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ABSTRACT

When redesigning a sample with a stratified multi-stage design, it is sometimes considered
desirable to maximize the number of primary sampling units retained in the new sample without
altering unconditional selection probabilities. For this problem, an optimal solution which uses
transportation theory exists for a very general class of designs. However, this procedure has
never been used in the redesign of any survey (that the authors are aware of), in part because
even for moderately-sized strata, the resulting transportation problem may be too large to solve
in practice. In this paper, a modified reduced-size transportation algorithm is presented for
maximizing the overlap, which substantially reduces the size of the problem. This reduced-size
overlap procedure was used in the recent redesign of the Survey of Income and Program
Participation (SIPP). The performance of the reduced-size algorithm is summarized, both for the
actual production SIPP overlap and for earlier, artificial simulations of the SIPP overlap.
Although the procedure is not optimal and theoretically, as is shown, can produce only negligible
improvements in expected overlap compared to independent selection, in practice it gave
substantial improvements in overlap over independent selection for SIPP, and generally provided
an overlap that is close to optimal.

KEYWORDS: Linear programming; Sample redesign; Survey of Income and Program
Participation.

1. INTRODUCTION

The problem of maximizing the expected number of primary sampling units (PSUSs) retained in
sample when redesigning a survey with a stratified design for which the PSUs are selected with
probability proportional to size was introduced to the literature by Keyfitz (1951). Typically, the
motivation for maximizing the overlap of PSUs is to reduce additional costs, such as the training
of a new interviewer for a household survey, incurred with each change of sample PSU.

Procedures for maximizing overlap do not alter the unconditional probability of selection for a
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set of PSUs in a new stratum, but conditions its probability of selection in such a manner that
the probability of a PSU being selected in the new sample is generally greater than its

unconditional probability when the PSU was in the initial sample and less otherwise.

Overlap procedures are applicable when the redesign results in either a restratification of the
PSUs or a change in their selection probabilities. Keyfitz (1951) presented an optimal procedure,
but only for one-PSU-per-stratum designs in the special case when the initial and new strata are
identical, with only the selection probabilities changing. Causey, Cox and Ernst (1985) obtained
an optimal solution to the overlap problem under very general conditions by formulating it as a
transportation problem, which is a special form of linear programming problem. This procedure
imposes no restrictions on changes in strata definitions or number of PSUs per stratum. (A
similar result had been independently obtained by Arthanari and Dodge (1981), although they did
not discuss the issue of changes in strata definitions. Both sets of authors obtained their results
by generalizing work of Raj (1968).) However, there are at least two other difficulties with the
procedure of Causey, Cox and Ernst which can make it unusable in practice, one which is the

focus of Ernst (1986), and the other the focus of the current paper.

The first difficulty is that, if the initial sample of PSUs was not selected independently from
stratum to stratum, the information necessary to compute all the joint probabilities required by
this method may not be available in practice. An alternative linear programming procedure, for
use in such cases, was developed by Ernst (1986). The Bureau of the Census has used linear
programming to overlap its demographic surveys on five occasions. On four of these occasions
(the selection of the 1980s and 1990s Current Population Survey (CPS) designs, and the 1980s
and 1990s National Crime Victimization Survey (NCVS) designs) the procedure in Ernst (1986)
was used because the initial design was not selected independently from stratum to stratum. In
particular, as explained in Ernst (1986), if the initial sample was itself selected by overlapping
with a still earlier design then this independence assumption generally does not hold, which was

the key reason why it did not hold for these four redesigns.

The second difficulty with the optimal procedure is that the transportation problem may be too
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large to solve in practice. The Bureau of the Census also used linear programming to overlap
the 1990s Survey of Income and Program Participation (SIPP) design with the 1980s SIPP
design, both two-PSUs-per-stratum designs. The initial sample for SIPP was selected
independently from stratum to stratum. However, the transportation problem for the optimal

procedure would have been too large to practically solve for many strata. This is because for

each new stratum to be overlapped consistingndPSUs, the number of variables in the
. _ O
transportation problem for the optimal procedure can be as largs % . The largest value

of n for which a transportation problem with that many variables can be solved with the

computer facilities that we have used is approximatet}5.

This paper presents a reduced-size formulation of the overlap procedure as a transportation

problem which decreases the numbers of variables in the SIPP probl@ %)ml%x@% a
0 0 x0

striking reduction for moderate to large valuesrof The procedure assumes that the initial
sample was selected independently from stratum to stratum, and hence could not have been used
instead of the procedure of Ernst (1986) to overlap the CPS and NCVS designs. This reduced-

size procedure has been successfully run for strata with as many as 68 PSUs. In contrast, for

]
n=68, the 268x§285 possible number of variables for the unreduced formulation is far beyond

the size of problem that can be solved by any current computer. Furthermore, though the
reduced-size procedure sacrifices optimality in exchange for its size reduction, it does appear in
practice to yield results fairly close to optimal, as we will show. The reduced-size procedure is

the procedure that was used to overlap SIPP.

In Section 2 the procedures of Keyfitz (1951), Raj (1968), and Causey, Cox and Ernst (1985) are

reviewed, to provide background for the presentation of the reduced-size procedure.
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The reduced-size procedure is presented in Section 3. Although the approach has general
applicability, for ease of presentation it is only described in detail for the case when both the
initial and new designs are two-PSUs-per-stratum without replacement. Small, artificial examples
of the reduced-size procedure are also presented in Section 3. These examples serve to illustrate
the procedure; to demonstrate that the reduced-size procedure is sometimes, but not always,
optimal; and to demonstrate that the ordering of the pairs of PSUs in a new design stratum, a key

step in the algorithm, affects the expected overlap.

In Section 4 the reduced-size procedure is compared analytically to the optimal procedure. Upper
bounds on the loss in expected overlap from using the reduced-size procedure instead of the
optimal procedure are obtained. It is also demonstrated that in certain situations this loss can

approach two PSUs for two-PSUs-per-stratum designs, the worst possible situation.

Finally, in Section 5, the performance of the reduced-size procedure is presented, both for the
actual SIPP production overlap and for earlier, artificial simulations of the SIPP overlap. The
expected overlap for this procedure is compared to that for independent selection of the new
sample PSUs and to an upper bound on the optimal expected overlap. The results show that for
this application, in constrast with some of the theoretical results in Section 4, the expected
overlap with the reduced-size procedure was much larger than if independent selection had been
used to select the new sample PSUs, and nearly as large as the optimal expected overlap. Also
presented are computer running times for the reduced-size procedure as a function of stratum
size.

2. REVIEW OF PRIOR OVERLAP PROCEDURES

The procedure of Keyfitz (1951) is reviewed in Section 2.1, and the transportation problem

procedures of Raj (1968) and Causey, Cox and Ernst (1985) are reviewed in Section 2.2.

First, however, we present some notation that will be used throughout the papes déerote
a stratum in the new design consistingmoPSUs,A,,...A,. Let the random sdtdenote the set

of integersi for which A, was in the initial sample, and I&t be the corresponding random set
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with respect to the new sample. For the simple conditions considered by Keyfitz (1951), the

possible values of andN are then singleton sets {1}, {2},...,fi}. Possible values fof andN

for more general overlap problems are discussed in Section 2.2. Finally, Iat denote the
probability thatj (]| andiON, respectively, anqj, T, i#], be the joint probability thg|

andi,jON, respectively.

The goal of all overlap procedures is the same, to obtain conditional probabilities of selection for

the new sample PSUs which maximize the expected number of PSUs common to both samples,
that is the number of elements Mn I,  while preserving the unconditional selection probability
for each possible value dd. For the procedure of Keyfitz (1951) this reduces to the problem

of maximizing the probability thalN=I, that is, the probability that the same PSU was selected

from Sfor both the initial and final samples.
2.1 The Method of Keyfitz
Keyfitz (1951) presented the following simple set of conditional probabilities in the case when

the initial and new designs are both one-PSU-per-stratum and the strata definitions are identical

in both designs, with only the selection probabilities changing.



P(N={j} [1={i}) = min{L, T/p} if j=i, 1)

= (1-min{L, Tt/p}) nmaxm_p" o it ji 2.2)
Z max{m -p,, 0}

In particular, note that i\ was in the initial sample ang <1 then this PSU is retained with

certainty, while otherwise the conditional probability of its retentionifp.. This fact will be

used to motivate part of the reduced-size algorithm presented in Section 3.

To illustrate Keyfitz's, method, consider a strat@mwith n=3 for which

p,=.36, p,=.24, p,=.40, 1 =.50, 1,=.30, 1,=.20.
The conditional selection probabilities for the PSUs in the new sample, obtained from (2.1), (2.2),

are presented in Table 1.

Table 1. Conditional Probabilities for Keyfitz’'s Procedure

Final PSU
Initial PSU 1 2 3
1 1.00 .00 .00
2 .00 1.00 .00
3 .35 15 .50

Note that by examining the entries in this table row by row, we can see that Aylvess in the

initial sample the conditional probability of selectiry in the new sample is greater than
1, while the conditional probability of selecting, j#i, is less thern]. Also note that with this
procedure, the unconditional new selection probability for e§clobtained by multiplying the
entry in cell {,)), i=1,2,3, byp. and summing, does equql as required.

