, 1983), although the corresponding regression coefficients were not statistically 

significant when estimated with this series. Figure 6a shows the results. In this illustration, 

the lowest line is the “contribution” to the seasonal adjustment variance from estimating 

the trading-day effects (but see remarks above). When added to the original estimate of 

variance (dotted line), we obtain the variance of the seasonally and trading-day adjusted 

series, allowing for error in estimating the trading-day coefficients (top solid line). We 
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see that. for this example, the increase in variance due to including estimated trading- 

day effects in the model is slight. Figure 6b gives results for the trend filter. Here the 

contribution to trend uncertainty due t’o estimating the trading-day coefficients is certain11 

negligible. 

The contribution to seasonal adjustment variance of adding three additive outlier 

variables and one level shift variable is illustrated in Figure 6c. These regression variables 

were identified as potential outlier effects using the Regarima program (produced by the 

Time Series Staff at the U.S. Census Bureau) with a critical t-statistic of ‘3.5. Regarima 

uses an outlier detection methodology similar to those discussed in Bell (1983) and Chang, 

et al. (1988). Th e contributions of the additive outliers appear as three spikes while that 

. of the level shift is a single smaller hump in the middle of the series. In comparison to 

the trading-day regression variables, the effect of these outlier variables is mainly local 

but &onger. In particular, there is additional uncertainty about seasonal adjustments for 

observations considered additive outliers. 

Results for the trend filter [Fig. 6d) d*ff 1 er in.that uncertainty is much greater around 

the observation where a level shift was detected, which approaches the level of uncertainty 

at the ends of the series. A level shift is considered part of the trend, so an estimated level 

shift effect would first be subtracted from the series (in X,2), and then added back following 

application of the X-11 trend filter. (This is analogous to the treatment of regression effects 

assigned to the nonseasonal or seasonal components in seasonal adjustment as discussed 

above.) In contrast, since both additive outliers and level shifts are considered part of the 

nonseasonal component, all four effects were added back as part of the seasonal adjustment 

when producing results for Figures 6a and 6b. 

.Actually, these sorts of results for outliers should only be regarded as crude approx- 

imations, since they treat the time of occurrence and types of outliers as known, leaving 

only the magnitude of the effects to be estimated. Ideally, one would like to recognize that 

the series was searched for significant outliers, but this is much more difficult. 
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4. Examples 

We illustrate our approach using several additional economic time series whose sam- 

pling errors follow different models. The models used for these example series are taken 

from previous work as noted. 

4.1. Retail Sales of Department Stores 

Department store sales are estimated in the Census Bureau’s monthly retail trade 

survey. Essentially all sales come from department store chains, all of which are included in 

the survey. hence. there is virtually no sampling error in the estimates. Thus. the variance 

of t,he -X- 11 seasonal adjustment comes only from fore/backcast error and from error in 

estimating regression effects. (Xote that in the Walter-Monsour approach this would be 

* zero.) The model used for this series (Bell and Wilcox. 1993). for the period -August 19’72 

through Alarch 1989 and after taking logs of the observations. is (1 - B)( 1 - B’* )[Y, - Xlp] 

= (1 - 0.53B)(l - 0.S2B’*)nt with a: = 4.32 x lo-“. where Xt includes variables to 

account for trading-day and Easter holiday effects, and Y; = it is the log of the original 

series divided by length-of-month factors. In adjusting the series at the Census Bureau. 

the default .X-11 adjustment filter and 13-term Henderson trend filter are used. 

Figure ia shows the standard errors for the seasonally adjusted data over time, with 

and without the contribution of regression effects. cnlike the 5+ units housing starts 

series. there are marked increases in the standard errors of seasonally adjusted data at 

the ends of series, due entirely to fore/backcast error. The contribution to the standard 

error due to estimating regression effects is also more pronounced for this series. An 

interesting feature in Figure 7 is the sets of small downward projecting spikes that occur 

one year apart in triplets. These occur at non-leap year Februaries, for which there is 

no trading-day effect (the trading-day regression variab1e.s are all zero). There is still a 

small regression contribution to seasonal adjustment error at these time points since the 

adjustment averages in these contributions from adjacent time points. (Dips at non-leap 

year Februaries are also visible on close inspection of Figure 6a.) In addition, for some 

years. the error in estimating the Easter effect produces a noticeable upward projecting 

spike involving the two months March and April. 

