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ABSTRACT

When redesigning a sample with a stratified multi-stage design, it is sometimes considered
desirable to maximize the number of primary sampling units retained in the new sample without
altering unconditional selection probabilities. For this problem, an optimal solution which uses
transportation theory exists for a very general class of designs. However, this procedure has
never been used in the redesign of any survey (that the authors are aware of), in part because
even for moderately-sized strata, the resulting transportation problem may be too large to solve
in practice. In this paper, a modified reduced-size transportation algorithm is presented for
maximizing the overlap, which substantially reduces the size of the problem. This reduced-size
overlap procedure was used in the recent redesign of the Survey of Income and Program
Participation (SIPP). The performance of the reduced-size algorithm is summarized, both for the
actual production SIPP overlap and for earlier, artificial simulations of the SIPP overlap.
Although the procedure is not optimal and theoretically, as is shown, can produce only negligible
improvements in expected overlap compared to independent selection, in practice it gave
substantial improvements in overlap over independent selection for SIPP, and generally provided
an overlap that is close to optimal.

KEYWORDS : Linear programming; Sample redesign; Survey of Income and Program
Participation.

1. INTRODUCTION

The problem of maximizing the expected number of primary sampling units (PSUs) retained in

sample when redesigning a survey with a stratified design for which the PSUs are selected with

probability proportional to size was introduced to the literature by Keyfitz (1951). Typically, the

motivation for maximizing the overlap of PSUs is to reduce additional costs, such as the training

of a new interviewer for a household survey, incurred with each change of sample PSU.

Procedures for maximizing overlap do not alter the unconditional probability of selection for a
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set of PSUs in a new stratum, but conditions its probability of selection in such a manner that

the probability of a PSU being selected in the new sample is generally greater than its

unconditional probability when the PSU was in the initial sample and less otherwise.

Overlap procedures are applicable when the redesign results in either a restratification of the

PSUs or a change in their selection probabilities. Keyfitz (1951) presented an optimal procedure,

but only for one-PSU-per-stratum designs in the special case when the initial and new strata are

identical, with only the selection probabilities changing. Causey, Cox and Ernst (1985) obtained

an optimal solution to the overlap problem under very general conditions by formulating it as a

transportation problem, which is a special form of linear programming problem. This procedure

imposes no restrictions on changes in strata definitions or number of PSUs per stratum. (A

similar result had been independently obtained by Arthanari and Dodge (1981), although they did

not discuss the issue of changes in strata definitions. Both sets of authors obtained their results

by generalizing work of Raj (1968).) However, there are at least two other difficulties with the

procedure of Causey, Cox and Ernst which can make it unusable in practice, one which is the

focus of Ernst (1986), and the other the focus of the current paper.

The first difficulty is that, if the initial sample of PSUs was not selected independently from

stratum to stratum, the information necessary to compute all the joint probabilities required by

this method may not be available in practice. An alternative linear programming procedure, for

use in such cases, was developed by Ernst (1986). The Bureau of the Census has used linear

programming to overlap its demographic surveys on five occasions. On four of these occasions

(the selection of the 1980s and 1990s Current Population Survey (CPS) designs, and the 1980s

and 1990s National Crime Victimization Survey (NCVS) designs) the procedure in Ernst (1986)

was used because the initial design was not selected independently from stratum to stratum. In

particular, as explained in Ernst (1986), if the initial sample was itself selected by overlapping

with a still earlier design then this independence assumption generally does not hold, which was

the key reason why it did not hold for these four redesigns.

The second difficulty with the optimal procedure is that the transportation problem may be too
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large to solve in practice. The Bureau of the Census also used linear programming to overlap

the 1990s Survey of Income and Program Participation (SIPP) design with the 1980s SIPP

design, both two-PSUs-per-stratum designs. The initial sample for SIPP was selected

independently from stratum to stratum. However, the transportation problem for the optimal

procedure would have been too large to practically solve for many strata. This is because for

each new stratum to be overlapped consisting ofn PSUs, the number of variables in the

transportation problem for the optimal procedure can be as large as . The largest value2n×








n
2

of n for which a transportation problem with that many variables can be solved with the

computer facilities that we have used is approximatelyn=15.

This paper presents a reduced-size formulation of the overlap procedure as a transportation

problem which decreases the numbers of variables in the SIPP problem to a















n
2

n 1 ×







n
2

,

striking reduction for moderate to large values ofn. The procedure assumes that the initial

sample was selected independently from stratum to stratum, and hence could not have been used

instead of the procedure of Ernst (1986) to overlap the CPS and NCVS designs. This reduced-

size procedure has been successfully run for strata with as many as 68 PSUs. In contrast, for

n=68, the possible number of variables for the unreduced formulation is far beyond268×








68
2

the size of problem that can be solved by any current computer. Furthermore, though the

reduced-size procedure sacrifices optimality in exchange for its size reduction, it does appear in

practice to yield results fairly close to optimal, as we will show. The reduced-size procedure is

the procedure that was used to overlap SIPP.

In Section 2 the procedures of Keyfitz (1951), Raj (1968), and Causey, Cox and Ernst (1985) are

reviewed, to provide background for the presentation of the reduced-size procedure.
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The reduced-size procedure is presented in Section 3. Although the approach has general

applicability, for ease of presentation it is only described in detail for the case when both the

initial and new designs are two-PSUs-per-stratum without replacement. Small, artificial examples

of the reduced-size procedure are also presented in Section 3. These examples serve to illustrate

the procedure; to demonstrate that the reduced-size procedure is sometimes, but not always,

optimal; and to demonstrate that the ordering of the pairs of PSUs in a new design stratum, a key

step in the algorithm, affects the expected overlap.

In Section 4 the reduced-size procedure is compared analytically to the optimal procedure. Upper

bounds on the loss in expected overlap from using the reduced-size procedure instead of the

optimal procedure are obtained. It is also demonstrated that in certain situations this loss can

approach two PSUs for two-PSUs-per-stratum designs, the worst possible situation.

Finally, in Section 5, the performance of the reduced-size procedure is presented, both for the

actual SIPP production overlap and for earlier, artificial simulations of the SIPP overlap. The

expected overlap for this procedure is compared to that for independent selection of the new

sample PSUs and to an upper bound on the optimal expected overlap. The results show that for

this application, in constrast with some of the theoretical results in Section 4, the expected

overlap with the reduced-size procedure was much larger than if independent selection had been

used to select the new sample PSUs, and nearly as large as the optimal expected overlap. Also

presented are computer running times for the reduced-size procedure as a function of stratum

size.

2. REVIEW OF PRIOR OVERLAP PROCEDURES

The procedure of Keyfitz (1951) is reviewed in Section 2.1, and the transportation problem

procedures of Raj (1968) and Causey, Cox and Ernst (1985) are reviewed in Section 2.2.

First, however, we present some notation that will be used throughout the paper. LetS denote

a stratum in the new design consisting ofn PSUs,A1,...,An. Let the random setI denote the set

of integersi for which Ai was in the initial sample, and letN be the corresponding random set
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with respect to the new sample. For the simple conditions considered by Keyfitz (1951), the

possible values ofI andN are then singleton sets {1}, {2},...,{n}. Possible values forI andN

for more general overlap problems are discussed in Section 2.2. Finally, let denote thepi, πi

probability that respectively, and be the joint probability thati ∈ I and i ∈N, pij, πij, i≠j, i, j ∈ I

and respectively.i, j ∈N,

The goal of all overlap procedures is the same, to obtain conditional probabilities of selection for

the new sample PSUs which maximize the expected number of PSUs common to both samples,

that is the number of elements in while preserving the unconditional selection probabilityN∩ I,

for each possible value ofN. For the procedure of Keyfitz (1951) this reduces to the problem

of maximizing the probability thatN=I , that is, the probability that the same PSU was selected

from S for both the initial and final samples.

2.1 The Method of Keyfitz

Keyfitz (1951) presented the following simple set of conditional probabilities in the case when

the initial and new designs are both one-PSU-per-stratum and the strata definitions are identical

in both designs, with only the selection probabilities changing.
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= if j=i, (2.1)P(N { j} I { i}) min{1, πi /pi}

= if (2.2)(1 min{1, πi /pi})
max{πj pj, 0}

n

k 1

max{πk pk, 0}

j≠i .

In particular, note that ifAi was in the initial sample and then this PSU is retained withpi ≤πi

certainty, while otherwise the conditional probability of its retention is This fact will beπi /pi.

used to motivate part of the reduced-size algorithm presented in Section 3.

To illustrate Keyfitz’s, method, consider a stratumS with n=3 for which

p1 .36, p2 .24, p3 .40, π1 .50, π2 .30, π3 .20.

The conditional selection probabilities for the PSUs in the new sample, obtained from (2.1), (2.2),

are presented in Table 1.

Table 1. Conditional Probabilities for Keyfitz’s Procedure

Final PSU

Initial PSU 1 2 3

1 1.00 .00 .00

2 .00 1.00 .00

3 .35 .15 .50

Note that by examining the entries in this table row by row, we can see that whenAi was in the

initial sample the conditional probability of selectingAi in the new sample is greater than

while the conditional probability of selectingAj, is less then Also note that with thisπi , j≠i , πj .

procedure, the unconditional new selection probability for eachAj, obtained by multiplying the

entry in cell (i,j), i=1,2,3, by and summing, does equal as required.pi πj ,

Furthermore, the overlap probability using the Keyfitz procedure, obtained by multiplying the
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entry in cell (i,i) by i=1,2,3, and summing, is .8. This compares with an overlap probabilitypi ,

of if the new PSUs are selected independently of the initial PSUs.
3

i 1

pi πi .332

Perkins (1970), and Kish and Scott (1971) presented extensions of Keyfitz’s procedure for the

more general one-PSU-per-stratum problem for which the strata definitions can change in the new

design. Their procedures are not optimal, nor do they have any obvious extension to other than

one-PSU-per-stratum designs. Optimal solutions to the general overlap procedure awaited the

application of linear programming techniques and are discussed in the next subsection.