Furthermore, the overlap probability using the Keyfitz procedure, obtained by multiplying the
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entry in cell {,i) by p, i=1,2,3, and summing, is .8. This compares with an overlap probability

3
of Y pm=.332if the new PSUs are selected independently of the initial PSUs.
i=1

Perkins (1970), and Kish and Scott (1971) presented extensions of Keyfitz’'s procedure for the

more general one-PSU-per-stratum problem for which the strata definitions can change in the new
design. Their procedures are not optimal, nor do they have any obvious extension to other than
one-PSU-per-stratum designs. Optimal solutions to the general overlap procedure awaited the

application of linear programming techniques and are discussed in the next subsection.
2.2 Formulation of the Overlap Problem As a Transportation Problem

A transportation problem is a particular form of linear programming problem, in which an

objective function of the form

zb: C,X; (2.3)

a
i=1 j=1

is to be either maximized or minimized, subject to the constraints

: X, =0, i=1,...,a, (2.4)
i1
za: X; =[3j, =1,...,b, (2.5)
) a =) B, (2.6)
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where thexij are nonnegative variables angd |3j are constants. The variables can be viewed

as internal cells of a two-dimensional tabular array, with row and column totals specified by (2.4)
and (2.5), respectively. The sum of the row totals must equal the sum of the column totals for
such an array, which is precisely what (2.6) states. Solution strategies that are extremely efficient

computationally exist for transportation problems (Glover et al. 1974).

Raj (1968) was the first to formulate the overlap problem as a transportation problem, but he only

considered the same one-PSU-per-stratum case without change in strata definitions as Keyfitz.

Raj let the variablesxij, i,j=1,...n, denote the joint probability thal and jON; si]e-tl if
i=j andc, =0 ifi#j; and leta,=p, B,=m. Thus, the problem in the transportation formulation

is to determine a set of nonnegatixae 's which maximize

Yy x (2.7)
i-1
subject to the constraints

Y x =p. i=1,...n, (2.8)

X, =TT, j=1,..n. (2.9)

The objective function (2.7) is the probability of overlap, that is the probability that the same
PSU inSis in both samples, while constraints (2.8) and (2.9) must be met in order for the joint

probabilities to sum to the correct initial and new selection probabilities, respectively.

Once an optimal set oftij 's are obtained, the conditional probability of seleé{ingthe new

sample given tha#; was in the initial sample is simpl)(ij/pi for allj.



10
To illustrate, the optimal set o;iij 's for the example in Section 2.1 are given in Table 2.

Table 2. Values okij for Example of Section 2.1

j

[ 1 2 3

1 .36 .00 .00
2 .00 24 .00
3 14 .06 .20

Upon dividing each entry in rowof Table 2 byp, Table 1 is obtained again. Furthermore, the

maximum value of (2.7) is the sum of the diagonal elements of Table 2, or .8, consistent with

the overlap probability given in Section 2.1.

Raj’s formulation of the overlap problem as a transportation problem under the conditions
considered by Keyfitz has no practical utility, since it is easier to use (2.1), (2.2) to obtain
optimal conditional selection probabilities than to solve a transportation problem. The real
importance of Raj’'s approach is that, unlike Keyfitz’s, it is readily generalizable, as done in
Causey, Cox and Ernst (1985), to yield formulations for optimal solutions for very general

designs, with no restrictions on changes in strata definitions or number of PSUs per stratum.

We proceed to present this generalization, which requires additional notatiory , lie,... v,
denote the possible values figrand IetSJ, j=1,...n", denote the possible values for Denote

by P(J), the probability thatl=J and b)P(SJ) the probability thmzsJ . In addition, let

X, be the variable denoting the joint probability of these two events, and:ijlet denote the

number of elements irJ ns. Then the transportation problem to solve is to detelsqpima

which maximize

T o (2.10)

ij )
i=1 j=1
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subject to

i X, = P(J), i=1,..m, (2.11)

j=1

Y x =P(S), j=1,..m. (2.12)

m*
i=1

The conditional probability thaN = S given thatJ.  is thalrjl/ P(J) for il

We observe that under the conditions considered by Keyfitz and IRmd N consist of the
singleton subsets of {1,n}, m*=n"=n, p,=P(J), 1 =P(S), and thus the procedure of Causey,

Cox and Ernst reduces to that of Raj.

For the more general one-PSU-per-stratum problem in which the strata definitions can change

in the new designiN still consists of the singleton subsets of {1n},,and hencen*=n, but

depends on the stratification in the initial design. To illustrate, an example is presented in
Causey, Cox and Ernst (1985) for whinkh5, with A;, A,, A; in one initial stratum and\,, A; in

a second initial stratum; in both of these initial strata there were also additional PSUs30t in

Thenm* =12, with the values dfconsisting of the empty set, the 5 singleton sets, and the 6 sets

of size 2 for which one element is from {1,2,3} and the other from {4,5}. In general, the

maximum value fom* 2", the number of subsets of {In}..,For the case when both designs

are one-PSU-per-stratuim*=2"  if and only if thé®SUs inSwere inn different initial strata.

We next consider the case where both the initial and new designs are two-PSUs-per-stratum
without replacement. We present an example to illustrate the use of the formulation (2.10)-
(2.12).
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Consider a final stratur® with n=3. All of the PSUs were in different initial strata.

Let p,=.6, p,=.75, p;=.7, T4,=.5, T,=.8, T;=.7.

Thenp,,=.45,p,;=.42, p,5=.525,1,,=.30, 11,,=.20, 13,,=.50.

Since the PSUs were all in different initial strata, there are 8 different possibilitiels Waith

probabilities given in Table 3.

Table 3. Probabilities for Possible Sets of Initial Sample PSUs

i 1 2 3 4 5 6 7 8
J .23y {Lzp {13 {23 {4} {2] {3} 0
P@) 315 135 105 21 .045 .09 .07 .03

Since the new design is two-PSUs-per-stratum without replacement, there are 3 different
possibilities forN, namely the pair§={1,2}, S={1,3}, S={2,3}, and henceP(S)=.30,
P(S,)=.20, P(5,)=.50.

Furthermore, the values @f are then as given in Table 4. Upon maximizing (2.10) subject
to (2.11) and (2.12) with the giveR(J)'s, P(S)'s andc;’s, an optimal set ok;’s, presented
in Table 5, is obtained. Finally, by dividing each of the entries in ravf Table 5 byP(J),

an optimal set of conditional probabilitigg(S|J,),  in Table 6, is obtained.

Table 4. Values ofcfor Optimal Procedure

j
| 1 2 3
1 2 2 2
2 2 1 1
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Table 5. Values of;xthat Maximize Overlap for Optimal Procedure

j

i 1 2 3

1 .000 .025 .290
2 135 .000 .000
3 .000 105 .000
4 .000 .000 210
5 .045 .000 .000
6 .090 .000 .000
7 .000 .070 .000
8 .030 .000 .000

Table 6. Conditional Probabilities for Optimal Procedure

Final Sample PSUs

Initial Sample PSUs {1,2} {1,3} {2,3}
{1,2,3} 0 5/63 58/63

{1,2} 1 0 0

{1,3} 0 1 0

{2,3} 0 0 1

{1} 1 0 0

2} 1 0 0
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{3} 0 1 0

Note that, as previously mentioned and as illustrated by this example, when the number of
PSUs per stratum in the new design is greater than 1, objective function (2.10) has a more
general meaning than (2.7). While (2.7) is the probability that the new sample PSU was in
the initial sample, (2.10) is the expected number of new sample PSUs that were in the initial
sample. For this example, the expected overlap under the optimal procedure is 1.735 PSUs.

In comparison, the expected overlap if the initial and final designs are selected independently
is p, 1L + p,TL, + p,T,=1.39 PSUs. Also observe that it can readily be verified that the set of

conditional probabilities in Table 6 is optimal, since the conditional expected overlap is 2
whenever at least a pair of PSUs ard iand the conditional expected overlap is 1 whenever

| consists of exactly one PSU.

For two-PSU-per-stratum without replacement problems, the possible valubisai@ always

O O . :
the @% subsets of {1,n} of size 2, that isn*= @% Howevem can vary widely.

0 \
m"= @%When the PSUs irs comprise a single initial stratum. The upper bound b2 m

is attained when all the PSUs #iwere in different initial strata, as illustrated by the previous

example, and in some other situations, as will be shown. To obtain a general, exact

expression fom, let G/',i=1,...r, denote the set of initial strata with PSUs in common with
S let G =G/NS; and letn,n' denote the number of PSUs@ G/, respectively. Assume

that eachG' is a nonselfrepresenting stratum. Then the following results hold:

Theorem2.1
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i=1
where

m = 2 ifn=1, (2.14)
= m‘% if n'=nx2, (2.15)

0

Al
= m'mni if n'-1=n=2, (2.16)

U
= m‘%ngl if n'-22n22, (2.17)

Furthermorem~=2" if and only ih<2 for all and, in addition,n'>4 whenever =2,

This theorem is proven in Appendix A.

For the two-PSUs-per-stratum without replacement overlap problem, the number of variables

in the transportation problem for the optimal procedurenis” which, by Theorem 2.1, can
0 0 L :
be as large ag" E For=15, 2" Elz 3,440,640, which is about as large a transportation

problem as can be solved with the computer facilities that we used. HowevEs, for
nearly half the nonselfrepresenting strata in our SIPP application, and consequently it was
necessary to develop a procedure, described in the next section, which reduces the size of the

transportation problem, while still producing nearly maximal expected overlap in practice.