The regression relative contribution to the seasonal adjustment standard errors dimin- 



ishes towards the ends of the series. This results from two factors: (1) the magnitude of 

the regression contribution to var( ~‘1) decreases somewhat towards the ends of the series. 

and. more importantly. (2) var( Zt - 2,) increases dramatically towards the ends of the 

series. diminishing the relative contribution to var( ~‘t) due to regression (and this is further 

accentuated when square roots are taken). 

The pattern of the standard errors of seasonally adjusted month-to-month changes 

(Fig. 7b) is similar to that for the standard error of the seasonally adjusted data (Fig. ia). 

The regression contribution is slightly larger than it is for the seasonally adjusted data. 

Standard errors of year-to-year changes (Fig. ic) follow similar patterns but the regres- 

sion contribution is considerably larger than it is for the month-to-month changes. and it 
. 

remains important at the ends of the series. 

A similar set of calculations was performed using the default X-11 trend filter, and 
* 

results for the standard errors of the trend estimates, with and without the regression 

contribution, are depicted in Figure id. The patterns over time of these standard errors 

are similar to the corresponding figures for the 5+ units housing starts series, but the 

standard errors are much smaller due to the absence of sampling error. The regression 

contribution is negligible. 

The standard errors for all plots in Figure 7 are small-none exceed 0.8 percent. For 

this series, the regression contribution is small and probably ignorable near the very ends 

of the series, for all but the year-to-year changes. However, in the middle of the series, the 

sole contributor to standard errors is that due to the regression effects. 

4.2. Teenage Unemployment 

The next example is teenage unemployment, from January 1972 to December 1983, 

in which the sampling error variance hf changes over time so et is nonstationary. The 

model for this series is developed in Bell and Hilmer (1994). The sampling error model is 

et = htet where (1 - 0.6B) Et = (1 - 0.3B)bt and a: = 0.87671 so that var(Gt) = 1. The 

model for 1; is : 

(1 - B)( 1 - B’*)E; = (1 - 023B)( 1 - 0.65B1*)at 

with CT: = 3’747. There are no regression effects in the model. In seasonally adjusting this 
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series, the Bureau of Labor Statistics uses the default S-11 filters. The seasonal adjustment 

variance for this series (Fig. 8a) is dominated at most times t by the sampling error 

contribution (Fig. 8b). This is because. while the contribution of var( b, 0, f) is substantial 

for this series (Fig. SC). it tends to be offset by the contribution of cov [(b.O. f).e] + 

cov [(b. 0, f ). e]’ (Fig. 8d), except at the first and last few time points. The patterns of 

variances of seasonally adjusted month-to-month changes and year-to-year changes (not 

shown) are similar to that of Figure 8a. The variances of the month-to-month changes 

are slightly larger than those of the adjusted series. those of the year-to-year changes are 

larger still. 

4.3. Retail Sales of Drinking Places 
. 

Retail sales of drinking places (September 1977 to December 1986) are estimated in 

the Cpnsus Bureau’s monthly retail trade survey. In this survey, samples (of noncertainty 

cases) are independently redrawn approximately every 5 years, so the covariance matrix 

of the sampling errors is block diagonal. Bell and Hillmer (1990) developed the following 

model for the signal component of the logged series: 

(1 - B)(l - P*)[Y; - x;q = (1 - 0.22B)( 1 - 0.88B”)at, 

where ,Yt contains trading-day regression variables, and ai = 4.609 x lo-“. The model for 

the sampling error within a given sample is 

(1 - 0.75B - 0.66B3 + 0.5OB*)(l - 0.71B1*)et = (1 + 0.13B)bt, 

with gi = 9.301 x 10V5. For time points t and j in different samples, cov(et, ej) 4 0. 

In seasonally adjusting this series. the default X-11 filters are used. Figure 9 gives the 

breakdown for the variance of the seasonally adjusted data (shown over 280 observations 

to better illustrate the pattern). The contribution of error due to estimating regression 

parameters is small for this series, and so is not included in these results. As in the 

previous example of teenage unemployment, the contribution of sampling error overwhelms 

the contribution from fore/backcast error. In fact, the contribution of cov [(b,O,f),e] + 

cov [( b,O? f), e]‘. though small relative to var(e), is much more important than that of 

var( b. 0, f). Note the strong pattern in the contributions of the sampling errors, due to 
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the redrawing of the sample approximately every five years. Lkry large increases in the 

standard error of month-to-month changes (Fig. 10) occur when a new sample is dra\vn, 

and there are also large increases in standard errors of year-to-year changes (Fig. 10) for 

the year after a new sample is drawn. Similar patterns were seen for other series from the 

retail trade survey using models from Bell and Wilcox (1993). 