2.2 Formulation of the Overlap Problem As a Transportation Problem

A transportation problem is a particular form of linear programming problem, in which an

objective function of the form

(2.3)
a

i 1

b

j 1

cij xij

is to be either maximized or minimized, subject to the constraints

i=1,...,a, (2.4)
b

j 1

xij αi ,

j=1,...,b, (2.5)
a

i 1

xij βj ,

(2.6)
a

i 1

αi

b

j 1

βj ,
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where the are nonnegative variables and are constants. The variables can be viewedxij αi, βj

as internal cells of a two-dimensional tabular array, with row and column totals specified by (2.4)

and (2.5), respectively. The sum of the row totals must equal the sum of the column totals for

such an array, which is precisely what (2.6) states. Solution strategies that are extremely efficient

computationally exist for transportation problems (Glover et al. 1974).

Raj (1968) was the first to formulate the overlap problem as a transportation problem, but he only

considered the same one-PSU-per-stratum case without change in strata definitions as Keyfitz.

Raj let the variables denote the joint probability that set ifxij , i, j 1,...,n, i∈I and j∈N; cij 1

i=j and if and let Thus, the problem in the transportation formulationcij 0 i≠j ; αi pi , βj πj .

is to determine a set of nonnegative ’s which maximizexij

(2.7)
n

i 1

xii

subject to the constraints

(2.8)
n

j 1

xij pi , i 1,...,n,

(2.9)
n

i 1

xij πj , j 1,...,n.

The objective function (2.7) is the probability of overlap, that is the probability that the same

PSU inS is in both samples, while constraints (2.8) and (2.9) must be met in order for the joint

probabilities to sum to the correct initial and new selection probabilities, respectively.

Once an optimal set of ’s are obtained, the conditional probability of selectingAj in the newxij

sample given thatAi was in the initial sample is simply for allxij /pi i, j .
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To illustrate, the optimal set of ’s for the example in Section 2.1 are given in Table 2.xij

Table 2. Values of for Example of Section 2.1xij

j

i 1 2 3

1 .36 .00 .00

2 .00 .24 .00

3 .14 .06 .20

Upon dividing each entry in rowi of Table 2 by Table 1 is obtained again. Furthermore, thepi ,

maximum value of (2.7) is the sum of the diagonal elements of Table 2, or .8, consistent with

the overlap probability given in Section 2.1.

Raj’s formulation of the overlap problem as a transportation problem under the conditions

considered by Keyfitz has no practical utility, since it is easier to use (2.1), (2.2) to obtain

optimal conditional selection probabilities than to solve a transportation problem. The real

importance of Raj’s approach is that, unlike Keyfitz’s, it is readily generalizable, as done in

Causey, Cox and Ernst (1985), to yield formulations for optimal solutions for very general

designs, with no restrictions on changes in strata definitions or number of PSUs per stratum.

We proceed to present this generalization, which requires additional notation. Leti=1,...,m*,Ji ,

denote the possible values forI, and let denote the possible values forN. DenoteSj , j 1,...,n ,

by the probability that and by the probability that . In addition, letP(Ji) , I Ji P(Sj) N Sj

be the variable denoting the joint probability of these two events, and let denote thexij cij

number of elements in Then the transportation problem to solve is to determineJi ∩Sj . xij ≥0

which maximize

(2.10)
m

i 1

n

j 1

cij xij
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subject to

i=1,...,m*, (2.11)
n

j 1

xij P(Ji),

j=1,...,n*. (2.12)
m

i 1

xij P(Sj ),

The conditional probability that given that is then for alli,j.N Sj I Ji xij /P(Ji)

We observe that under the conditions considered by Keyfitz and Raj,I and N consist of the

singleton subsets of {1,...,n}, and thus the procedure of Causey,m n n, pi P(Ji), πj P(Sj) ,

Cox and Ernst reduces to that of Raj.

For the more general one-PSU-per-stratum problem in which the strata definitions can change

in the new design,N still consists of the singleton subsets of {1,...,n}, and hence butIn n,

depends on the stratification in the initial design. To illustrate, an example is presented in

Causey, Cox and Ernst (1985) for whichn=5, with A1, A2, A3 in one initial stratum andA4, A5 in

a second initial stratum; in both of these initial strata there were also additional PSUs not inS.

Then with the values ofI consisting of the empty set, the 5 singleton sets, and the 6 setsm 12,

of size 2 for which one element is from {1,2,3} and the other from {4,5}. In general, the

maximum value for is the number of subsets of {1,...,n}. For the case when both designsm 2n,

are one-PSU-per-stratum, if and only if then PSUs inSwere inn different initial strata.m 2n

We next consider the case where both the initial and new designs are two-PSUs-per-stratum

without replacement. We present an example to illustrate the use of the formulation (2.10)-

(2.12).
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Consider a final stratumS with n=3. All of the PSUs were in different initial strata.

Let p1=.6, p2=.75, p3=.7, π1=.5, π2=.8, π3=.7.

Thenp12=.45, p13=.42, p23=.525,π12=.30, π13=.20, π23=.50.

Since the PSUs were all in different initial strata, there are 8 different possibilities forI, with

probabilities given in Table 3.

Table 3. Probabilities for Possible Sets of Initial Sample PSUs

i 1 2 3 4 5 6 7 8

Ji {1,2,3} {1,2} {1,3} {2,3} {1} {2] {3} ∅

P(Ji) .315 .135 .105 .21 .045 .09 .07 .03

Since the new design is two-PSUs-per-stratum without replacement, there are 3 different

possibilities forN, namely the pairsS1={1,2}, S2={1,3}, S3={2,3}, and henceP(S1)=.30,

P(S2)=.20, P(S3)=.50.

Furthermore, the values ofcij are then as given in Table 4. Upon maximizing (2.10) subject

to (2.11) and (2.12) with the givenP(Ji)’s, P(Sj)’s andcij ’s, an optimal set ofxij’s, presented

in Table 5, is obtained. Finally, by dividing each of the entries in rowi of Table 5 byP(Ji),

an optimal set of conditional probabilities in Table 6, is obtained.P(Sj Ji ) ,

Table 4. Values of cij for Optimal Procedure

j

i 1 2 3

1 2 2 2

2 2 1 1
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3 1 2 1

4 1 1 2

5 1 1 0

6 1 0 1

7 0 1 1

8 0 0 0

Table 5. Values of xij that Maximize Overlap for Optimal Procedure

j

i 1 2 3

1 .000 .025 .290

2 .135 .000 .000

3 .000 .105 .000

4 .000 .000 .210

5 .045 .000 .000

6 .090 .000 .000

7 .000 .070 .000

8 .030 .000 .000

Table 6. Conditional Probabilities for Optimal Procedure

Final Sample PSUs

Initial Sample PSUs {1,2} {1,3} {2,3}

{1,2,3} 0 5/63 58/63

{1,2} 1 0 0

{1,3} 0 1 0

{2,3} 0 0 1

{1} 1 0 0

{2} 1 0 0
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{3} 0 1 0

∅ 1 0 0

Note that, as previously mentioned and as illustrated by this example, when the number of

PSUs per stratum in the new design is greater than 1, objective function (2.10) has a more

general meaning than (2.7). While (2.7) is the probability that the new sample PSU was in

the initial sample, (2.10) is the expected number of new sample PSUs that were in the initial

sample. For this example, the expected overlap under the optimal procedure is 1.735 PSUs.

In comparison, the expected overlap if the initial and final designs are selected independently

is PSUs. Also observe that it can readily be verified that the set ofp1π1 p2π2 p3π3 1.39

conditional probabilities in Table 6 is optimal, since the conditional expected overlap is 2

whenever at least a pair of PSUs are inI and the conditional expected overlap is 1 whenever

I consists of exactly one PSU.

For two-PSU-per-stratum without replacement problems, the possible values forN are always

the subsets of {1,..,n} of size 2, that is Howeverm* can vary widely.








n
2 n









n
2 .

when the PSUs inS comprise a single initial stratum. The upper bound of 2n on m*m








n
2

is attained when all the PSUs inS were in different initial strata, as illustrated by the previous

example, and in some other situations, as will be shown. To obtain a general, exact

expression form*, let , i=1,...,r, denote the set of initial strata with PSUs in common withGi′

S; let ; and let denote the number of PSUs in respectively. AssumeGi Gi′ S ni, ni′ Gi, Gi′,

that each is a nonselfrepresenting stratum. Then the following results hold:Gi′

Theorem2.1
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(2.13)m
r

i 1

mi ,

where

mi = 2 if ni = 1, (2.14)

= (2.15)







ni

2
if ni′ ni ≥ 2,

= (2.16)







ni

2
ni if ni′ 1 ni ≥ 2,

= (2.17)







ni

2
ni 1 if ni′ 2≥ ni ≥ 2,

Furthermore, if and only if for alli and, in addition, wheneverm 2n ni ≤ 2 ni′≥ 4 ni 2.

This theorem is proven in Appendix A.

For the two-PSUs-per-stratum without replacement overlap problem, the number of variables

in the transportation problem for the optimal procedure ism*n* which, by Theorem 2.1, can

be as large as Forn=15, which is about as large a transportation2n








n
2 . 2n









n
2 3,440,640,

problem as can be solved with the computer facilities that we used. However,n>15 for

nearly half the nonselfrepresenting strata in our SIPP application, and consequently it was

necessary to develop a procedure, described in the next section, which reduces the size of the

transportation problem, while still producing nearly maximal expected overlap in practice.

Aragon and Pathak (1990) present a different approach to the problem of reducing the size of

the transportation problem than the procedure to be presented in Section 3. Their approach

retains optimality and reduces the size of the problem by 75 percent when .m n

Unfortunately, whenm* is much larger thann*, which is when size reduction is most needed,
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their approach produces negligible size reduction in relative terms.

3. THE ALGORITHM FOR THE REDUCED-SIZE PROCEDURE

The reduced-size procedure is applicable whenever PSUs in the initial and new designs are

selected without replacement. However, the procedure will be described in detail, in Section

3.1, only for the case when both the initial and new designs are two-PSUs-per-stratum. Then,

in Section 3.2, the changes necessary to apply this procedure for other initial and new designs

will be sketched. It is assumed that PSUs in the initial sample were selected independently

from stratum to stratum.