Aragon and Pathak (1990) present a different approach to the problem of reducing the size of

the transportation problem than the procedure to be presented in Section 3. Their approach

retains optimality and reduces the size of the problem by 75 percent whem *

Unfortunately, whemm' is much larger tham’, which is when size reduction is most needed,
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their approach produces negligible size reduction in relative terms.
3. THE ALGORITHM FOR THE REDUCED-SIZE PROCEDURE

The reduced-size procedure is applicable whenever PSUs in the initial and new designs are
selected without replacement. However, the procedure will be described in detail, in Section
3.1, only for the case when both the initial and new designs are two-PSUs-per-stratum. Then,
in Section 3.2, the changes necessary to apply this procedure for other initial and new designs
will be sketched. It is assumed that PSUs in the initial sample were selected independently

from stratum to stratum.

3.1 Reduced-Size Procedure When Both Designs Are Two-PSUs-Per-Stratum

The general outline of the procedure for this case is as follows. Firs@%e subsets of

{1,...,n} of size 2 are ordered in a manner to be described later. (For now, we simply note
that any ordering can be used to reduce the size of the transportation problem. The specific
one used is for the purpose of accomplishing the size reduction while also attempting to give

up as little as possible of the gains in overlap that the optimal procedure yields.) e let

n
2

U
i=1,...,@% denote thd-th element in the ordering; lat) I() be timesingleton
+1 2 +n

subsets; and se() =0. Thus, this constitute all subsets of {1,n}, of 2 or fewer
+n+l

n
2)

[
elements. For each possibility fora unique set * is associated among th%ﬂBml

subsets and the new selection probabilities conditioned on the assoriated |, rather than on

itself. Therefore, the new selection probabilities are condltlone@%nml events instead
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of a possible 2events, which is the reason for the size reduction. The assodiated s the

first I, for which I.001. That is, ifl consists of at least two integers, the associated is the

first pair in the ordering contained in while if | is a singleton set or empty thdrr=1.

The reduced-size transportation problem attempts to retain the PSUs corresponding to

elements in the associated et  in the new sample, but does not use information on

elements ini0dJl . The form of this reduced-sized transportation problem based on the set of

U
I's is as follows. Letp,” be the probability that =1, i=1,...§%n+1, and abbreviate

0
T = P(S]), j=1,...§% For eachi,j, the variablex; is the joint probability that =1, and that

N=§, while c; is the expected number of elementsiin Sl givere | . The problem to

solve is to determinaijzo that maximize

Ci X (3.1)
subject to

[l
x =p,, i=1,..00n+1, (3.2)
O

(3.3)

NLES
X
1l
‘_:*
I
=
S
[ ||
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Once the optimak;’s have been obtained, then the conditional new selection probabilities for

O
S jzl,...@% given| =1, arex, Ip,". Note that the number of variablgs,in the

i 0 LA i
formulation (3.1)-(3.3) is@%nd%ﬁ@% in comparison with a maximum 2fx @E in the

formulation (2.10)-(2.12).

It remains to explain the general method for obtaining the ordering o@%e pairs and the

procedures for computing thg" ’s aesgs. Before doing this, we present an example of the

reduced-size procedure, namely the two-PSUs-per-stratum example used in Section 2.2 to

illustrate the transportation problem formulation for the optimal procedure.

The ordering of the pairs for this example, as will be shown later, is {2,3}, {1,2}, {1,3}.
Consequently, thé’s, are as given in Table 7. Note thatl#{1,2,3} or I1={2,3}, then the

associated set ig={2,3}. For the other six possibilities for the associated set isitself.

Consequently, from Table 3 we obtain that
p, =P(1={1,2,3}) +P(1 ={2,3}) =.525, (3.4)

p, =P@), i=2,3,and p,"=P(J ), i=4,...,7, yielding the values in Table 7. Sin¢¢=P(SJ),

we haver =.30, 1,=.20, T, =.50.

Table 7. Probabilities of Associated Sets: Reduced-Size Procedure

i
1 2 3 4 5 6
I {2,3} {1.2} {1,3} {1} {2} {3} 0
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P; .525 135 .105 .045 .09 .07 .03

The ¢; values for this example are given in Table 8. In order to obtain these values, we

simplified the computation by letting

O
b, =P(tOI 1 " =1,), i=1,...§%+n+1, t=1,..n, (3.5)

and noting that if§={s;t} then

ij b, ~b,. (3.6)
That is, the expected number of elementd ﬁ?fSJ given |, is simply the sum of the
probabilities that each of the two elementsJrwas inl given | “=1.. Also observe that

while the transportation problem for the optimal procedure knows the exact valliefmt
hence knows with certainty whether each elemerfyiwas inl, this is not the case for the

reduced-size procedure, since only the associatet] iseknown. To illustrate, consider the

first row of Table 8. Sincé,={2,3}, we know that20l and 3JI, and hencb,, = b,; = 1.

However, we do not with certainty whethelilsincel, is the associated set for both
1={1,2,3} and I={2,3}. In fact, from Table 3,

_ P(1={1,2,3}) -
“OP0={1,23) +P(1={2,3)

Thenc, = b, +b,=1.6, withc,, c,; computed similarly. For the remaining six rows in

Table 8,1, =1 and hence it is known with certainty which integers werk iConsequently,

the c;’s for these six rows are easily computed.
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Finally, we maximize the expected overlap (3.1) subject to (3.2) and (3.3), obtaining the

values in Table 9. The conditional probabiliti@$N=S [l =1)  in Table 10 are then

obtained by dividing thé-th row of Table 9 byp..



Table 8. Values of;cfor the Reduced-Size Procedure
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j

i | 1 2 3
1 2,3} 1.6 1.6 2.0
2 {1,2} 2.0 1.0 1.0
3 {1,3} 1.0 2.0 1.0
4 {1} 1.0 1.0 0.0
5 2} 1.0 0.0 1.0
6 {3} 0.0 1.0 1.0
7 U 0.0 0.0 0.0

Table 9. Values of xfor the Reduced-Size Procedure

j

i | 1 2 3
1 {2,3} 0.000 0.025 0.500
2 {1,2} 0.135 0.000 0.000
3 {1,3} 0.000 0.105 0.000
4 {1} 0.045 0.000 0.000
5 {2} 0.090 0.000 0.000
6 {3} 0.000 0.070 0.000
7 U 0.030 0.000 0.000
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Table 10. Conditional Probabilities for the Reduced-Size Procedure

j

i l, 1 2 3
1 2,3} 0 1/21 20/21
2 {1,2} 1 0 0
3 {1,3} 0 1 0
4 {1} 1 0 0
5 2} 1 0 0
6 {3} 0 1 0
7 U 1 0 0

The expected overlap for the reduced-size procedure is .01 less than optimal, that is 1.725
PSUs. The deviation from optimality arises solely because the expected overlap is 1.6 for the
joint event thatl *={2,3} andN={1,3}. Since the probability of this joint event is .025,

and the optimal procedure for this example always produces an overlap of 2 when at least 2
of the PSUs were in the initial sample, the deviation from optimality is .025(2-1.6)=.01.

The reason that the reduced-size procedure is not able to obtain optimality is that the pair
{2,3} has a smaller probability of selection in the new sample than in the initial sample. As
a result, both the optimal procedure and the reduced-size procedure must sometimes select
another pair (always {1,3} for both procedures in this example) when {2,3} was in the initial

sample. The distinction between the two procedures is that the optimal procedure only selects

{1,3} when 10I. The reduced-size procedure is unable to use the information about whether

101. As a result, when{2,3} 0JI, 10N independently of whethinl. This results in a

deviation from the optimal overlap.
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Although, as illustrated by this example the reduced-size algorithm does not always yield the
optimal expected overlap, in practice it often does. To illustrate, consider the previous
example with the single modification thpj=.50 instead of .75. The conditional probabilities

for the optimal procedure are presented in Table 11.

Table 11. Conditional Probabilities for Optimal Procedure with.50

Final Sample PSUs

Initial Sample PSUs {1,2} {1,3} {2,3}
{1,2,3} 0 0 1
2,3} 0 0 1
{1,2} 1 0 0
{1,3} 0 20/21 1/21
{1} 1 0 0
2} 1 0 0
{3} 0 0 1
0 1 0 0

The corresponding table for the reduced-size procedure is identical to Table 11 except that the
first row is omitted, with the rows for {1,2,3} and {2,3} combined into a single row for

{2,3}. The expected overlap is 1.58 for both procedures for this example. The conditional
expected overlap is 1 whenever there is exactly 1 PSUand the conditional expected

overlap is 2 whenever there are at least 2 PSUs except ifl={1,3}. If 1={1,3} then the
conditional probability of {1,3} being selected in the new sample is 20/21 for both

procedures. SincB(1={1,3})=.21 and;=.20, no procedure can yield a higher conditional
probability of retaining {1,3} when={1,3}.

We now proceed to show in general how the ordering of the pairs is obtained apgl the S

andc;'s are computed.
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We first consider the ordering of the pairs. The motivation for the ordering is as follows. If

thei-th pair in the ordering is 4, then it would be possible for the transportation problem to
retain this pair in the new sample wheén=1,  with conditional probability {hjnt /p;’}.

This is analogous to (2.1) in Keyfitz's procedure. Therefore, roughly the goal in the ordering

is to make these conditional probabilities as large as possible on average over all pairs.