The standard errors for the S-11 trend estimates (Fig. 11) look like smoothed versions 

of those for the seasonally adjusted series with an important exception. For the trend 

estimates, there is a more marked decrease in variance (than for the adjusted series) around 

the time point when the sample is redrawn, since at that point some of the large filter 

weights are multiplying zero sampling error covariances. Variances of estimates of month- 

- to-month and year-to-year trend changes (not shown) also look like smoothed versions of 

the seasonal adjustment results. 
* 

5. Conclusions 

This paper presented an approach to the long-standing problem of obtaining variances 

for X-11 seasonal adjustments. Our goal was the development and application of an ap- 

proach to obtain variances accounting for two sources of error. The first error source is 

sampling error (et), which arises because we do not observe the true series, I/;, but instead 

observe yt = Y; + el from a repeated survey. The second error source results from the need 

to extend the observed series yt with forecasts and backcasts to apply the symmetric X-11 

filters. This second error source leads to seasonal adjustment revisions. To account for 

these two sources of error, we defined the seasonal adjustment variance as the variance of 

the error in using the X-11 adjustment to estimate a specific target. This target, d(B)E;, 

is what would result from applying the symmetric, linear X-11 filter, ~3( B), to the true 

series if its values were available far enough into the future and past for the symmetric filter 

to be used. (The application to additive X-11 with fore/backcast extension is immediate, 

and log-additive X-11 is taken as an approximation to multiplicative X-11.) 

Our approach was also applied to produce variances of X-11 trend estimates, and 

to produce variances of month-to-month and year-to-year changes in both the seasonally 

adjusted data and trend estimates. A further extension was made to allow for error in 
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estimating regression parameters (e.g.. to model calendar effects). though this was more 

involved and had some limitations. 

The variances we obtain ignore uncertainty due to time series variation in the seasonal 

and nonseasonal components. We argued in Section 2 that this mav be appropriate for I 

typical users of S-11 seasonally adjusted data. If one desires to account for this time series 

variation. however, we suggest that consideration be given to model-based approaches to 

seasonal adjustment. since time series models provide a means to explicitly account for 

variation in all the components. Alternatively. Pfeffermann (1994) developed an approach 

to S-11 seasonal adjustments that attempts to account for irregular variation and sampling 

error. 
. 

Our approach builds on the first approach suggested by Walter and Monsour (1981), 

by accounting for the contribution of forecast and backcast error that was ignored by 

them. -An alternative view of the difference between our approach and theirs is that we 

define a consistent seasonal adjustment target, whereas? in usi,ng X-11’s asymmetric filters, 

Walter and Monsour implicitly used targets that change over time. Because of this. our 

approach avoids the unrealistic feature of seasonal adjustment variances that decrease 

towards the ends of the series, which can be seen in results of Walter and Monsour. and 

also of Pfeffermann. 

In the empirical results presented, the contribution of sampling error often dominated 

the seasonal adjustment variances. This is partly because sampling error was often large 

relative to fore/backcast error, and partly because the contribution of fore/backcast error 

tended to be offset by the contribution of the covariance of fore/backcast error with the 

sampling error. On the other hand, empirical results for trend estimate variances showed 

large increases at the ends of series due to the effects of fore/backcast error. Since the 

largest contribution of fore/backcast error occurs at the ends of the series, and variances 

for the most recent seasonal adjustments and trend estimates are of the most interest, one 

should not ignore the contribution of fore/backcast error. 

The relative contribution to our variances of error in estimating trading-day or holiday 

regression coefficients tended to be small, unless the series had no sampling error. Error 

due to estimating additive outlier and level shift effects was substantial around the time 
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point of the outlier. The effects of -40s were large on seasonal adjustment variances: the 

effects of LSs were large on trend estimate variances. 