3.1 Reduced-Size Procedure When Both Designs Are Two-PSUs-Per-Stratum

The general outline of the procedure for this case is as follows. First, the subsets of








n
2

{1,...,n} of size 2 are ordered in a manner to be described later. (For now, we simply note

that any ordering can be used to reduce the size of the transportation problem. The specific

one used is for the purpose of accomplishing the size reduction while also attempting to give

up as little as possible of the gains in overlap that the optimal procedure yields.) We letIi,

denote thei-th element in the ordering; let be then singletoni 1,...,








n
2 , I

n
2 1

,...,I
n
2 n

subsets; and set Thus, theIi’s constitute all subsets of {1,...,n} of 2 or fewerI
n
2 n 1

∅ .

elements. For each possibility forI, a unique set is associated among theseI








n
2 n 1

subsets and the new selection probabilities conditioned on the associated , rather than onII

itself. Therefore, the new selection probabilities are conditioned on events instead








n
2 n 1
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of a possible 2n events, which is the reason for the size reduction. The associated is theI

first Ii for which That is, ifI consists of at least two integers, the associated is theI i ⊂ I . I

first pair in the ordering contained inI, while if I is a singleton set or empty thenI I .

The reduced-size transportation problem attempts to retain the PSUs corresponding to

elements in the associated set in the new sample, but does not use information onI

elements in The form of this reduced-sized transportation problem based on the set ofI ∼ I .

Ii’s is as follows. Let be the probability that and abbreviatepi I I i , i 1,...,








n
2 n 1,

For eachi,j , the variablexij is the joint probability that and thatπj P(Sj) , j 1,...,








n
2 . I I i

N=Sj, while cij is the expected number of elements in given The problem toI ∩Sj I I i .

solve is to determine that maximizexij ≥0

(3.1)

n
2 n 1

i 1

n
2

j 1

cij xij,

subject to

(3.2)

n
2

j 1

xij pi , i 1,...,








n
2 n 1,

(3.3)

n
2 n 1

i 1

xij πj , j 1,...,








n
2 .
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Once the optimalxij ’s have been obtained, then the conditional new selection probabilities for

Sj, given are Note that the number of variables,xij, in thej 1,...,








n
2 , I I i , xij /pi .

formulation (3.1)-(3.3) is in comparison with a maximum of in the
















n
2 n 1 ×









n
2 , 2n×









n
2

formulation (2.10)-(2.12).

It remains to explain the general method for obtaining the ordering of the pairs and the








n
2

procedures for computing the ’s andcij’s. Before doing this, we present an example of thepi

reduced-size procedure, namely the two-PSUs-per-stratum example used in Section 2.2 to

illustrate the transportation problem formulation for the optimal procedure.

The ordering of the pairs for this example, as will be shown later, is {2,3}, {1,2}, {1,3}.

Consequently, theIi’s, are as given in Table 7. Note that ifI={1,2,3} or I={2,3}, then the

associated set isI1={2,3}. For the other six possibilities forI the associated set isI itself.

Consequently, from Table 3 we obtain that

(3.4)p1 P(I {1,2,3}) P(I {2,3}) .525,

and yielding the values in Table 7. Sincepi P(Ji), i 2,3, pi P(Ji 1) , i 4,...,7, πj P(Sj) ,

we haveπ1 .30, π2 .20, π3 .50.

Table 7. Probabilities of Associated Sets: Reduced-Size Procedure

i

1 2 3 4 5 6 7

Ii {2,3} {1,2} {1,3} {1} {2} {3} ∅
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pi .525 .135 .105 .045 .09 .07 .03

The cij values for this example are given in Table 8. In order to obtain these values, we

simplified the computation by letting

(3.5)bit P(t∈I I I i ), i 1,...,








n
2 n 1, t 1,...,n,

and noting that ifSj={s,t} then

(3.6)cij bis bit .

That is, the expected number of elements in given is simply the sum of theI Sj I I i

probabilities that each of the two elements inSj was in I given Also observe thatI I i .

while the transportation problem for the optimal procedure knows the exact value forI and

hence knows with certainty whether each element inSj was in I, this is not the case for the

reduced-size procedure, since only the associated setIi is known. To illustrate, consider the

first row of Table 8. SinceI1={2,3}, we know that and henceb12 = b13 = 1.2∈I and 3∈I,

However, we do not with certainty whether 1∈I sinceI1 is the associated set for both

I={1,2,3} and I={2,3}. In fact, from Table 3,

b11

P(I {1,2,3})
P(I {1,2,3}) P(I {2,3})

.6 .

Then withc12, c13 computed similarly. For the remaining six rows inc11 b11 b12 1.6,

Table 8, and hence it is known with certainty which integers were inI. Consequently,I i I

the cij ’s for these six rows are easily computed.
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Finally, we maximize the expected overlap (3.1) subject to (3.2) and (3.3), obtaining thexij

values in Table 9. The conditional probabilities in Table 10 are thenP(N Sj I I i)

obtained by dividing thei-th row of Table 9 bypi .
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Table 8. Values of cij for the Reduced-Size Procedure

j

i Ii 1 2 3

1 {2,3} 1.6 1.6 2.0

2 {1,2} 2.0 1.0 1.0

3 {1,3} 1.0 2.0 1.0

4 {1} 1.0 1.0 0.0

5 {2} 1.0 0.0 1.0

6 {3} 0.0 1.0 1.0

7 ∅ 0.0 0.0 0.0

Table 9. Values of xij for the Reduced-Size Procedure

j

i Ii 1 2 3

1 {2,3} 0.000 0.025 0.500

2 {1,2} 0.135 0.000 0.000

3 {1,3} 0.000 0.105 0.000

4 {1} 0.045 0.000 0.000

5 {2} 0.090 0.000 0.000

6 {3} 0.000 0.070 0.000

7 ∅ 0.030 0.000 0.000
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Table 10. Conditional Probabilities for the Reduced-Size Procedure

j

i I i 1 2 3

1 {2,3} 0 1/21 20/21

2 {1,2} 1 0 0

3 {1,3} 0 1 0

4 {1} 1 0 0

5 {2} 1 0 0

6 {3} 0 1 0

7 ∅ 1 0 0

The expected overlap for the reduced-size procedure is .01 less than optimal, that is 1.725

PSUs. The deviation from optimality arises solely because the expected overlap is 1.6 for the

joint event that and Since the probability of this joint event is .025,I {2,3} N {1,3} .

and the optimal procedure for this example always produces an overlap of 2 when at least 2

of the PSUs were in the initial sample, the deviation from optimality is .025(2-1.6)=.01.

The reason that the reduced-size procedure is not able to obtain optimality is that the pair

{2,3} has a smaller probability of selection in the new sample than in the initial sample. As

a result, both the optimal procedure and the reduced-size procedure must sometimes select

another pair (always {1,3} for both procedures in this example) when {2,3} was in the initial

sample. The distinction between the two procedures is that the optimal procedure only selects

{1,3} when The reduced-size procedure is unable to use the information about whether1∈I.

As a result, when independently of whether This results in a1∈I. {2,3} ⊂ I, 1∈N 1∈I.

deviation from the optimal overlap.
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Although, as illustrated by this example the reduced-size algorithm does not always yield the

optimal expected overlap, in practice it often does. To illustrate, consider the previous

example with the single modification thatp2=.50 instead of .75. The conditional probabilities

for the optimal procedure are presented in Table 11.

Table 11. Conditional Probabilities for Optimal Procedure with p2 = .50

Final Sample PSUs

Initial Sample PSUs {1,2} {1,3} {2,3}

{1,2,3} 0 0 1

{2,3} 0 0 1

{1,2} 1 0 0

{1,3} 0 20/21 1/21

{1} 1 0 0

{2} 1 0 0

{3} 0 0 1

∅ 1 0 0

The corresponding table for the reduced-size procedure is identical to Table 11 except that the

first row is omitted, with the rows for {1,2,3} and {2,3} combined into a single row for

{2,3}. The expected overlap is 1.58 for both procedures for this example. The conditional

expected overlap is 1 whenever there is exactly 1 PSU inI and the conditional expected

overlap is 2 whenever there are at least 2 PSUs inI, except ifI={1,3}. If I={1,3} then the

conditional probability of {1,3} being selected in the new sample is 20/21 for both

procedures. SinceP(I={1,3})=.21 andπ13=.20, no procedure can yield a higher conditional

probability of retaining {1,3} whenI={1,3}.

We now proceed to show in general how the ordering of the pairs is obtained and the ’spi

andcij’s are computed.
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We first consider the ordering of the pairs. The motivation for the ordering is as follows. If

the i-th pair in the ordering is {s,t} then it would be possible for the transportation problem to

retain this pair in the new sample when with conditional probability minI I i {1, πst/pi } .

This is analogous to (2.1) in Keyfitz’s procedure. Therefore, roughly the goal in the ordering

is to make these conditional probabilities as large as possible on average over all pairs.

To illustrate how the ordering of the pairs affects the expected overlap we consider the

example of Table 7. Our ordering procedure, as will be shown later, produces the indicated

ordering and yields an expected overlap of 1.725 PSUs. Next consider the following

alternative ordering for this example. Let the first pair in the ordering be {1,3}, the second

pair be {1,2} and the last pair be {2,3}. With this alternative ordering, wheneverI {1,3}

either I={1,2,3} or I={1,3}. Therefore, for this ordering is the probability thatp1 I {1,3},

which is now .42. Furthermore, for this alternative ordering

while the other 5 columns in Table 7 remain unchanged.p3 P(I {2,3}) P(I {2,3}) .21,

The alternative ordering results in the conditional probabilities in Table 12.

Table 12. Conditional Probabilities for Alternative Ordering

j

i I i 1 2 3

1 {1,3} 0 10/21 11/21

2 {1,2} 1 0 0

3 {2,3} 0 0 1

4 {1} 1 0 0

5 {2} 1 0 0

6 {3} 0 0 1

7 ∅ 1 0 0
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It can be calculated, using the same approach used for Table 10, that the expected overlap for

this example is 0.055 less than optimal, that is 1.68 PSUs. The reason that this alternative

ordering results in a lower expected overlap is as follows. In general a later placement of a

pair in the ordering, results in a lower value for the corresponding and hence a higherpi ,

conditional retention probability when That is, with {1,3} first in the ordering,I I i .

which is the conditional retention probability for this pair when I*={1,3};π13/p1 10/21,

while when {1,3} is third in the ordering and this pair is retained with certainty.π13/p3 > 1

Now the conditional retention probability for the pair {2,3} when also increases toI {2,3}

1 when {2,3} is moved from first to third in the ordering, but the increase is only from 20/21,

and hence the ordering in Table 7 produces a higher expected overlap than the ordering in

Table 12.