To illustrate how the ordering of the pairs affects the expected overlap we consider the
example of Table 7. Our ordering procedure, as will be shown later, produces the indicated
ordering and yields an expected overlap of 1.725 PSUs. Next consider the following

alternative ordering for this example. Let the first pair in the ordering be {1,3}, the second
pair be {1,2} and the last pair be {2,3}. With this alternative orderings {1,3} whenever
either 1={1,2,3} or 1={1,3}. Therefore, for this ordering,” is the probability thiat= {1,3},
which is now .42. Furthermore, for this alternative ordering

ps = P(I "={2,3}) = P(1={2,3}) = .21, while the other 5 columns in Table 7 remain unchanged.

The alternative ordering results in the conditional probabilities in Table 12.

Table 12. Conditional Probabilities for Alternative Ordering

j

i l, 1 2 3
1 {1,3} 0 10/21 11/21
2 {1,2} 1 0 0
3 {2,3} 0 0 1
4 {1} 1 0 0
5 2} 1 0 0
6 {3} 0 0 1
7 U 1 0 0
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It can be calculated, using the same approach used for Table 10, that the expected overlap for
this example is 0.055 less than optimal, that is 1.68 PSUs. The reason that this alternative

ordering results in a lower expected overlap is as follows. In general a later placement of a

pair in the ordering, results in a lower value for the corresponging and hence a higher
conditional retention probability wheh*=1..  That is, with {1,3} first in the ordering,
T,./p, = 10/21, which is the conditional retention probability for this pair whén{l,3};

while when {1,3} is third in the orderingt /p;>1 and this pair is retained with certainty.

Now the conditional retention probability for the pair {2,3} when={2,3} also increases to

1 when {2,3} is moved from first to third in the ordering, but the increase is only from 20/21,
and hence the ordering in Table 7 produces a higher expected overlap than the ordering in
Table 12.

Thus, as this example illustrates, the goal of the ordering is to place pairs earlier in the

ordering that have a relatively high conditional retention probability even with an early
placement. To obtain the desired ordering of the pairs of integers, an ordétijg. f(n) of

{1,....n} will first be obtained by recursion. Then corresponding to dech...n-1, an
orderinggy(1),...g(n-k) of {1,...,n} ({f(1),...f(K)} will be constructed by recursion. A linear
ordering of the distinct pairs in {1,.n} would then be determined as follows. Each such pair
can be represented uniquely as an ordered p@&y; 0.(¢)) for somek [J {1,...,n-1}, ¢ [

{1,...,n-k}. A second pair representable in the formgk(), g.(¢')) precedesf(k), g(0)) if and

only if eitherk'<k, or k=k and'<t. To illustrate, for the example just considered it will be
shown later thaf(1)=2, f(2)=3, f(3)=1, g,(1)=3, 9,(2)=1, g,(1)=1, and hence the ordering of

the pairs is {2,3}, {2,1}, {3,1}. Both thef ordering and the, ordering will be constructed to

meet the goal stated at the beginning of this paragraph.

To obtain the orderind(1),...f(n), recursively defind(k), k=1,...n, by choosingi(k) [J T,
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satisfying

/Py = max{rm/p®:i 0 T},

where

T

1

- {0, T, = T k-1, k=2,..n,

p¥=Pi O 1 andl OT), k=1,.n, iOT (3.7)

K

Since pi”= p, the ordering just defined corresponds to placing first a PSU with the greatest
value of ri/p. For allk, p¢J is the probability thaf(k) was inl and none of thé-1

elements proceedinigk) in the f ordering were in, and hencepf((';)) is the probability that an

attempt is made to retaif,, in the new sample either as the first member of an ordered pair
of initial sample PSUs or as the only initial sample PSUWsinGenerally, the Iarger[r(k)/pf((f)
is, the greater the probability that this attempt would be successful. Thus, the motivation for
thef ordering of the individual PSUs is the analog of the motivation for the ordering of the

pairs of PSUs that we previously discussed.

It remains to explain how to computg®  fée2.  To this end,retenote the number of
initial strata with PSUs in common witB and letF , a=1,...r, denote a partition of {1,n},

such that andj are in the samé=_ if and only # andA; were in the same initial stratum.
Then let
p(T) =PI n F,O0T), a=1,..5, T O{1,..,n} (3.8)

pM=Pi Olandl n F, O0T), a=1,.;, TO{l,..n}, iOF nT, (39

and observe that
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p(M=1-3% p~+Y p (3.10)
i0F,r i,jOF, 07
i<j
PM=p - Y (3.11)
jOF, 0T

and finally that

= Pa(Td H p(T), k=l,..n, i OF, n T, (3.12)

ﬂ#a

This last formula is obtained by noting that sinpgé(Tk), (£a, is the probability that all of

the elements inNF, are i, while p(T) is the joint probability that 0 | and that all the

elements inINF_ are i, then since the selection of the PSUs in the initial design is
assumed independent from stratum to stratum, the product of terms on the right hand side of

equation (3.12) is the probability that] I and 10T, , which is precisely the definition of

p given by (3.7).

Next, for eachk=1,...n-1, the orderingg,(¢), ¢=1,...n-k, is recursively defined by choosing
g () O T, satisfying

0] _ o . :
Tl%(k),gk(lz)/ Pwgw = maX{T[f(k),j/ Proo- 1 O Tioh
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where
T, = {1,...nf(1),...f(K)},
Ty = Ty @G-} 0=2,..0k,

Te = T, U{f(k}, ¢=1,..n-k

pro; = PR, j O 1 andl O Tp), ¢=1,.n-k j O T, (3.13)

Note that pf((%’j is thus the joint probability th&kK) is the first integer in thdé ordering inl,

that none of the first -1 integers in tlyg ordering are in, and that [0 1. Consequently,

Pin.q IS the probability thatl = {f(k), g(0}. ~ Furthermore, If={f(k), g (0} then

"= Pi@.q0 @nd hence the choice @f(¢) results in the largest valuey f among

Pi = Prw.g0: gk(,;)/ P
the elements inT,, in accordance with the previously stated goal for the ordering of the pairs

of PSUs.

To computepy ;, observe thatfik) O F,, j O F,, then

r

prﬂk))J = pf(k)’j H pt’(TkZ) If G:B’

t=1
tZa
(3.14)
= Proa (TP (Ta) T i (Ti) if azp.
t:t:c:xl,B
These formulas can be obtained by first noting that in (3.p4T,) is the probability that

INF, OT,. If a=p then Prgo is the probability that(k) andj were inl, and hence the only

elements inINF_; while ifazP, therpy,,(T.) ps(Te) is the probability thifk) andj were
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in 1, and Iﬂ(FaUFB) 0T, - The product of the terms in both formulas in (3.14) is thus the

probability thatf(k), jOI, andiOT,, which is precisely the definition pf),  in (3.13).

We illustrate the computations used in obtaining the ordering for the example that we have

been considering. First note thi#1)=2 since the largest value af/p, occurs fori=2. Next

we find g,(1) which, sincef(1)=2, is thej0{1,3} with the maximum value at,/p;” . To

find thisj, first let F,={a}, a=1,2,3, and note thaTl,;={1,2,3 . From (3.14) witt¥2, =1, it
then follows that

ps=poi1,2,3p11,2,3p,(1,2,3 = p,p,1=.45,
and similarly it can be obtained thaty’=.525 . Hengg1)=3,  since .5/.525>.3/.45.

Therefore, the first pair in the ordering {$(1), g,(1)} = {2,3}. The(2)=1, since lis
the only integer remaining to be used in tipeordering, and consequently the second pair in
the ordering is{f(1), g,(2)} ={2,1}.  Itis not really necessary to deternf(@, since {1,3}

is the only remaining pair, and hence the last pair, but to further illustrate the computations,

observe thal,={1,3}, p”=p,{{1,3}p,{1,3}ps{1,3} =p,(1-p,)-1=.15 by (3.12), and similarly

p?=p,(1-p,)-1=.175. Hencef(2)=3, since .7/.175 > .5/.15. Consequenty(1)=1, f(3)=1.

Next we explain the computation of the” ’s. I|fconsists of the pair of integers
I, = {f(k), 9(0)} then, as previously notedy,” = pf((”k)),gk@). Consequenty, can be computed

from (3.14) withj=g,(0).

If I, is a singleton sett} for somet F. then
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r

P = p({th [ p.(D). (3.15)

u=1
UZa

This expression holds singe(0), uza, is the probability tiafll =0, while p!’ ({t}) is
the probability thatF M1 ={t}, and hence the right hand side of (3.15) is the probability that

I=1.={t}.

Finally, if I, =0, then it can be similarly shown that" =[] p,/(O).

u=1

To illustrate the computations of the" ’s for our example, note that since
1,={f(2), g,(1)} ={2,3} and, as previously computeg,;’=.525, it follows that
Py =P g = P = .525. Note that we have also computed by means of (3.4). That

approach to computing.”, requiring summiR@) over all possibld for which [; is the
associated set, is not practical in general, since there can be as matfypastiabilities

summed in the computation qf;".

It remains only to explain how to compute tbgs which, by (3.5) and (3.6), reduces to

. 0
computingb,, i=1,...@%n+l, t=1,...n.

