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Abstract 

(1970 
This paper compares seasonal ARIMA models as presented in Box and Jenkins 

I mode s 
with ARIMA component (structural) models as presented in Harvey (1989). Both 
are augmented as appropriate with the same regression variables to account for 

calendar effects, level shifts, and additive outliers. The models are compared on a set of 40 
Census Bureau monthly time series in regard to fit using AIC and related statistics. Bell 
and Pu h (1990) made similar comparisons of ARIMA models with the basic structural 
model BSM). This paper extends their work by also considering ARIMA component k 
models with trigonometric seasonal components. For the 40 time series considered, AIC 
and the other model comparison statistics express a strong overall preference for the 
ARIMA models over the ARIMA component models. 
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1. Introduction 

Two popular models for seasonal time series are multiplicative seasonal ARIMA 

(autoregressive-integrated-moving average) models (Box and Jenkins 1970) and ARIMA 

component (structural) models (Harvey 1989). Despite the rising popularity of ARIMA 

component models in the time series literature of recent years, empirical studies comparing 

these models with seasonal ARIMA models have been relatively rare. One exception is 

Bell and Pugh (1990), hereafter BP, which compared seasonal ARIMA models and the 

basic structural model (BSM) of Harvey and Todd (1983) on a set of 45 time series. The 

present paper extends the work of BP to include empirical comparisons of seasonal ARIMA 

- models with ARIMA component models that use the trigonometric seasonal models of 

Harvey (1989). 
* 
Section 2 briefly reviews some relevant literature. The specific models to be 

compared are then presented in section 3. Section 4 discusses the data used and section 5 

presents the empirical comparisons of model fit. Section 6 discusses the results. 

2. Previous Work 

BP compared seasonal ARIMA models with the BSM on a set of 44 monthly time 

series from the Census Bureau and one from the Bureau of Labor Statistics. AIC (Akaike 

1973) was used to compare model fit, and showed strong differences in favor of the ARIMA 

models. Essentially similar results were obtained when the individually selected ARIMA 

models were replaced by the single “airline model” of Box and Jenkins (1970). For a few 

time series BP also examined use of ARIMA models versus the BSM for signal extraction 

in seasonal adjustment and in repeated survey estimation. For the few series considered 

the signal extraction point estimates were very similar under the two alternative models, 

but signal extraction variances differed. 

Findley (1990) followed up BP’s study on 40 of their time series, using a new 
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graphical diagnostic and a robust test statistic to compare the ARIMA models and the 

BSM. These approaches to model comparison make very mild assumptions - e.g., the 

“correct” model is not assumed to be included in either model class being compared, and 

invertibility is not assumed for the time series models. For this reason, it is not unusual 

for these procedures to be inconclusive, which was the case for about half the 40 series. For 

the remaining series, however, the procedures expressed a general preference for the 

ARIMA models, confirming BP’s results. 

BP give a few additional references that make some comparisons (either theoretical 

or empirical for a small set of time series) between ARIMA and ARIMA component 

“models. Some additional comparisons are given by Harvey (1989) and by Garcia-Ferrer 

and de1 Hoyo (1992). Also, a recent paper by Bruce and Jurke (1992) applies 
* 

non-Gaussian versions of the ARIMA component models (the BSM and trigonometric 

seasonal models) to 29 Census Bureau time series fit by the MING (mixture-based 

non-Gaussian) program. Bruce and Jurke provide AIC comparisons among the various 

component models that will be mentioned in section 5. They also fit ARIMA models to the 

series, but these were used only for forecast extension in seasonal adjustment by the X-11 

method, as the main focus of their paper was to compare these seasonal adjustments with 

those from the MING program. 

3. ARIMA and ARIMA Comnonent Models 

Let Yt for t=l,..., n be observations on a time series, which in this paper will always 

be the logarithms of an original time series. Let 

Yt = x;p + Zt (34 

where xi@ is a linear regression mean function and Zt is the (zero mean) stochastic part of 
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Yt. The regression variables used here will be to account for, as appropriate, trading-day 

and Easter holiday variation (Bell and Hillmer 1983), as well as any detected additive 

outliers (see Chang, Tiao, and Chen 1988) and level shifts (see Bell 1983). For each time 

series considered here the same set of regression variables xt will be used for all the 

different models for Zt to be compared. 

The ARIMA models to be used for Zt can all be written in the form 

#(B)(l - B)(l - B12)Zt = B(B)(l - o12B12)at (3.2) 

*where B is the backshift operator (BZt = ZtB1), $(B) = 1 - #lB - ... - r$pBP and B(B) = 

1 - 02 - .a. - $Bq are nonseasonal AR and MA operators, and at is white noise (i.i.d. 