Thus, as this example illustrates, the goal of the ordering is to place pairs earlier in the

ordering that have a relatively high conditional retention probability even with an early

placement. To obtain the desired ordering of the pairs of integers, an ordering off (1),...,f (n)

will first be obtained by recursion. Then corresponding to eachk=1,...,n-1, an{1,...,n}

orderinggk(1),...,gk(n-k) of {1,...,n} ∼{ f(1),...,f(k)} will be constructed by recursion. A linear

ordering of the distinct pairs in {1,...,n} would then be determined as follows. Each such pair

can be represented uniquely as an ordered pair (f(k), gk( )) for somek ∈ {1,...,n-1}, ∈

{1,...,n-k}. A second pair representable in the form (f(k′), gk′( ′)) precedes (f(k), gk( )) if and

only if either k′<k, or k′=k and ′< . To illustrate, for the example just considered it will be

shown later thatf(1)=2, f(2)=3, f(3)=1, g1(1)=3, g1(2)=1, g2(1)=1, and hence the ordering of

the pairs is {2,3}, {2,1}, {3,1}. Both thef ordering and thegk ordering will be constructed to

meet the goal stated at the beginning of this paragraph.

To obtain the orderingf(1),...,f(n), recursively definef(k), k=1,...,n, by choosingf(k) ∈ Tk



26

satisfying

πf(k)/p
(k)

f(k) max{πi /p
(k)

i : i ∈ Tk},

where

T1 {1,...,n}, Tk Tk 1∼ { f(k 1)}, k 2,...,n,

(3.7)p (k)
i P(i ∈ I and I ⊂ Tk), k 1,...,n, i ∈ Tk.

Since the ordering just defined corresponds to placing first a PSU with the greatestp(1)
i pi,

value of For allk, is the probability thatf(k) was in I and none of thek-1πi /pi. p (k)
f (k)

elements proceedingf(k) in the f ordering were inI, and hence is the probability that anp (k)
f (k)

attempt is made to retainAf(k) in the new sample either as the first member of an ordered pair

of initial sample PSUs or as the only initial sample PSU inS. Generally, the largerπf (k) /p
(k)

f (k)

is, the greater the probability that this attempt would be successful. Thus, the motivation for

the f ordering of the individual PSUs is the analog of the motivation for the ordering of the

pairs of PSUs that we previously discussed.

It remains to explain how to compute for To this end, letr denote the number ofp (k)
i k≥2.

initial strata with PSUs in common withS and let denote a partition of {1,...,n}Fα, α 1,...,r ,

such thati and j are in the same if and only ifAi andAj were in the same initial stratum.Fα

Then let

(3.8)pα′(T) P(I ∩ Fα ⊂ T), α 1,...,r, T ⊂ {1,...,n},

(3.9)piα′′(T) P(i ∈ I and I ∩ Fα ⊂ T), α 1,...,r, T ⊂ {1,...,n}, i ∈ Fα ∩ T,

and observe that



27

(3.10)pα′(T) 1
i∈Fα∼T

pi
i, j∈Fα∼T

i<j

pij,

(3.11)piα′′(T) pi
j∈Fα∼T

pij,

and finally that

(3.12)p (k)
i piα′′(Tk)

r

1
≠α

p′(Tk), k 1,...,n, i ∈ Fα ∩ Tk.

This last formula is obtained by noting that since is the probability that all ofp ′ (Tk), ≠α,

the elements in are inTk, while is the joint probability thati ∈ I and that all theI F p ′′
iα (Tk)

elements in are inTk, then since the selection of the PSUs in the initial design isI Fα

assumed independent from stratum to stratum, the product of terms on the right hand side of

equation (3.12) is the probability thati ∈ I and , which is precisely the definition ofI ⊂Tk

given by (3.7).p (k)
i

Next, for eachk=1,...,n-1, the ordering is recursively defined by choosinggk( ), 1,...,n k,

satisfyinggk( ) ∈ Tk

πf(k),gk( ) /p
( )

f(k),gk( ) max{πf(k),j /p
( )

f(k),j: j ∈ Tk },
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where

Tk1 {1,...,n} ∼{ f(1),...,f(k)},

Tk Tk( 1)∼{ gk( 1)}, 2,...,n k,

Tk Tk { f (k)}, 1,...,n k,

(3.13)p ( )
f(k),j P(f(k), j ∈ I and I ⊂ Tk ), 1,...,n k, j ∈ Tk .

Note that is thus the joint probability thatf(k) is the first integer in thef ordering inI,p ( )
f (k), j

that none of the first -1 integers in thegk ordering are inI, and thatj ∈ I. Consequently,

is the probability that Furthermore, if thenp ( )
f (k),gk( ) I { f (k), gk( )}. I i { f (k), gk( )}

and hence the choice of results in the largest value of amongpi p ( )
f (k),gk( ), gk( ) πf (k), gk( ) /pi

the elements in in accordance with the previously stated goal for the ordering of the pairsTk ,

of PSUs.

To compute observe that if thenp ( )
f (k), j , f (k) ∈ Fα, j ∈ Fβ,

p ( )
f(k),j pf(k),j

r

t 1
t≠α

p ′
t (Tk ) if α β,

(3.14)

p ′′
f(k),α (Tk )p ′′

jβ (Tk )
r

t 1
t≠α,β

p ′
t (Tk ) if α≠β.

These formulas can be obtained by first noting that in (3.14), is the probability thatp ′
t (Tk )

. If then is the probability thatf(k) and j were in I, and hence the onlyI Ft ⊂ Tk α β pf (k), j

elements in while if then is the probability thatf(k) and j wereI Fα; α≠β, p ′′
f (k),α (Tk ) p ′′

jβ (Tk )
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in I, and . The product of the terms in both formulas in (3.14) is thus theI (Fα Fβ ) ⊂ Tk

probability that and which is precisely the definition of in (3.13).f (k), j ∈ I, I ⊂Tk , p ( )
f (k), j

We illustrate the computations used in obtaining the ordering for the example that we have

been considering. First note thatf(1)=2 since the largest value ofπi/pi occurs fori=2. Next

we find g1(1) which, sincef(1)=2, is the with the maximum value of . Toj ∈ {1,3} π2j /p
(1)

2j

find this j, first let Fα={α}, α=1,2,3, and note that . From (3.14) withα=2, β=1, itT11 1,2,3

then follows that

,p (1)
21 p22″ 1,2,3p11″ 1,2,3p3′ 1,2,3 p2p1 1 .45

and similarly it can be obtained that . Hence since .5/.525>.3/.45.p (1)
23 .525 g1(1) 3,

Therefore, the first pair in the ordering is Then since 1 is{ f (1), g1(1)} {2,3} . g1(2) 1,

the only integer remaining to be used in theg1 ordering, and consequently the second pair in

the ordering is It is not really necessary to determinef(2), since {1,3}{ f (1), g1(2)} {2,1} .

is the only remaining pair, and hence the last pair, but to further illustrate the computations,

observe thatT2={1,3}, by (3.12), and similarlyp (2)
1 p ′′

11{1,3} p ′
2 {1,3} p ′

3 {1,3} p1(1 p2) 1 .15

. Hencef(2)=3, since .7/.175 > .5/.15. Consequently,g2(1)=1, f(3)=1.p (2)
3 p3(1 p2) 1 .175

Next we explain the computation of the ’s. IfIi consists of the pair of integerspi

Ii = { f(k), gk( )} then, as previously noted, Consequently, can be computedpi p ( )
f (k),gk( ) . pi

from (3.14) with j gk( ) .

If Ii is a singleton set {t} for some thent ∈ Fα,
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(3.15)pi p ′′
tα ({ t})

r

u 1
u≠α

p ′
u (∅) .

This expression holds since is the probability that isp ′
u(∅), u≠α, Fu I ∅, while ptα′′ ({ t})

the probability that and hence the right hand side of (3.15) is the probability thatFα I { t},

I I i { t} .

Finally, if then it can be similarly shown thatI i ∅ , pi

r

u 1

pu′(∅) .

To illustrate the computations of the ’s for our example, note that sincepi

and, as previously computed, it follows thatI1 { f (1), g1(1)} {2,3} p (1)
23 .525,

Note that we have also computed by means of (3.4). Thatp1 p (1)
f (1),g1(1) p (1)

23 .525. p1

approach to computing requiring summingP(I) over all possibleI for which Ii is thepi ,

associated set, is not practical in general, since there can be as many as 2n-2 probabilities

summed in the computation ofp1 .

It remains only to explain how to compute thecij ’s which, by (3.5) and (3.6), reduces to

computingbit, i 1,...,








n
2 n 1, t 1,...,n.

To computebit, observe that
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bit = 0 if Ii = /0,

= 1 if Ii = {v} and t=v,

= 0 if Ii = {v} and t≠v,

while if Ii = { f(k), gk( )} and thenf(k) ∈ Fα, gk( ) ∈ Fβ, t ∈ Fγ ,

bit = 1 if t=f(k) or t=gk( ), (3.16)

= 0 if (3.17)t ∉ Tk ,

= 0 if (3.18)t ∈ Tk ∼{ gk( )} and γ α β,

pf(k),t if (3.19)t ∈ Tk ∼{ gk( )} and γ α≠β,
=

p ′′
f(k),α(Tk )

if (3.20)pgk( ),t t ∈ Tk ∼{ gk( )} and γ β≠α,
=

p ′′
gk( ),β (Tk )
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if (3.21)p ′′
tγ (Tk ) t ∈ Tk ∼{ gk( )} and γ≠α, γ≠β.

=

p ′
γ(Tk )

In Appendix B it is demonstrated how (3.16)-(3.21) were obtained.