To computeb,, observe that



b,=0ifl =0,

=1
=0
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if I, = {v} and t=v,
if I, = {v} and t2v,

while if I, = {f(k), a(0} and (k) O F,, g() O F,, t O F,, then

b, =

1 if t=f(k) or t=g(9), (3.16)
=0 ift 0T, (3.17)
0 if t O T,Xg(0} and y=0=B, (3.18)
Prgo. if t 0 T,0g(0)} and y=0#B, (3.19)
Pw.a(T)
Pyo: if t 0 T,0g(0)} and y=pza, (3.20)

pgl(ﬂ),ﬁ (T)
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Py (T if ¢ O T,{g (0} and y#a, y2B. (3.21)
Py (Te)
In Appendix B it is demonstrated how (3.16)-(3.21) were obtained.

In the actual implementation for the SIPP application, modifications of the reduced-size
procedure were needed to overlap the 1990s SIPP design with the 1980s SIPP design. The
modifications were necessary because the PSU definitions in the 1980s and 1990s designs
were not identical. As a result, some PSUs in the 1990s design could intersect more than one

1980s design PSU. These modifications are detailed in Appendix C.

3.2 Moadifications of Reduced-Sized Procedure for Other Designs

In general, consider ang'  -PSU-per-stratum without replacement initial design and any
m-PSUs-per-stratum without replacement final design, wharem are any positive integers.
Although the reduced-size procedure in Section 3.1 was only presented for thenease 2,

it is actually applicable for anyn, m . We will sketch the modifications necessary when

m#z2 or m#2.

A different value of Y only requires modification of some of the computations. For

example, ifm=2, butmi#2, then the computations fgr®, pl).  asgdwould be different

but their definitions would not change.

If m=3, then, regardless of the value of, the set of all distinct triples, instead of pairs, of

integers in {1,.n}, is ordered. Ifl consists of at least three integers, then the new selection

probabilities are conditioned only on the first listed triple in the ordering containéd in
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Otherwise, the new selection probabilities are conditioned itself. Thus the new selection

0] AL
probabilities are conditioned o%g@%ml events.

To obtain the desired ordering of the triples of integers, first the ordef{igs..f(n) and
0(1),...g(n-k) are constructed exactly as in the case2. Then, corresponding to each
k=1,..n-2, (=1,...n-k-1, an orderingh,(1),...h,(n-k-0) of

{1,..n}f(),...f(K), g(1)....0,(0)} is constructed in a manner similar to the construction of

9(1),-..g(n-K). For example, in definindy (v) fow=2, pi); in the definition f(0) is

replaced by

P(f(K), 90, j O 1 andl O (T, U g0)H h,(1),...h(v-1)}).

A linear ordering of the distinct triples in {1,.n}, is then determined by representing each
triple uniquely as an ordered triple of the foriifk, g(¢), h,(v)). A second triple
(f(k'), ge(0), hey (V) precedes the first if and only if eithdét<k, or k=k and¢'<t, or k'=k

and ¢'=¢ andv'<v.

For m>4, orderedm-tuples would be defined in a similar manner and the new selection

0
an

O
probabilities conditioned or%jﬂ
Om-1

O
0..-n+1 events.
m O

For m=1, the new selection probabilities are conditioned on the first member of the ordering
f(1),...f(n) in 1 if I #0@, or onQ'if | = 0.

Note that ifm>nt, it is possible that at least some orderaduples cannot be subsets Iofin
which case all such subsets should be excluded from the ordering and the set of events on

which the new selection probabilities are conditioned. Ifrtuple can be a subset bfthen
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the new selection probabilities are conditionedlatself.

It is not necessary to limit the initial events used in the transportation problem to subsets of
. . O ad _ -
of sizemor less. For example, =2 and % %n+1 is sufficiently small, then a
procedure conditioned on subsets of three or less can be used, resulting in a generally higher

OO0 O
expected overlap. Conversel ,%’HD n [..-n+1 is too large, the new selection
p p y S 103 g

probabilities can be conditioned on subsetd of sizem”’ or less, wheran’'<m, although

with a generally smaller expected overlap.

4. RELATIONSHIP BETWEEN EXPECTED OVERLAP FOR THE REDUCED-SIZE
PROCEDURE, THE OPTIMAL PROCEDURE AND INDEPENDENT SELECTION

Let Q, Q., Q. denote the expected overlap for independent selection, the reduced-size

procedure, and the optimal procedure, respectively. In this section we explore the relation

between these guantities.

We are unaware of any way of determining the values of any of these quantities for a specific
problem without actually doing the computations, which in the case of the reduced-size and

the optimal procedures requires the solution of the appropriate transportation problem.

However, we prove thaQ <Q_ always. In addition, we obtain upper bound® on lower

bounds onQ_, and hence upper bounds@pn-Q.. Although these bounds are functions of

the overlap problem, they can be computed without solving any transportation problems.

These bounds have somewhat limited utility, since they may not be very close to the actual

values ofQ_, Q_ and Q -Q,. However, as we demonstrate by example, tightening these

bounds would not be a simple matter, since under certain conditinsQ, and Q_-Q,
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can either equal or get arbitrarily close to these bounds.

In addition, we show by example that in the worst case, in terms of the performance of the

reduced-size procedure for two-PSU-per-stratum designs, can be arbitrarily close to 2,
while Q_ is arbitrarily close to 0. Thus, at least in theory, the reduced-size procedure can be
ineffective. However, in practice, as will be shown in Sectiorh, is much close€r _to

than toQ , at least for the SIPP application.

The key results on the relationship betwe@p Q_ and Q4 will be stated as theorems.

Theorem 4.1 holds for anyn, m', whem, m'  are as in Section 3.2, while the remaining

three theorems are only for the case that we have been focusing-om, =2.

Theoremd.1. Q<Q.<Q_ .
Proof: See Appendix D.

The next three theorems require the following additional notation. |,et  denote the

probability that there are at least two elements,iand p, denote the probability thais a

singleton set. Let

A =min{min{T/p;: i=1,..n}, min{qu/pij: ihj=1,...n, i#j}, 1},

N =min{min{1t/p: i=1,..n}, min{/p;" i=1,...,§§ l.={st}}, 1}.

Note thatA\'=A, sincep'<p_ by definition of,” and henee/p, 21 /p,.

Theoremd.2. Q. < 21+ 1.
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Proof: The number of PSUs overlapped cannot exceed 2 wiemsists of at least 2

elements, cannot exceed 1 wheis a singleton set, and must be 0 whiea[J .

Theorem4.3.
(@ Q. =A(2W+w/2),

(b)) Q=N'(2u,+ W /2).
Proof: See Appendix D.

Note that sinceQ_<Q_, the bound in Theorem 4.2 is also an upper bour@_on and the
bounds in Theorem 4.3 are also lower bounds(n Also note that (b) in Theorem 4.3 is a
tighter bound than (a) sinck' > \. However, it is easier to compute  since, unlike this

does not require computation of the ’s.

Theoremé.4.
@) Q.- Qe <2(1-Np, + (1-M2)y,,

(b) Q.- Q< 2(1-N)W,+ (1-N/2)p,.
Proof: Combine Theorems 4.2 and 4.3.

In particular, if A=1 or A'=1, which will occur when all the relevant probabilities in the
definition of A or A’ are greater in the new design than in the initial design, then

Q.- Qs p/2. If, in addition, 1y is small thenQR must be close ..

To illustrate Theorems 4.2 - 4.4 and the fact the bounds that they give may not always be

useful, consider the example of Section 2.2 and Section 3.1. From Table 3 it can be seen that
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W,=.765, 4=.205. We also have from Tables 3 and 7 that .476, \' = .833. Then the
bound in Theorem 4.2 is 1.735. In Theorem 4.3 (a) and (b) the bounds are .777 and 1.360,

respectively. In Theorem 4.4 (a) and (b) they are .958 and .375, respectively. This compares

to exact values of 1.735 fon_, 1.725f@_,, and.0lfor-Q.. While the bound on
Q, Is equal to its exact value in this example, the bound<ynand Q_ - Q are not close

to their exact values. In fact, sin@@ =1.39 for this example, the lower boungon of

1.39 guaranteed by Theorem 4.1 is greater than the bounds given by Theorem 4.3.

The bounds of Theorem 4.3 are examined further in Section 5, using SIPP data. The results
there also indicate that the bound in (a) is of little practical utility, but the bound in (b) may
be of some use since it guaranteed a mean expected overlap for the reduced-size procedure of

.5 PSUs/stratum more than independent selection.

The previous example illustrates the difficulty in improving on the bound of Theorem 4.2,

since Q is equal to the bound for this example. (This is not always the case. For the

example in Table 11Q  is less than this upper bound, sinte(if,3} it is not always

possible to retain {1,3} in the final sample.)

The following example illustrates the difficulty in improving upon the bounds of Theorem

4.3. Consider a new stratuBiwith n=4. All of the PSUs were in different initial strata. Let
p,=p,=.5 andp,=p,=¢ for a small values. Letr,=.5, 1,=10,=T,,=T0,=¢,
1, = .5-4¢. It can be shown that for this examplg,=.25+ ¢ -.25¢?, p =.5-.5¢, and

A=A\"=1. Consequently, the lower bound d», in both Theorem 4.3 (a) and (b) is

.75+1.7% - .5¢>. However, in Appendix E it is established that

Q,<.75+ 12, (4.1)
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Consequently, sinc@ < Q, the actual value®f exceeds the lower bourgl, on by at

most 10.25 + .82 which for smalle is a negligible amount both in absolute and relative

terms.