Konstationarities in the sampling errors produced interesting patterns in the seasonal 

adjustment and trend estimate variances. Two types of sampling error nonstationarities 

were esamined. Seasonal patterns in sampling error variances produced corresponding 

seasonal patterns in seasonal adjustment variances. Independent redrawings of the sample. 

which yield sampling errors correlated within but not across samples. produced erratic 

patterns in seasonal adjustment and trend estimate variances over time within a sample. 

These patterns approximately repeat across different samples if the samples remain in 

force for approximately equal time spans. Independent sample redraws also produced 

-d ramatic increases in variances of estimates of month-to-month and year-to-year changes 

that %traddled the time point of the sample redraw. 

Computations for the examples shown (given the fitted models, which were obtained 

previously) were done by programming the expressions of Sections 2 and 3 in the S+ 

programming statistical language. The resulting computer code is available on request. 
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Appendix A 

Several expressions to be calculated in this paper are of the general form 

AC-‘B (-4.1) 

where C is a positive definite matrix, and A and B are conformable to C. Let C = LL’ 

be the Cholesky decomposition of C. Then AZ-‘B = A(L-’ )‘L-‘B and (-4.1) can be 

computed as follows: 

(1) Solve LQ, = B for &I 

(2) Solve LQ2 = A’ for QZ 

. (3) Compute AC-‘B = QLQ1. 

(1) and (2) can be solved efficiently since L is lower triangular. 

* 

Appendix B 

Two steps are required to obtain GX,, used in Section 3.3. The first step produces 

“forecast” and “backcast” extension of the differenced regression variables. The second step 

uses these results and the difference equation to produce forecast and backcast extension 

of the original (undifferenced) regression variables. 

Let R, = AoX,, where A0 is that part of the matrix A which differences the observed 

series yO. Analogous to the computation of \i’f and Vi’6 in Section 2.2, forecast extensions 

of the differenced regression variables are calculated as Rf = E~2C~.‘R, and backcast 

extensions as Rb = E12E~~Ro. Rf and Rb are of the form (A.1) and can be computed 

by the technique given above. 

For the second step, let xt denote any one of the regression variables in X. Let 

the required forecast extensions be denoted in+l for I = 1,2,. . . , m. Let the differencing 

operator in the model be 6(B) = 1 -BIB -. . .- 6dBd, and let fn+l be the forecast extension 

of 5( B)xt = rt at time n + 1 ( Tn+l is an element of Rf). The I A’n+l are calculated iteratively 

as 

in+1 = 6&+l-1 + . . . + Sdi,+l-d + qn+l, for 1 = 1,. . . , m, 

where .in+j = x,+j if j 5 0. 
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The required backcast extensions of .rt are denoted ~?I -I for 1 = 1. . . . . m. These are 

. also obtained recursively from the difference equation b(B).?, = ft by solving for .i, ml in 

the expression 

and substituting previously computed backcasts as needed. Thus. 

.Cl-l = dhl(Sd+l-l - O;l.fd-I - ... - dd-lSj-[ - Td+l-l). for 1 = 1,. . . .m. 

where .? 1 --J = -clel for j 5 0. 
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Figure 1. Example Series: 5+ Units U.S. Housing Starts 
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Figure 2. U.S. 5+ Units Housing Starts, 3 x 9 Filter 
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Figure 3. U.S. 5+ Units Housing Starts, Default X-l 1 Seasonal Adjustments 

Comparison of results from our approach with that of Walter and Monsour 
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.a : Figure 4. U.S. 5+ Units Housing Starts: 3 x 9 Filter 
.’ 
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Figure 5. U.S. 5+ Units Housing Starts, 3 x 9 Filter 
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Figure 6. U.S. 5+ Units Housing Starts: 3 x 9 Filter 

(a) variance of seasonally and trading-day adjusted series 
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Figure 7. U.S. Dept. Stores, with TD6 and Easter effects 
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Figure 8. Teenage Unemployment: Default X-l 1 
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Figure 9. Drinking Places: Default X-l 1 
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Figure 10. Drinking Places: Default X-l 1 

standard error of seasonally adjusted data 

0 50 100 150 200 250 

. 

standard error of month-to-month changes 

3.. 
d 

B. 
d 

2- 
d 

0 50 100 150 200 2;o 

standard error of year-to-year changes 

7 -’ - 

- 

9 
0 

0 50 100. 150 200 250 

observation 



Figure 11. Drinking Places: Default X-l 1 
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