In the actual implementation for the SIPP application, modifications of the reduced-size

procedure were needed to overlap the 1990s SIPP design with the 1980s SIPP design. The

modifications were necessary because the PSU definitions in the 1980s and 1990s designs

were not identical. As a result, some PSUs in the 1990s design could intersect more than one

1980s design PSU. These modifications are detailed in Appendix C.

3.2 Modifications of Reduced-Sized Procedure for Other Designs

In general, consider any -PSU-per-stratum without replacement initial design and anym′

m-PSUs-per-stratum without replacement final design, where are any positive integers.m′ , m

Although the reduced-size procedure in Section 3.1 was only presented for the casem m′ 2,

it is actually applicable for any . We will sketch the modifications necessary whenm, m′

m≠2 or m′≠2.

A different value of only requires modification of some of the computations. Form′

example, ifm=2, but then the computations for andcij would be differentm′≠2, p (k)
i , p ( )

f(k),j

but their definitions would not change.

If m=3, then, regardless of the value of the set of all distinct triples, instead of pairs, ofm′ ,

integers in {1,..,n}, is ordered. If I consists of at least three integers, then the new selection

probabilities are conditioned only on the first listed triple in the ordering contained inI.
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Otherwise, the new selection probabilities are conditioned onI itself. Thus the new selection

probabilities are conditioned on events.








n
3









n
2 n 1

To obtain the desired ordering of the triples of integers, first the orderingsf(1),...,f(n) and

gk(1),...,gk(n-k) are constructed exactly as in the casem=2. Then, corresponding to each

k=1,...,n-2, =1,...,n-k-1, an orderinghk (1),...,hk (n-k- ) of

is constructed in a manner similar to the construction of{1,...,n} ∼{ f (1),...,f (k), gk(1),...,gk( )}

gk(1),...,gk(n-k). For example, in defining for in the definition ofgk( ) ishk (v) v≥2, p ( )
f(k),j

replaced by

P(f(k), gk( ), j ∈ I and I ⊂ (Tk gk( ))∼{ hk (1),...,hk (v 1)}).

A linear ordering of the distinct triples in {1,...,n} is then determined by representing each

triple uniquely as an ordered triple of the form (f(k), gk( ), hk (v)). A second triple

(f(k′), gk′( ′), hk′ ′(v′)) precedes the first if and only if eitherk′<k, or k′=k and ′< , or k′=k

and andv′<v.′

For orderedm-tuples would be defined in a similar manner and the new selectionm≥4,

probabilities conditioned on events.








n
m









n
m 1 ... n 1

For m=1, the new selection probabilities are conditioned on the first member of the ordering

f(1),...,f(n) in I if I /= /0, or on /0 if I = /0.

Note that ifm>m′, it is possible that at least some orderedm-tuples cannot be subsets ofI, in

which case all such subsets should be excluded from the ordering and the set of events on

which the new selection probabilities are conditioned. If nom-tuple can be a subset ofI, then
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the new selection probabilities are conditioned onI itself.

It is not necessary to limit the initial events used in the transportation problem to subsets ofI

of sizem or less. For example, ifm=2 and is sufficiently small, then a








n
3









n
2 n 1

procedure conditioned on subsets of three or less can be used, resulting in a generally higher

expected overlap. Conversely, if is too large, the new selection








n
m









n
m 1 ... n 1

probabilities can be conditioned on subsets ofI of sizem′′ or less, wherem′′<m, although

with a generally smaller expected overlap.

4. RELATIONSHIP BETWEEN EXPECTED OVERLAP FOR THE REDUCED-SIZE

PROCEDURE, THE OPTIMAL PROCEDURE AND INDEPENDENT SELECTION

Let denote the expected overlap for independent selection, the reduced-sizeΩI , ΩR, ΩO

procedure, and the optimal procedure, respectively. In this section we explore the relation

between these quantities.

We are unaware of any way of determining the values of any of these quantities for a specific

problem without actually doing the computations, which in the case of the reduced-size and

the optimal procedures requires the solution of the appropriate transportation problem.

However, we prove that always. In addition, we obtain upper bounds on lowerΩI ≤ΩR ΩO,

bounds on and hence upper bounds on Although these bounds are functions ofΩR, ΩO ΩR.

the overlap problem, they can be computed without solving any transportation problems.

These bounds have somewhat limited utility, since they may not be very close to the actual

values of However, as we demonstrate by example, tightening theseΩO, ΩR and ΩO ΩR.

bounds would not be a simple matter, since under certain conditionsΩO, ΩR and ΩO ΩR
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can either equal or get arbitrarily close to these bounds.

In addition, we show by example that in the worst case, in terms of the performance of the

reduced-size procedure for two-PSU-per-stratum designs, can be arbitrarily close to 2,ΩO

while is arbitrarily close to 0. Thus, at least in theory, the reduced-size procedure can beΩR

ineffective. However, in practice, as will be shown in Section 5, is much closer toΩR ΩO

than to at least for the SIPP application.ΩI ,

The key results on the relationship between will be stated as theorems.ΩI , ΩR and ΩO

Theorem 4.1 holds for any where are as in Section 3.2, while the remainingm, m′ , m, m′

three theorems are only for the case that we have been focusing on,m m′ 2.

Theorem4.1. .ΩI ≤ ΩR ≤ ΩO

Proof: See Appendix D.

The next three theorems require the following additional notation. Let denote theµ2

probability that there are at least two elements inI, and denote the probability thatI is aµ1

singleton set. Let

λ min{min{ πi /pi: i 1,...,n}, min{ πij /pij: i, j 1,...,n, i≠j}, 1},

λ′ min{min{ πi /pi: i 1,...,n}, min{ πst/pi : i 1,...,








n
2 , I i { s,t}}, 1}.

Note that since by definition of and henceλ′≥λ, pi ≤ pst pi πst/pi ≥ πst/pst.

Theorem4.2. ΩO ≤ 2µ2 µ1.
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Proof: The number of PSUs overlapped cannot exceed 2 whenI consists of at least 2

elements, cannot exceed 1 whenI is a singleton set, and must be 0 whenI ∅ .

Theorem4.3.

(a) ΩR≥ λ(2µ2 µ1/2),

(b) ΩR≥ λ′(2µ2 µ1/2).

Proof: See Appendix D.

Note that since the bound in Theorem 4.2 is also an upper bound on and theΩR≤ ΩO, ΩR

bounds in Theorem 4.3 are also lower bounds on Also note that (b) in Theorem 4.3 is aΩO.

tighter bound than (a) since However, it is easier to compute since, unlike thisλ′≥ λ . λ λ′ ,

does not require computation of the ’s.pi

Theorem4.4.

(a) ΩO ΩR≤ 2(1 λ)µ2 (1 λ/2)µ1,

(b) ΩO ΩR≤ 2(1 λ′ )µ2 (1 λ′/2)µ1.

Proof: Combine Theorems 4.2 and 4.3.

In particular, if which will occur when all the relevant probabilities in theλ 1 or λ′ 1,

definition of are greater in the new design than in the initial design, thenλ or λ′

If, in addition, is small then must be close toΩO ΩR≤ µ1/2. µ1 ΩR ΩO.

To illustrate Theorems 4.2 - 4.4 and the fact the bounds that they give may not always be

useful, consider the example of Section 2.2 and Section 3.1. From Table 3 it can be seen that
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We also have from Tables 3 and 7 that Then theµ2 .765, µ1 .205. λ .476, λ′ .833.

bound in Theorem 4.2 is 1.735. In Theorem 4.3 (a) and (b) the bounds are .777 and 1.360,

respectively. In Theorem 4.4 (a) and (b) they are .958 and .375, respectively. This compares

to exact values of 1.735 for 1.725 for and .01 for While the bound onΩO, ΩR, ΩO ΩR.

is equal to its exact value in this example, the bounds on are not closeΩO ΩR and ΩR ΩO

to their exact values. In fact, since for this example, the lower bound on ofΩI 1.39 ΩR

1.39 guaranteed by Theorem 4.1 is greater than the bounds given by Theorem 4.3.

The bounds of Theorem 4.3 are examined further in Section 5, using SIPP data. The results

there also indicate that the bound in (a) is of little practical utility, but the bound in (b) may

be of some use since it guaranteed a mean expected overlap for the reduced-size procedure of

.5 PSUs/stratum more than independent selection.

The previous example illustrates the difficulty in improving on the bound of Theorem 4.2,

since is equal to the bound for this example. (This is not always the case. For theΩO

example in Table 11, is less than this upper bound, since ifI={1,3} it is not alwaysΩO

possible to retain {1,3} in the final sample.)

The following example illustrates the difficulty in improving upon the bounds of Theorem

4.3. Consider a new stratumS with n=4. All of the PSUs were in different initial strata. Let

for a small value Letp1 p2 .5 andp3 p4 ε ε . π12 .5 , π13 π14 π23 π24 ε ,

It can be shown that for this example, andπ34 .5 4ε . µ2 .25 ε .25ε2, µ1 .5 .5ε ,

Consequently, the lower bound on in both Theorem 4.3 (a) and (b) isλ λ′ 1. ΩR

However, in Appendix E it is established that.75 1.75ε .5ε2.

(4.1)ΩO≤ .75 12ε .
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Consequently, since the actual value of exceeds the lower bound on by atΩR≤ ΩO, ΩR ΩR

most 10.25 + .5 2, which for small is a negligible amount both in absolute and relativeε ε ε

terms.

Finally, the following example illustrates a worst case situation for in relation to bothΩR

Let S consist ofn PSUs, inn different initial strata, withΩI and ΩO. πi 2/n,

wherec<1 is a constant. For independent selection forπij 2/[n(n 1)] , pi c, i, j 1,...,n, i<j ,

this example, the probability of overlap for each PSU selected in the new sample isc and,

therefore, Furthermore, in Appendix E it is shown thatΩI 2c.

(4.2)lim
n→∞

Ω0 2,

(4.3)lim
n→∞

ΩR 2c.