Finally, the following example illustrates a worst case situation¢qr in relation to both
Q, and Q. Let Sconsist ofn PSUs, inn different initial strata, withrg = 2/n,

;= 2/[n(n-1)], p,=c, i,j=1,...n, i<], wherec<1 is a constant. For independent selection for
this example, the probability of overlap for each PSU selected in the new sanpénds

therefore,Q =2c. Furthermore, in Appendix E it is shown that

lim Q, =2, (4.2)

n - oo

lim Q. =2c. 4.3)

n - oo

Thus Q_ exceed®) by a negligible amount for largeFurthermore, since

lim (QO— QR) =2-2c by (4.2) and (4.3)Q,- Q. can be made arbitrarily close to 2 by

n - oo

making ¢ small enough and large enough. In addition, since neither of the bounds in

Theorem 4.4 can exceed 2, this example demonstrates that it is possible for the exact value of

Q, - Q, to be arbitrarily close to the upper bounds of Theorem 4.4.

5. APPLICATION OF REDUCED-SIZE PROCEDURE TO SIPP

Results from simulations of the SIPP overlap, done prior to production for research and
testing purposes, are presented in 5.1. Results from the actual SIPP production overlap are
presented in 5.2. Further details are given in Ernst and lkeda (1992b).
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5.1 Simulation Results

In the implementation of the reduced-size overlap procedure, minimum cost flow (MCF)
optimization software, written by Darwin Kingman and John Mote at the University of Texas
at Austin, was used to solve the required transportation problem. A FORTRAN program

was written to produce input to and process output from the MCF software.

To test the software prior to production, the program was used to overlap two stratifications,
based on 1970 census data, of the SIPP Midwest region with the actual 1980s design
stratification for the SIPP Midwest region. (At the time of this test, 1990 census data was not
yet available.) The 1970-based stratifications were produced by stratifying the 1980s SIPP
noncertainty PSUs in the Midwest region using 1970 data. Both of the 1970-based
stratifications partitioned the noncertainty PSUs into 31 strata, using different sets of
stratification variables. The stratifications based on 1980 and 1970 data were treated as

“initial" and "final" stratifications for the purposes of the overlap algorithm.

The expected overlap was calculated for the reduced-size maximum overlap algorithm, for
independent selection of final PSUs, and for the upper bound to the expected overlap for the
optimal procedure given by Theorem 4.2. That upper bound was calculated instead of the

actual optimal overlap, since the optimal overlap cannot be calculated for the larger strata.

The results from the two final stratifications in the simulation were generally similar to each
other. Combining the results from both stratifications, the reduced-size maximum overlap
algorithm had a mean expected overlap of 1.552 PSUs/stratum for this set of 62 strata, with a
range from 1.257 to 1.762. The upper bound to the expected overlap had a mean of 1.569
PSUs/stratum, with a range from 1.260 to 1.809. The largest difference between the expected
overlap under the reduced-size maximum overlap algorithm and the upper bound to the
expected overlap was .084 PSUs. The expected overlap for independent selection had a mean
of .480 PSUs, with a range from .088 to 1.214. The reduced-size maximum overlap

algorithm always gave substantial improvement over independent selection, with a range of
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increase from .455 to 1.464 PSUs. Thus, for this set of 62 strata, the expected number of
PSUs overlapped is 29.8 for independent selection, 96.2 for the reduced-size procedure, and at

most 97.3 for the optimal procedure.

We also computed the lower bounds for Theorem 4.3 for those 62 strata. The mean lower
bound was .416 for the bound in (a) of that theorem and .980 for (b). This further illustrates
that the bound in (a) appears to be of no practical value, since it is below, on average, that of
independent selection. The bound in (b) is of some use, since it does guarantee an expected
gain of .5 PSUs/stratum over independent selection by using the reduced-size procedure,

which was 46.6 percent of the expected gain actually attained.

The reduced-size algorithm took a fairly short time to run on most strata. The CPU times for
final strata with different numbers of PSUs are given below. The reduced-size program was
run on a Solbourne 5/605 computer. The median number of PSUs in a stratum, for the entire
group of 62 strata, was 17 PSUs. The 37 PSUs stratum had the 6th largest number of PSUs.

The 68 PSUs stratum was the largest stratum.

Table 12. CPU Times for Reduced-Size Procedure

Number of PSUs CPU Time
(hrs:min:sec)
18 0:36
37 5:44
49 24:05
68 2:23:43

5.2 Implementation in the 1990s SIPP Design

In the actual implementation, as noted in Section 3.1 and detailed in Appendix C, a
modification of the reduced-size procedure was used to overlap the 1990s SIPP design with
the 1980s SIPP design, because the PSU definitions in the 1980s and 1990s designs were not

identical.
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The modified reduced-size procedure was used to overlap 103 final (1990s design)
nonselfrepresenting strata in SIPP. The average expected overlap was 1.523 PSUs/stratum
compared to 0.582 for independent selection. Two strata (with 69 and 72 PSUs) were not
overlapped since they exceeded the cutoff of 57 PSUs used during production, which
employed a different computer than used in the simulations, with a more restricted memory
allocation. There are also 112 selfrepresenting strata in the 1990s design for which overlap
procedures are not applicable. Thus, there are a total of 322 sample PSUs in this design. In

addition, there are 1606 nonsample PSUs in the design.

As we did for the simulation study described in the previous subsection, we calculated an
upper bound for the expected overlap for each production SIPP final stratum that was
overlapped. The mean upper bound for the 103 strata was 1.647 PSUs/stratum, reasonably
close to the mean expected overlap of 1.523 using the production overlap procedure. Thus,
among the 103 strata that were overlapped using the reduced-size procedure, the expected
number of PSUs overlapped with this procedure was 156.9, compared to 59.9 for independent

selection and at most 169.6 for the optimal procedure.

Because of the changes resulting from the fact that the two designs did not have identical
PSUs definitions, it was necessary to modify the upper bound given by Theorem 4.2 to obtain
the 1.647 mean upper bound on the expected overlap. This is because, as noted in Appendix
C, if both new sample PSUs intersect the same initial sample PSU, this event is counted as
two successful overlaps. As a result, wHeis a singleton set it is possible that there can be

2 PSUs overlapped, which is not the case when the PSU definitions are the same in the new

design. Consequently, the  term in the upper boapg b, is no longer valid. Instead,
we let y, denote the probability thatis a singleton set corresponding to an initial PSU

which intersects at least two final PSUs$nhand i, denote the probability thats a
singleton set corresponding to an initial PSU which intersects exactly one final PSU. We

then used the valid upper bourgyl, + 2}, + 1,
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The computer time during production for the modified reduced-size overlap program was
reasonably short. Production was done in four computer runs, one for each region of the
country. The maximum clock time for a region (44 strata, the largest consisting of 46 PSUS)
was 1 hour and 40 minutes. The CPU time is not known, but believed to be only slightly
less than the clock time.

We also calculated that of the 103 final strata overlapped by the modified reduced-size
procedure, 41 would not have run under the optimal procedure. This calculation was based
on our estimate that the maximum size transportation problem, in terms of number of

variables, that could have run in production was 4x10he number of variables for the

optimal procedure was less than 4%16r all 56 strata for whichn<14, but exceeded this

limit for all but 6 of the 47 strata witm>15, including two with=15. The largest strata for
which the optimal procedure could have run has 19 PSUs. Of the 41 strata for which the
optimal procedure would not have run, 37 had transportation problems for the optimal
procedure with more than 1@ariables, 33 with more than ®ariables and 23 with more

than 16 variables. The maximal size of the transportation for the optimal procedure among
the 103 strata occurred for a stratum with46, for which there were 3.61x¥0variables. In
contrast, there were 1.03>0ariables for the modified reduced-size procedure for this

stratum.

In performing these size calculations for the optimal procedure, Theorem 2.1 was used with

the following modification to account for different PSU definitions in the two designs. In
computingm*, n. is now the number of PSUs in initial straturhat intersect PSUs i8,
rather than the number of PSUs in the stratum that ai® itn particular, the maximum

value ofm’ is now 2", wheren”, using the notation in Appendix C, is the number of initial

PSUs that intersect PSUs $& Furthermore, for the modified reduced-size procedure the

[ 0 LhO
number of variables |$@E+ n + 1E$< @E whenmé, as explained in Appendix C, is the
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number of PSUs ir8 matched to initial PSUSs.

From Theorem 2.1, it may be surmized that for fixedm tends to increase with the number
of initial stratar that have PSUs which intersect PSUsSn A rather striking example of this
relationship occurred for two of the SIPP strata. For one of these st r=4 and the
number of variables for the optimal procedure was 9.0 xdMile for the other stratum
n=24,r=18, and the number of variables was 4.29%10Ne also had that'’=24 for the
former stratum anah’'=33 for the latter stratum, which would explain part, but not all of the

large difference in number of variables for the two strata.

Another question of interest is the overlap effectiveness of the reduced-size procedure in
comparison with the overlap procedure of Ernst (1986). In general it is believed that the
reduced-size procedure should produce a higher overlap in situations when both are usable,
since the reduced-size procedure makes use of the stratum-to-stratum independence in the
initial design. However, although the procedure in Ernst (1986) is applicable to two-PSU-per-
stratum designs, no computer program has ever been written at the Census Bureau (or
anywhere else that the authors are aware of) to implement this procedure for such designs,
since there has not yet been a production application for this program. Consequently, we
cannot make a direct comparison of these two methods on the same data. However, a crude
comparison can be made from the results of the reduced-size overlap procedure for SIPP data
and the results of the overlap using the procedure in Ernst (1986) for the overlap of 1990s
CPS and NCVS designs with their respective 1980s designs. (Both the 1980s and 1990s
designs for CPS and NCVS are one-PSU-per-stratum designs.)

For CPS, the overlap procedure resulted in an average increase in expected overlap, in
comparison with independent selection, of .26 PSUs/stratum, and for NCVS the overlap
procedure resulted in an average increase in expected overlap of .30 PSUs/stratum. This
compares with an increase of .94 PSUs/stratum for the reduced-size procedure over

independent selection for SIPP. If the two overlap procedures are equally effective, then one
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might expect that the increase in overlap per stratum for SIPP would be roughly twice as
large as for CPS and NCVS, since SIPP has a two-PSUs-per-stratum design. By this
standard, the reduced-size procedure program performs better than the procedure in Ernst
(1986). However, since the stratifications were quite different for these three surveys, the

validity of this comparison is open to question.

For the examples in Tables 6 and 11, a valid comparison of the different overlap procedures
can be made, since the expected overlap values for the procedure in Ernst (1986), 1.625 for
the Table 6 example and 1.425 for the Table 11 example, were easily calculated by hand.
For the reduced-size procedure the corresponding overlap values are 1.725 and 1.58

respectively, and for the optimal procedure, 1.735 and 1.58, respectively.

In summary, we believe the reduced-size procedure to be a practical procedure which,
although in theory can be ineffective in increasing overlap, yields results reasonably close to
optimal in practice. It can be only used when the PSUs in the initial design are selected
independently from stratum to stratum, but when this condition is met we believe it is the

overlap procedure of choice for large strata.
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APPENDIX A: PROOF OF THEOREM 2.1

Let F,={j: ADOG}, i=1,..y. Since the sampling of PSUs is assumed to have been
independent from stratum to stratum in the initial design, to establish (2.13) it suffices to
show thatm is the number of possible values fer(| in cases (2.14) - (2.17). Now (2.14)

holds, since it is always possible for each elemert ito have either been ihor not have

been inl. (2.15) is the case whe@ =G’ and herngen | can be any o@h% subsets of
U

F; of size 2. To obtain (2.16), note th&n|  can either be one of@% subsets of size 2
U

of F; or one of then, singleton subsets d¥, the latter event occurring when the one PSU in

G/'[0G, was in the intial sample. (2.17) is similar, except that si@¢€lG, now consists of at

least two PSUs, both initial sample PSUs@®1 can be&siriG,, in which ¢ald =01,

creating one additional possibility faF,M1.

To show under what conditions the upper bound bfa2 m' is obtained, observe that the

n
number of possible values fa¢ N1  cannot excezd Sip§e2" =2 , it follows that
i=1

m*=2"if and only if m =2" for alli. Now if n, = 1, thenm = 2' by (2.14). Ifn, = 2, then
o : .0 : : :
m = 2°if and only if m = %;'D”‘i +1, which by (2.15) - (2.17) occurs if and only if'> 4.
O

Finally, if n>3 for somei, thenF; itself is not a possible value fdr Consequently, the

possible values of do not include all subsets of {1,n},and, thereforem < 2".
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APPENDIX B: PROOF OF (3.16) - (3.21)

Note that since fK), g.(9)} is the first pair in the ordering contained in we have

f(K), (001, but none off(1),...f(k-l), g(1),...g{#!) are inl, and hence (3.16), (3.17)
follow. Thusb, is determined for alt except those irT,, [ g (¢)}, for whichy, is computed

by one of (3.18) - (3.21). Now if(k), g(0) andt were all in F_ thentOl since there are

only two initial sample PSUs in each initial stratum and hence (3.18) holds. To obtain (3.19),

observe that iff(k), tOF, , bug OF_ , then we know thag)OI, INF,OT,, and hence

b, = P(tDI[f(K)OI and INF,OT,)

Pt,f(QO1 and INF,OTe) Py,
PEKROI and INF,OT) Py q (i)

(3.20) is obtained similarly to (3.19), while (3.21) follows since

POl and INF. OT,; (T
b, = POl INFOT,) = ( A ) pﬁv( kf).
P(INF,OT) P, (Ti)




47

APPENDIX C: MODIFICATION OF REDUCED SIZE PROCEDURE WHEN PSU
DEFINITIONS CHANGE

The procedure described in Section 3.1 requires two modifications when there are different PSU

definitions in the two designs.

The first modification is a procedure for establishing a one-to-one correspondence between a
subset of then PSUs in a final stratun® and a subset of the PSUs in the initial design, which is
needed in ordering pairs of PSUs. The natural one-to-one correspondence between all the PSUs
in Sand the set of PSUs in the initial design that exists when the PSU definitions are the same in
the two designs no longer holds, and such terminology as the initial and new selections

probability for A no longer would make sense unless this correspondence is restored.

The second modification is a change in the calculation oftifeto account for the possibility of

several initial PSUs intersecting with one final PSU.

The one-to-one correspondence is created as follows. Order R8s inS that isA,,... A, in
descending order of new selection probability. Ma#gho the initial PSU that makes up the
largest portion (using the measure of size for the new desigA).ofThen proceed to match
A,,...A, whereA is matched to the initial PSU that makes up the largest portiofy ailmong
those initial PSUs intersecting that have not already been matched. If no such initial PSU

exists therA is not matched. For example,jii andA, A were formed by splitting an initial

PSU, thend is matched to this PSU andl is unmatched. LeB,,....B,, denote the initial PSUs

that intersect at least one of tigds. Assume thatn’ of the PSUs ®are matched by this

process, withA, matched toB, i=1,...n'".

The ordering of the pairs of PSUs and the formulation of the reduced-size transportation problem

proceeds as in Section 3.1 with the following modificatiorids now the set of initial PSUs in
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{B,...B,} that were in the initial sample, whilg =11{B,,...B_}. The ordering is of pairs of
PSUs inl’, that is for matched PSUs only. Lt a=1,...r, denote a partitiofByf... B}
according to their initial stratum, witlf!, a=1,...r’, the analogous partition {&,... B }. The

I's now consist of the subsets ¢8,,...B,}  of two or fewer elements, and associated with each

. . . . . . '
I" is a subset’, namely the first, contained in|’. That is, there are no@%n’ +1 setson

which the new selection probabilities are conditioned. As a result, in determining the ordering of

the pairs of PSUs and the calculationgf,  the definition$(kf, g (0), Ty, Te» T, BY,
p.(M, p.(M, ply,, andp’ are modified by replacing, I, F_, r by i, I', F/, ', respectively.

Also nis replaced byn’ in thé index in (3.2), (3.3), but th¢ index remains unchanged.

It remains only to explain how the’s are defined and calculated under this modified procedure.

A PSU A, t=1,...n, selected in the new sample is considered a successful overlap if any of the

B;, j=1,..n", that intersect it, even if not matched £y were inl. (In particular, if two final

sample PSU intersect the same initial sample PSU, this counts as two successful overlaps. Some
may prefer to count this as only one successful overlap, since there generally can be only one

interviewer retained in this case. However, this would complicate the calculation of he
since the relation:ij =b_ +b, given below would no longer hold.) Consequeqlis the
expected number of PSUs & that intersect PSUs ihgivenI’=l,. Hence, if

H, ={k BNA#0, k=1,..n"}, t=1,..n,

0
b, = P(HNI£0[1=1), i=1,..@g+n'+l, t=1,..n,

and§ = {s,§, thenc; = b, + b,.
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The calculation ob, is more complex here than in Section 3.1, because of the possible multiple

an
intersections. Forzl,...,@%nwl, t=1,...n, a=1,...r,

let H_ =HNF,,

by =P(Hmﬂ|¢D\l*=|i), b .= POl

itaj

1°=1.), jOH,

(]’

and

b = P(jkOI

1°=1), L,kOH,, jzk.

Itk
Observe that

b,=1 - H (1-b,,)
and

by = 3 By = D By

jOH,, j,kOH

j<k

to

Thus we have reduced the problem to the calculationitgf and b To do this let

itajk *
number of elements imi N F,.
T ={n+1.n} Ul if n <1,
={n + 1,.0UT, if I.={f(K, g (0},

T =T0,

be the

Then with p!/ (T), p(T) as in their original definition in Section 3.1 except thas replaced by

n”, we have
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O
|

-1 ifjol,

ita]

o ifjoT,
0 ifjOT" andn =2,

if jOT" and.NF, = {v},

if jOT" andn_ =0,

and

o
|

-1 if jkOI,

itajk

0 if jOT" or kOT,
0 if jkOT" andn =1,

if j,kOT"” andn, =0

0 if joOT", kOl andn_=2

pjk

= _if jOT", kOl andn, = 1.
PalT)
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APPENDIX D: PROOF OF THEOREMS 4.1 AND 4.3

Proof of Theorem 4.1 Since by (2.10), the optimal procedure maximizes the expected number of

PSUs that are in both the initial and new samples, we must kaQ .