Thus exceeds by a negligible amount for largen. Furthermore, sinceΩR ΩI

by (4.2) and (4.3), can be made arbitrarily close to 2 bylim
n→∞

ΩO ΩR 2 2c ΩO ΩR

makingc small enough andn large enough. In addition, since neither of the bounds in

Theorem 4.4 can exceed 2, this example demonstrates that it is possible for the exact value of

to be arbitrarily close to the upper bounds of Theorem 4.4.ΩO ΩR

5. APPLICATION OF REDUCED-SIZE PROCEDURE TO SIPP

Results from simulations of the SIPP overlap, done prior to production for research and

testing purposes, are presented in 5.1. Results from the actual SIPP production overlap are

presented in 5.2. Further details are given in Ernst and Ikeda (1992b).
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5.1 Simulation Results

In the implementation of the reduced-size overlap procedure, minimum cost flow (MCF)

optimization software, written by Darwin Kingman and John Mote at the University of Texas

at Austin, was used to solve the required transportation problem. A FORTRAN program

was written to produce input to and process output from the MCF software.

To test the software prior to production, the program was used to overlap two stratifications,

based on 1970 census data, of the SIPP Midwest region with the actual 1980s design

stratification for the SIPP Midwest region. (At the time of this test, 1990 census data was not

yet available.) The 1970-based stratifications were produced by stratifying the 1980s SIPP

noncertainty PSUs in the Midwest region using 1970 data. Both of the 1970-based

stratifications partitioned the noncertainty PSUs into 31 strata, using different sets of

stratification variables. The stratifications based on 1980 and 1970 data were treated as

"initial" and "final" stratifications for the purposes of the overlap algorithm.

The expected overlap was calculated for the reduced-size maximum overlap algorithm, for

independent selection of final PSUs, and for the upper bound to the expected overlap for the

optimal procedure given by Theorem 4.2. That upper bound was calculated instead of the

actual optimal overlap, since the optimal overlap cannot be calculated for the larger strata.

The results from the two final stratifications in the simulation were generally similar to each

other. Combining the results from both stratifications, the reduced-size maximum overlap

algorithm had a mean expected overlap of 1.552 PSUs/stratum for this set of 62 strata, with a

range from 1.257 to 1.762. The upper bound to the expected overlap had a mean of 1.569

PSUs/stratum, with a range from 1.260 to 1.809. The largest difference between the expected

overlap under the reduced-size maximum overlap algorithm and the upper bound to the

expected overlap was .084 PSUs. The expected overlap for independent selection had a mean

of .480 PSUs, with a range from .088 to 1.214. The reduced-size maximum overlap

algorithm always gave substantial improvement over independent selection, with a range of
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increase from .455 to 1.464 PSUs. Thus, for this set of 62 strata, the expected number of

PSUs overlapped is 29.8 for independent selection, 96.2 for the reduced-size procedure, and at

most 97.3 for the optimal procedure.

We also computed the lower bounds for Theorem 4.3 for those 62 strata. The mean lower

bound was .416 for the bound in (a) of that theorem and .980 for (b). This further illustrates

that the bound in (a) appears to be of no practical value, since it is below, on average, that of

independent selection. The bound in (b) is of some use, since it does guarantee an expected

gain of .5 PSUs/stratum over independent selection by using the reduced-size procedure,

which was 46.6 percent of the expected gain actually attained.

The reduced-size algorithm took a fairly short time to run on most strata. The CPU times for

final strata with different numbers of PSUs are given below. The reduced-size program was

run on a Solbourne 5/605 computer. The median number of PSUs in a stratum, for the entire

group of 62 strata, was 17 PSUs. The 37 PSUs stratum had the 6th largest number of PSUs.

The 68 PSUs stratum was the largest stratum.

Table 12. CPU Times for Reduced-Size Procedure

Number of PSUs CPU Time
(hrs:min:sec)

18
37
49
68

0:36
5:44

24:05
2:23:43

5.2 Implementation in the 1990s SIPP Design

In the actual implementation, as noted in Section 3.1 and detailed in Appendix C, a

modification of the reduced-size procedure was used to overlap the 1990s SIPP design with

the 1980s SIPP design, because the PSU definitions in the 1980s and 1990s designs were not

identical.
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The modified reduced-size procedure was used to overlap 103 final (1990s design)

nonselfrepresenting strata in SIPP. The average expected overlap was 1.523 PSUs/stratum

compared to 0.582 for independent selection. Two strata (with 69 and 72 PSUs) were not

overlapped since they exceeded the cutoff of 57 PSUs used during production, which

employed a different computer than used in the simulations, with a more restricted memory

allocation. There are also 112 selfrepresenting strata in the 1990s design for which overlap

procedures are not applicable. Thus, there are a total of 322 sample PSUs in this design. In

addition, there are 1606 nonsample PSUs in the design.

As we did for the simulation study described in the previous subsection, we calculated an

upper bound for the expected overlap for each production SIPP final stratum that was

overlapped. The mean upper bound for the 103 strata was 1.647 PSUs/stratum, reasonably

close to the mean expected overlap of 1.523 using the production overlap procedure. Thus,

among the 103 strata that were overlapped using the reduced-size procedure, the expected

number of PSUs overlapped with this procedure was 156.9, compared to 59.9 for independent

selection and at most 169.6 for the optimal procedure.

Because of the changes resulting from the fact that the two designs did not have identical

PSUs definitions, it was necessary to modify the upper bound given by Theorem 4.2 to obtain

the 1.647 mean upper bound on the expected overlap. This is because, as noted in Appendix

C, if both new sample PSUs intersect the same initial sample PSU, this event is counted as

two successful overlaps. As a result, whenI is a singleton set it is possible that there can be

2 PSUs overlapped, which is not the case when the PSU definitions are the same in the new

design. Consequently, the term in the upper bound is no longer valid. Instead,µ1 2µ2 µ1

we let denote the probability thatI is a singleton set corresponding to an initial PSUµ′
1

which intersects at least two final PSUs inS, and denote the probability thatI is aµ′′
1

singleton set corresponding to an initial PSU which intersects exactly one final PSU. We

then used the valid upper bound .2µ2 2µ′
1 µ′′

1
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The computer time during production for the modified reduced-size overlap program was

reasonably short. Production was done in four computer runs, one for each region of the

country. The maximum clock time for a region (44 strata, the largest consisting of 46 PSUs)

was 1 hour and 40 minutes. The CPU time is not known, but believed to be only slightly

less than the clock time.

We also calculated that of the 103 final strata overlapped by the modified reduced-size

procedure, 41 would not have run under the optimal procedure. This calculation was based

on our estimate that the maximum size transportation problem, in terms of number of

variables, that could have run in production was 4×106. The number of variables for the

optimal procedure was less than 4×106 for all 56 strata for which but exceeded thisn≤14,

limit for all but 6 of the 47 strata with including two withn=15. The largest strata forn≥15,

which the optimal procedure could have run has 19 PSUs. Of the 41 strata for which the

optimal procedure would not have run, 37 had transportation problems for the optimal

procedure with more than 107 variables, 33 with more than 108 variables and 23 with more

than 109 variables. The maximal size of the transportation for the optimal procedure among

the 103 strata occurred for a stratum withn=46, for which there were 3.61×1012 variables. In

contrast, there were 1.03×106 variables for the modified reduced-size procedure for this

stratum.

In performing these size calculations for the optimal procedure, Theorem 2.1 was used with

the following modification to account for different PSU definitions in the two designs. In

computing is now the number of PSUs in initial stratumi that intersect PSUs inS,m , ni

rather than the number of PSUs in the stratum that are inS. In particular, the maximum

value ofm* is now wheren′′, using the notation in Appendix C, is the number of initial2n′′ ,

PSUs that intersect PSUs inS. Furthermore, for the modified reduced-size procedure the

number of variables is wheren′, as explained in Appendix C, is the
















n′
2 n′ 1 ×









n
2 ,



43

number of PSUs inS matched to initial PSUs.

From Theorem 2.1, it may be surmized that for fixedn, m* tends to increase with the number

of initial stratar that have PSUs which intersect PSUs inS. A rather striking example of this

relationship occurred for two of the SIPP strata. For one of these stratan=25, r=4 and the

number of variables for the optimal procedure was 9.01×106, while for the other stratum

n=24, r=18, and the number of variables was 4.29×1011. We also had thatn′′=24 for the

former stratum andn′′=33 for the latter stratum, which would explain part, but not all of the

large difference in number of variables for the two strata.

Another question of interest is the overlap effectiveness of the reduced-size procedure in

comparison with the overlap procedure of Ernst (1986). In general it is believed that the

reduced-size procedure should produce a higher overlap in situations when both are usable,

since the reduced-size procedure makes use of the stratum-to-stratum independence in the

initial design. However, although the procedure in Ernst (1986) is applicable to two-PSU-per-

stratum designs, no computer program has ever been written at the Census Bureau (or

anywhere else that the authors are aware of) to implement this procedure for such designs,

since there has not yet been a production application for this program. Consequently, we

cannot make a direct comparison of these two methods on the same data. However, a crude

comparison can be made from the results of the reduced-size overlap procedure for SIPP data

and the results of the overlap using the procedure in Ernst (1986) for the overlap of 1990s

CPS and NCVS designs with their respective 1980s designs. (Both the 1980s and 1990s

designs for CPS and NCVS are one-PSU-per-stratum designs.)

For CPS, the overlap procedure resulted in an average increase in expected overlap, in

comparison with independent selection, of .26 PSUs/stratum, and for NCVS the overlap

procedure resulted in an average increase in expected overlap of .30 PSUs/stratum. This

compares with an increase of .94 PSUs/stratum for the reduced-size procedure over

independent selection for SIPP. If the two overlap procedures are equally effective, then one
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might expect that the increase in overlap per stratum for SIPP would be roughly twice as

large as for CPS and NCVS, since SIPP has a two-PSUs-per-stratum design. By this

standard, the reduced-size procedure program performs better than the procedure in Ernst

(1986). However, since the stratifications were quite different for these three surveys, the

validity of this comparison is open to question.

For the examples in Tables 6 and 11, a valid comparison of the different overlap procedures

can be made, since the expected overlap values for the procedure in Ernst (1986), 1.625 for

the Table 6 example and 1.425 for the Table 11 example, were easily calculated by hand.

For the reduced-size procedure the corresponding overlap values are 1.725 and 1.58

respectively, and for the optimal procedure, 1.735 and 1.58, respectively.

In summary, we believe the reduced-size procedure to be a practical procedure which,

although in theory can be ineffective in increasing overlap, yields results reasonably close to

optimal in practice. It can be only used when the PSUs in the initial design are selected

independently from stratum to stratum, but when this condition is met we believe it is the

overlap procedure of choice for large strata.
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APPENDIX A: PROOF OF THEOREM 2.1

Let Since the sampling of PSUs is assumed to have beenFi { j: Aj ∈Gi}, i 1,...,r.

independent from stratum to stratum in the initial design, to establish (2.13) it suffices to

show thatmi is the number of possible values for in cases (2.14) - (2.17). Now (2.14)Fi I

holds, since it is always possible for each element inFi to have either been inI or not have

been inI. (2.15) is the case when and hence can be any of the subsets ofGi Gi′ Fi ∩ I








ni

2

Fi of size 2. To obtain (2.16), note that can either be one of the subsets of size 2Fi ∩ I








ni

2

of Fi or one of theni singleton subsets ofFi, the latter event occurring when the one PSU in

Gi′∼Gi was in the intial sample. (2.17) is similar, except that sinceGi′∼Gi now consists of at

least two PSUs, both initial sample PSUs in can be in in which caseGi′ Gi′∼Gi , Fi I ∅,

creating one additional possibility forFi I .

To show under what conditions the upper bound of 2n for m* is obtained, observe that the

number of possible values for cannot exceed Since , it follows thatFi I 2ni .
n

i 1

2ni 2n

if and only if for all i. Now if ni = 1, thenmi = 21 by (2.14). If ni = 2, thenm 2n mi 2ni

mi = 22 if and only if which by (2.15) - (2.17) occurs if and only ifmi









ni

2
ni 1, ni′≥ 4.

Finally, if ni≥3 for somei, thenFi itself is not a possible value forI. Consequently, the

possible values ofI do not include all subsets of {1,...,n} and, therefore,m < 2n.
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APPENDIX B: PROOF OF (3.16) - (3.21)

Note that since {f(k), gk( )} is the first pair in the ordering contained inI, we have

but none off(1),...,f(k-l), gk(1),...,gk( -l) are in I, and hence (3.16), (3.17)f (k) , gk( )∈ I ,

follow. Thusbit is determined for allt except those in for whichbit is computedTk ∼ { gk( )} ,

by one of (3.18) - (3.21). Now iff(k), gk( ) and t were all in then since there areFα t∉ I

only two initial sample PSUs in each initial stratum and hence (3.18) holds. To obtain (3.19),

observe that if but then we know that and hencef (k), t∈Fα , gk∉Fα , f (k)∈ I , I Fα ⊂Tk ,

bit = andP(t∈ I f (k)∈ I I Fα ⊂Tk )

P(t, f (k)∈ I and I Fα ⊂Tk )

P(f (k)∈ I and I Fα ⊂Tk )

pf (k),t

pf (k),α
′′ (Tk )

.

(3.20) is obtained similarly to (3.19), while (3.21) follows since

bit = .P(t∈ I I Fγ⊂Tk )
P(t∈I and I Fγ ⊂Tk )

P(I Fγ ⊂Tk )

p ′′
tγ(Tk )

p ′
γ (Tk )
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APPENDIX C: MODIFICATION OF REDUCED SIZE PROCEDURE WHEN PSU

DEFINITIONS CHANGE

The procedure described in Section 3.1 requires two modifications when there are different PSU

definitions in the two designs.

The first modification is a procedure for establishing a one-to-one correspondence between a

subset of then PSUs in a final stratumS and a subset of the PSUs in the initial design, which is

needed in ordering pairs of PSUs. The natural one-to-one correspondence between all the PSUs

in S and the set of PSUs in the initial design that exists when the PSU definitions are the same in

the two designs no longer holds, and such terminology as the initial and new selections

probability for Ai no longer would make sense unless this correspondence is restored.

The second modification is a change in the calculation of thebit’s to account for the possibility of

several initial PSUs intersecting with one final PSU.

The one-to-one correspondence is created as follows. Order then PSUs inS, that isA1,...,An, in

descending order of new selection probability. MatchA1 to the initial PSU that makes up the

largest portion (using the measure of size for the new design) ofA1. Then proceed to match

A2,...,An, whereAi is matched to the initial PSU that makes up the largest portion ofAi among

those initial PSUs intersectingAi that have not already been matched. If no such initial PSU

exists thenAi is not matched. For example, ifj<i andAj, Ai were formed by splitting an initial

PSU, thenAj is matched to this PSU andAi is unmatched. Let denote the initial PSUsB1,...,Bn′′

that intersect at least one of theAi’s. Assume that of the PSUs inS are matched by thisn′

process, withAi matched toBi, i 1,...,n′ .

The ordering of the pairs of PSUs and the formulation of the reduced-size transportation problem

proceeds as in Section 3.1 with the following modifications.I is now the set of initial PSUs in
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that were in the initial sample, while The ordering is of pairs of{ B1,...,Bn′′} I′ I { B1,...,Bn′} .

PSUs in that is for matched PSUs only. Let denote a partition ofI ′ , Fα, α 1,...,r, { B1,...,Bn′′}

according to their initial stratum, with the analogous partition for TheFα′ , α 1,...,r ′, { B1,...,Bn′} .

Ii’s now consist of the subsets of of two or fewer elements, and associated with each{ B1,...,Bn′}

I′ is a subsetI*, namely the firstIi contained in That is, there are now sets onI ′ .








n′
2 n′ 1

which the new selection probabilities are conditioned. As a result, in determining the ordering of

the pairs of PSUs and the calculation of the definitions off(k), gk( ), Tk, Tk , pi
(k),pi , Tk ,

andpi
* are modified by replacingn, I, by respectively.pα′(T) , piα′′(T) , p ( )

f (k), j , Fα , r n′, I′, Fα′, r′,

Also n is replaced by in thei index in (3.2), (3.3), but thej index remains unchanged.n′

It remains only to explain how thecij ’s are defined and calculated under this modified procedure.

A PSU selected in the new sample is considered a successful overlap if any of theAt , t 1,...,n,

that intersect it, even if not matched toAt, were inI. (In particular, if two finalBj , j 1,...,n′′ ,

sample PSU intersect the same initial sample PSU, this counts as two successful overlaps. Some

may prefer to count this as only one successful overlap, since there generally can be only one

interviewer retained in this case. However, this would complicate the calculation of thecij ’s,

since the relation given below would no longer hold.) Consequently,cij is thecij bis bit

expected number of PSUs inSj that intersect PSUs inI given I*=Ii. Hence, if

Ht { k: Bk At ≠ ∅, k 1,...,n′′}, t 1,...,n,

bit P(Ht I ≠∅ I I i ), i 1,...,








n′
2 n′ 1, t 1,...,n,

andSj = {s,t}, then cij = bis + bit.
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The calculation ofbit is more complex here than in Section 3.1, because of the possible multiple

intersections. Fori=1,...,








n′
2 n′ 1, t 1,...,n, α 1,...,r,

let Htα Ht Fα,

bitα P(Htα I ≠ ∅ I I i ), bitαj P(j ∈ I I I i ), j ∈Htα ,

and

bitαjk P( j,k∈ I I I i ), j,k∈Htα , j≠k.

Observe that

bit 1
r

α 1

(1 bitα)

and

bitα
j∈Htα

bitαj
j,k∈Htα

j<k

bitαjk .

Thus we have reduced the problem to the calculation of To do this, let be thebitαj and bitαjk . niα

number of elements inI i Fα ,

= {n′ + 1,...,n′′}T ′ I i if niα ≤1,

= {n′ + 1,...,n′′} ,Tk if I i { f (k), gk( )}

=T ′′ T ′∼ I i .

Then with as in their original definition in Section 3.1 except thatn is replaced bypα′ (T), piα′′(T)

n′′, we have
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bitαj 1 if j ∈ I i ,

0 if j ∉ T′ ,

0 if j ∈ T′′ and niα 2,

pvj

pvα′′ (T′)
if j ∈T′′ and I i Fα { v},

pjα′′ (T′)
pα′(T′)

if j ∈ T′′ and niα 0,

and

bitαjk 1 if j,k ∈ I i ,

0 if j ∉T′ or k∉T′,

0 if j,k ∈ T′′ and niα ≥ 1,

pjk

pα′(T′)
if j,k∈T′′ and niα 0

0 if j ∈T′′, k∈ I i and niα 2

pjk

pkα′′(T′)
if j ∈ T′′ , k ∈ I i and niα 1.
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APPENDIX D: PROOF OF THEOREMS 4.1 AND 4.3

Proof of Theorem 4.1. Since by (2.10), the optimal procedure maximizes the expected number of

PSUs that are in both the initial and new samples, we must haveΩR≤Ω0.

To show that consider the formulation (3.1) - (3.3). LetΩI ≤ΩR,

(D.1)xij pi πj , i 1,...,








n
2 n 1, j 1,...,









n
2 .

(D.1) satisfies (3.2), (3.3). Since maximizes (3.1) over all such sets ofxij ’s, must be atΩR ΩR

least the expected overlap for (D.1). However, for this set ofxij ’s, we haveP(N Sj I I i ) πj

for all i,j ; that is the conditional selection probabilities equals the unconditional. Therefore, (D.1)

corresponds to independent selection of the new sample PSUs, and hence for this set ofxij ’s, (3.1)

equals Consequently,
n

i 1

pi πi . ΩI ≤ΩR.

Proof of Theorem 4.3. We will prove (b) of this Theorem. Then (a) immediately follows, since

Label theSj’s so that Letλ′≥λ . Sj I j , j 1,...,








n
2 .