To show thatQ <Q_, consider the formulation (3.1) - (3.3). Let

0 0
=pT,  i=1,..00-n+1, j=1,..00O (D.1)
% =Pt ' @D J @D

(D.1) satisfies (3.2), (3.3). Sinc@, maximizes (3.1) over all such setgofQ_ must be at

least the expected overlap for (D.1). However, for this set;sf we haveP(N= S

1"=1) :Tq*
for all i,j; that is the conditional selection probabilities equals the unconditional. Therefore, (D.1)

corresponds to independent selection of the new sample PSUs, and hence for thig'se(®fl)

equals)  p m. Consequenth <Q..
i=1

Proof of Theorem 4.3 We will prove (b) of this Theorem. Then (a) immediately follows, since

U
A'=)\. Label theS's so thatsjzlj, j=1,...§% Let

. _ 0 0
o ={J: Sjﬂli;tD}, |=§D+1,...@D+n;
[l [l

that is for each for which I; is a singleton setd,  is the set of @lfor which the element in; is

in the pair§. & consists oin-1 elements.
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Next let
0
X=Np/, ‘21’-@% (B-2)
Ap (T -Np) e
LR YU SR
2y (M -Np) i
kO3,
(D.3)
RO o
= 0 otherwise, |=§Bl,...@ﬂﬂ joa,
O 0
L O . 0
x/=0 for all otherij, |=1,...§%+n+1, J=1,...§E (D.4)
8 .
i1 b
o na . 0
=TT - zlj X, J=1,...@% (D.6)
X:J:: [ ’ |f Z T[k**io,
"
T,
k=1
(D.7)
=0 OtherWise,i=l,...§Hn+l, j=1,...§§
0
. 0 . 0
X, =X X, |=1,...§%+n+1, j=1,...§% (D.8)

To establish Theorem 4.3(b), it suffices to show tlaila:e 0 fon,glithat (D.8) satisfies (3.2) and
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(3.3); and that (3.1) is at leat (2, + p/2)  for (D.8).

To show thatxijz 0, observe thaegj >0 by (D.2) - (D.4) and the definitior\of Hence it
suffices to show thagj' >0, which by (D.7) will follow if it is established thgt'>0  for @l

andm 20 for allj. Now by (D.2) - (D.5) and the fact that'<1, we have

) 0
R DR

=1
p=p" =) X2p -Ap /220, |=§D+1,...§D+n,
& 0 0

and

U
P =p =0, i=§%+n+1

To show thatry">0 for alf, we first establish that
-\
X < LI g @Bl @mn j0s,. (D.9)

To obtain (D.9), lets denote the single element in;  observe that

A% +Zpk Npsm=Y .

kO, kg,

hence

Np <Y (T -Npy). (D.10)

kO3,
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Then combine (D.10) with (D.3) to complete the proof of (D.9).

be the two singleton subsets$f From (D.2) - (D.4), (D.6), (D.9)

2

O
Then forkl,...@% letl , 1.

we conclude

W= Y X =05 0% 7% )20,

i=1

and thereforexijz 0 for ali,j.

Next, to show that (D.8) satisfies (3.2), first observe that

RN - KR R
DRSS N

=1- >, > X = T - >, > X = > . (D.11)
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8

Then if Y~ m #0, combine (D.8), (D.7), (D.5) to obtain
k=1

S ()

DX = 21: 0% = 3 X+p' = p, (D.12)
z

j=1 i= =

while otherwise use the same relations and (D.11) to conclude (D.12).

To establish that (D.8) satisfies (D.3), note that by (D.11) we can substitute

R
Y pfor Y mo in (D.7), and then proceed to establish (3.3) analogously to (3.2).

k=1 k=1

Finally, to show that (3.1) is at leadt (u, + p,/2)  for (D.8), first observe that for

U [
i=§%l,...§%n, Y X=Npl2 by (D.3)if Y (m-A'p)#0, while Y~ x.=A"p/2=0 by (D.3),

ios, kO3 jos,

(D.10) otherwise. We then combine this last result with (D.2) - (D.4) to conclude

g} (3 (g s
Z Zcii X; 2 Z C; %,

i=1  j=1 i=1  j=1

g

223 %3 D 5= pi”% Y PN @ 2).

NS

APPENDIX E: PROOF OF (4.1) - (4.3)
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Proof of (4.1) To establish the inequality we simply show that
Y Y cx <.75+12 (E.1)

=1 j=1

for any nonnegativey's satisfying (2.11), (2.12), whereg, m, n are as in (2.10). Note that for
this examplem'=16,n'=6. LetS ={1,2}, S, ={1,3}, S;={1,4}, S, ={2,3}, § = {2,4},

S = {3,4}. We establish (E.1) by considering the contributions to the left hand side of (E.1)
from j=2,3,4,5, j=6, andj=1, separately.

We first use (2.12) to obtain

le C X < 2;: X, = 2P(S)=2¢, j=2,3,45. (E.2)
Next let D={i: {3,4NJ#0}. Sincec,=0 if 0D, it follows from (2.11) that

i X <2Y x,<2Y P(J)<2(p,+p,) =4e. (E.3)

iob ioD

Finally, let D, ={i: 10J or 20J, but {1,2}0J} andD,={i: {1,2}0J}. Then

Zl: Cilxilzz Xil+22 Xiq - (E.4)

i0D, i0D,
Now by (2.12),

Y x, Y x,<P(S)=.5, (E.5)

i0D, i0D,
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while by (2.11),

> %< PQ)=p,p,=.25 (E.6)

i0D, i0D,

Then we combine (E.4) - (E.6) to obtain
Y ¢,x,<.75, (E.7)
i=1

and then combine (E.2), (E.3) and (E.7) to conclude (E.1).

Proof of (4.2) The following sampling procedure for the new sample will yield the optimal
overlap for this example. When there are at least two PSUssgalect a pair among all pairs in

| with equal probabilities; ifl is a singleton set, then select with equal probability amongntthe

pairs that contain. If |=0 then select with equal probability among alin-1)/2 pairs inS. By

symmetry, this procedure will yieldqj =2/[n(n-1)] for ailj, i<j as required. Furthermore, the
procedure is optimal since the expected overlap for @jis+,, which is an upper boug] on
by Theorem 4.2. In addition, for this proceduie(l =)= (1-c)" ane nc(l-c)" ™.

Consequentlyy, =1 -[ng(1-c)"*+(1-¢) and

Q,=2u, +H, =2-[nc(1-c)"* + 2(1-c)"].
Then (4.2) follows from this last relation with the aid of L'Hospital’s rule.

Proof of (4.3). Becausep, T, p, T§, are independentigffor this example, and each PSU
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was in a different initial stratum, any ordering of the pairs would yigld . Therefore, we let

f(k =k, k=1,..n, g(0) =k=+, k=1,...n-1, ¢=1,...n-k.

Next, observe that foy=1,...n, if jOI "N N, then jOI N N with certainty, while if

jONDO %, thenjOINN with probability at most since each PSU i® was in a different initial

stratum. Consequently,

QRzzn: P(jOINN)< czn: P(jO(NOI *)ﬂ|)+2n: P(jOI*NN) (E.8)
Now
zn: P(GO(NO *)ﬂl)s_zn: P(jON)=2. (E.9)

Therefore, if we can prove that

lim Z P(jO1 *NN) =0, (E.10)

n - oo j:]_

then it will follow from (E.8) - (E.10) thatim Q_<2c. Since we also haze=0Q <Q, (4.3)

n-o

will then follow.

To establish (E.10), observe that for the specified orderjnd, if and orjliz if and at most

one of 1,.j-1 was inl. Consequently,

P(jOI")=c(l-c)*+c?(-1)(1-c)?<j(l-c) 2
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Since we also have tha®(jO0N)=m=2/n, it follows that

Y PGOINN)<Y. min{j(1-c)? 2},
i=1 =1
and thus we need only show that

lim Z min{j(1-c)3, 2h}=0. (E.11)

n-oo ]':1

Let 1(n) denote the largest integein {1,...,n} for which j(1-c)' 2= 2/n. If no suchj exists,

let t(n)=0. Then

im 3 mingi (1-c)?, 2} < 2lim T(n”) dim Y oy, (E.12)

n - oo ]:1 n - oo J':'[(n)+_‘]_

and hence it suffices to show that the two limits on the right hand side of (E.12) are O.

To compute the first limit, note that if(n)>0 then

n(1-¢)* ™2z t(n) (1-c)"™ 2> 2/n, (E.13)
and hence

1)< log2-2logn >y
log (1-c)

Consequently, by L’Hospital’s rule,
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lim X0 < jim J092-2logn 24
n-o N n.w []nlog(1-c) nQg

To demonstrate that the second limit in (E.12) is O, observe that since

n 0

im ¥ j-oiz<im Y j1-0i?,

n-o j-t(n)+1 n-o jog(n)+l

it suffices to prove tha)~ j(1-c)’? is a convergent series dind t(n) = co.

j:l n-oo

The series is

convergent since it is an arithmetic-geometric series which is known to converge because

|1-c|<1. To prove thatlim t(n)=co

n-oo

note that eitha(n)=n  or

(1-0)'™<(1(n) +1) (1-¢)*™ 1< 2/n. ConseqgentlyJim t(n)=lim min%,

Thus, (4.3) is proven.

log2 - logn .
oo nee [ log(l-c) '

O
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