δi { j: Sj I i ≠∅}, i








n
2 1,...,









n
2 n;

that is for eachi for which Ii is a singleton set, is the set of allj for which the element inIi isδi

in the pairSj. consists ofn-1 elements.δi
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Next let

(D.2)xii′ λ′pi , i 1,...,








n
2 ,

xij′
λ′pi (πj λ′pj )

2
k∈δi

(πk λ′pk )
if

k∈δi

(πk λ′pk )≠ 0,

(D.3)

= 0 otherwise, i








n
2 1,...,









n
2 n, j∈δi,

for all other i,j , (D.4)xij′ 0 i 1,...,








n
2 n 1, j 1,...,









n
2 ,

(D.5)pi pi

n
2

j 1

xij′, i 1,...,








n
2 n 1,

(D.6)πj πj

n
2 n 1

i 1

xij′, j 1,...,








n
2 ,

xij′′
pi πj

n
2

k 1

πk

, if

n
2

k 1

πk ≠ 0,

(D.7)

= 0 otherwise, i 1,...,








n
2 n 1, j 1,...,









n
2 ,

(D.8)xij xij′ xij′′, i 1,...,








n
2 n 1, j 1,...,









n
2 .

To establish Theorem 4.3(b), it suffices to show that for alli,j ; that (D.8) satisfies (3.2) andxij ≥ 0
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(3.3); and that (3.1) is at least for (D.8).λ′(2µ2 µ1/2)

To show that observe that by (D.2) - (D.4) and the definition of Hence itxij ≥ 0, xij′ ≥ 0 λ′ .

suffices to show that which by (D.7) will follow if it is established that for allixij′′ ≥ 0, pi ≥ 0

and for all j. Now by (D.2) - (D.5) and the fact that we haveπj ≥ 0 λ′≤ 1,

pi pi

n
2

j 1

xij′ pi xii′ pi λ′pi ≥ 0, i,...,








n
2 ,

pi pi
j∈δi

xij′≥ pi λ′pi /2 ≥ 0, i








n
2 1,...,









n
2 n,

and

pi pi ≥ 0, i








n
2 n 1.

To show that for allj, we first establish thatπj ≥ 0

(D.9)xij′ ≤
πj λ′pj

2
, i









n
2 1,...,









n
2 n, j∈δi .

To obtain (D.9), lets denote the single element in observe thatI i ;

λ′ 







pi
k∈δi

pk ≤ λ′ ps ≤ πs
k∈δi

πk .

hence

(D.10)λ′pi ≤
k∈δi

(πk λ′pk ).
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Then combine (D.10) with (D.3) to complete the proof of (D.9).

Then for let be the two singleton subsets ofSj. From (D.2) - (D.4), (D.6), (D.9)j 1,...,








n
2 , I i1

, I i2

we conclude

πj πj

n
2 n 1

i 1

xij′ πj (xjj′ xi1 j′ xi2 j′ )≥ 0,

and therefore for alli,j .xij ≥ 0

Next, to show that (D.8) satisfies (3.2), first observe that

n
2 n 1

i 1

pi

n
2 n 1

i 1

pi

n
2 n 1

i 1

n
2

j 1

xij′

(D.11)1

n
2 n 1

i 1

n
2

j 1

xij′

n
2

j 1

πj

n
2 n 1

i 1

n
2

j 1

xij′

n
2

j 1

πj .
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Then if combine (D.8), (D.7), (D.5) to obtain

n
2

k 1

πk≠ 0,

(D.12)

n
2

j 1

xij

n
2

j 1

(xij′ xij′′)

n
2

j 1

xij′ pi pi ,

while otherwise use the same relations and (D.11) to conclude (D.12).

To establish that (D.8) satisfies (D.3), note that by (D.11) we can substitute

in (D.7), and then proceed to establish (3.3) analogously to (3.2).

n
2 n 1

k 1

pk for

n
2

k 1

πk

Finally, to show that (3.1) is at least for (D.8), first observe that forλ′ (µ2 µ1/2)

by (D.3) if while by (D.3),i








n
2 1,...,









n
2 n,

j∈δi

xij′ λ′pi /2
k∈δi

(πk λ′pk )≠ 0,
j∈δi

xij′ λ′pi /2 0

(D.10) otherwise. We then combine this last result with (D.2) - (D.4) to conclude

n
2 n 1

i 1

n
2

j 1

cij xij ≥

n
2 n 1

i 1

n
2

j 1

cij xij′

≥ 2

n
2

i 1

xii′

n
2 n

i
n
2 1

j∈δi

xij′ 2λ′

n
2

i 1

pi
λ′
2

n
2 n

i
n
2 1

pi λ′ (2µ2 µ1/2) .

APPENDIX E: PROOF OF (4.1) - (4.3)
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Proof of (4.1). To establish the inequality we simply show that

(E.1)
m

i 1

n

j 1

cij xij ≤ .75 12ε

for any nonnegativexij ’s satisfying (2.11), (2.12), wherecij, m*, n* are as in (2.10). Note that for

this examplem*=16, n*=6. Let S1 = {1,2}, S2 = {1,3}, S3 = {1,4}, S4 = {2,3}, S5 = {2,4},

S6 = {3,4}. We establish (E.1) by considering the contributions to the left hand side of (E.1)

from j=2,3,4,5, j=6, andj=1, separately.

We first use (2.12) to obtain

(E.2)
m

i 1

cij xij ≤ 2
m

i 1

xij 2P(Sj ) 2ε, j 2,3,4,5.

Next let Sinceci6=0 if it follows from (2.11) thatD { i: 3,4 Ji ≠∅}. i ∉D,

(E.3)
m

i 1

ci6xij ≤ 2
i∈D

xi6≤ 2
i∈D

P(Ji )≤ 2(p3 p4) 4ε .

Finally, let and ThenD1 { i: 1∈Ji or 2∈Ji, but {1,2}⊄Ji} D2 { i: {1,2} ⊂Ji }.

(E.4)
m

i 1

ci1xi1
i∈D1

xi1 2
i∈D2

xi1.

Now by (2.12),

(E.5)
i∈D1

xi1
i∈D2

xi1≤ P(S1) .5,
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while by (2.11),

(E.6)
i∈D2

xi1≤
i∈D2

P(Ji ) p1 p2 .25

Then we combine (E.4) - (E.6) to obtain

(E.7)
m

i 1

ci1xi1≤ .75,

and then combine (E.2), (E.3) and (E.7) to conclude (E.1).

Proof of (4.2). The following sampling procedure for the new sample will yield the optimal

overlap for this example. When there are at least two PSUs inI, select a pair among all pairs in

I with equal probabilities; ifI is a singleton set, then select with equal probability among then-1

pairs that containI. If then select with equal probability among alln(n-1)/2 pairs inS. ByI ∅

symmetry, this procedure will yield for alli,j , as required. Furthermore, theπij 2/[n(n 1)] i<j

procedure is optimal since the expected overlap for it is which is an upper bound on2µ2 µ1, Ω0

by Theorem 4.2. In addition, for this procedure, andP(I ∅) (1 c)n µ1 nc(1 c)n 1.

Consequently, andµ2 1 [nc(1 c)n 1 (1 c)n]

Ω0 2µ2 µ1 2 [nc(1 c)n 1 2(1 c)n] .

Then (4.2) follows from this last relation with the aid of L’Hospital’s rule.

Proof of (4.3). Because are independent ofi,j for this example, and each PSU inSpi, πi, pij, πij
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was in a different initial stratum, any ordering of the pairs would yield . Therefore, we letΩR

f (k) k, k 1,...,n, gk( ) k , k 1,...,n 1, 1,...,n k.

Next, observe that forj=1,...,n, if then with certainty, while ifj ∈ I N, j ∈ I N

with probability at mostc since each PSU inS was in a different initialj ∈N∼ I , then j ∈ I N

stratum. Consequently,

(E.8)ΩR

n

j 1

P( j∈ I N)≤ c
n

j 1

P( j∈ (N∼ I ) I )
n

j 1

P( j ∈ I N)

Now

(E.9)
n

j 1

P( j ∈ (N∼ I ) I )≤
n

j 1

P( j ∈N) 2.

Therefore, if we can prove that

(E.10)lim
n→∞

n

j 1

P( j∈ I N) 0 ,

then it will follow from (E.8) - (E.10) that Since we also have (4.3)lim
n→∞

ΩR≤2c. 2c ΩI ≤ΩR,

will then follow.

To establish (E.10), observe that for the specified ordering, if and only if and at mostj ∈ I j ∈ I

one of 1,..,j-1 was inI. Consequently,

P( j ∈ I ) c(1 c) j 1 c 2(j 1)(1 c) j 2≤ j (1 c) j 2.
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Since we also have that it follows thatP( j ∈N) πj 2/n,

n

j 1

P( j ∈ I N)≤
n

j 1

min{ j (1 c) j 2, 2/n} ,

and thus we need only show that

(E.11)lim
n→∞

n

j 1

min { j (1 c) j 2, 2/n} 0.

Let denote the largest integerj in {1,...,n} for which If no such j exists,τ (n) j (1 c) j 2≥ 2/n.

let Thenτ (n) 0.

(E.12)lim
n→∞

n

j 1

min{ j (1 c)j 2, 2/n} ≤ 2 lim
n→∞

τ (n)
n

lim
n→∞

n

j τ (n) 1

j(1 c) j 2,

and hence it suffices to show that the two limits on the right hand side of (E.12) are 0.

To compute the first limit, note that if thenτ(n)>0

(E.13)n(1 c)τ (n) 2≥ τ(n) (1 c)τ(n) 2≥ 2/n,

and hence

τ (n)≤ log 2 2 logn
log(1 c)

2.

Consequently, by L’Hospital’s rule,
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lim
n→∞

τ(n)
n

≤ lim
n→∞









log2 2 logn
n log (1 c)

2
n

0.

To demonstrate that the second limit in (E.12) is 0, observe that since

lim
n→∞

n

j τ (n) 1

j(1 c) j 2≤ lim
n→∞

∞

j τ(n) 1

j (1 c) j 2,

it suffices to prove that is a convergent series and The series is
∞

j 1

j(1 c) j 2 lim
n→∞

τ(n) ∞.

convergent since it is an arithmetic-geometric series which is known to converge because

. To prove that note that either or1 c <1 lim
n→∞

τ (n) ∞, τ(n) n

Conseqently,(1 c)τ(n)< (τ (n) 1) (1 c)τ (n) 1<2/n. lim
n→∞

τ (n)≥ lim
n→∞

min







n, log2 logn
log(1 c)

∞.

Thus, (4.3) is proven.
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