N(0, 0:)). Using the same seasonal part of the model (the 1 - B12 and 1 - B12B12) for all 

series may seem restrictive, but, in fact, other seasonal forms are rarely chosen for the type 

of series used here. The exception that sometimes occurs is the use of fixed seasonal effects 

(seasonal dummy regression variables in x,), but this is equivalent to the model (3.2) with 

e12 = 1 (Bell 1987). Notice also that the differencing in (3.2), (1 - B)(l - B12), will be the 

same for all series. Again this can be questioned, but it is the most common choice of 

differencing employed in practice, and (1 - B)( 1 - B12) is the differencing operator implied 

by use of the ARIMA component models to be considered for Zt. Using the same 

differencing operator for all models being compared on a given series is necessary for the 

model comparison statistics used here (AIC, bias-corrected AIC, Hannan-Quinn, and BIC) 

to be valid. 

The particular seasonal ARIMA model known as the “airline model” (Box and 

Jenkins 1970, sec. 9.2) is 

(1 - B)(l - B12) Zt = (l- 0 B)(l-8 1 12 B12) a t’ P-3) 
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This model is very commonly used and so will be considered here as a default choice of an 

ARIMA model, i.e., the ARIMA model that might be used if only one ARIMA model were 

to be used for all the time series being modelled. 

The ARIMA component models considered are discussed by Harvey (1989). They 

begin with a seasonal + trend + irregular decomposition for Zt: 

Zt 
= St + Tt + It . (34 

* The models for the trend and irregular components are always the following: 

(1 - B)2Tt = (1 - qB)bt bt - i.i.d. N(0, c:) (3.5) 

It - i.i.d. N(0, 0:) . 

Harvey (1989) actually uses an alternative parameterization to (3.5) that is equivalent 

except that it implies 7 2 0. For the series modelled here 7 is always estimated to be 

positive (often equal or close to l), so the restriction is always satisfied. If 71 were ever 

estimated to be negative for a series, this might lead one to question the trend model as 

formulated by Harvey (1989) for that series. 

The three different component models to be used here differ only in terms of their 

models for the seasonal component St. These models for St, and the associated models for 

Zt obtained by combining them with (3.4) - (3.6), will be referred to as the BSM (after 

Harvey and Todd 1983), and the TRIG-1 and TRIG-6 models (a name given by Bruce and 

Jurke (1992) to the non-Gaussian versions). The three models for St can be written in 

ARIMA component form as follows: 
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BSM: (l+B + . . . + B’l)S, = &t ct - i.i.d. N(0, 0:) (3.7) 

TRIG-6: St= is. ) 
j = 1 Jt 

6j(B)Sjt = (l-orjB) Ejt, &jt - i.i.d. N(0’ gi) (3.8) 

TRIG-l: TRIG-6 with the restriction vl = a.. = v6 (discussed below). W) 

Details of the TRIG-6 and TRIG-l models are given in Table 1. The “differencing” 

. operators 6j(B) each correspond to a factor of 1 + B + ... + B1’ at a different seasonal 

6 
frequency Xj = 2rj/12 (j = 1, . . . , 6). Thus, II 6j(B) = 1 + B + *a* + B”. Notice also 

that 1: B12 

j=l 

= (1 -B)(l + B + ... + Bll), so that the differencing operator for Zt implied 

by the BSM, TRIG-l, and TRIG-6 models is, from (3.5) and (3.7) - (3.9), 

(l- B)2(1 + B + ... + B’l) = (1 - B)(l - B12). In (3.9) the vj denote the innovation 

variances in Harvey’s formulation of the model for the S. 
Jt ’ 

These determine the innovation 

2 variances Q. = 

(1 + *$f+J 

Var(Ejt) in the ARIMA representation (3.8) through the relations 2vj = 

From the ~j values in Table l.a, the TRIG-l restriction vl = ... = v6 

restricts the g2 as follows: a? = 1.5~; for j = 
J J 

1, 5; 0: = (1 + a/2)0; z 1.8660: for 

j= 2, 4; and CT: = 2g;. 

Harvey’s (1989, pp. 42-43) formulation of the models for the TRIG4 seasonal 

components Sjt uses a bivariate model for [Sjt, STt]‘, where S5t, “appears as a matter of 

construction,” and so is not actually needed in the St model. Starting from this bivariate 

model, it is then straightforward to derive the ARIMA representations of the univariate 

models for the S. as given in Table l.a, as well as the variance relation 2v. = (1 + c$$. 
Jt J 

The ARIMA representation for the TRIG-l model for St is obtained by applying U(B) = 

l+B+ .a. + B1’ to the TRIG-6 equation (3.8), giving 
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U(B)S, = i [U(B)/Gj(B)I(l - "jB) Ejt* 
The right hand side of this equation is the sum of 

6 independent MA(lO) processes, which is itself then an MA(lO) process. Using the 

TRIG-l restriction on the gf, the autocovariances through lag 10 of U(B)S, can be 

obtained up to a constant of proportionality. The resulting autocovariance generating 

function for U(B)S, can then be factored to give the MA(lO) representation given in Table 

1.b. The unknown constant of proportionality is absorbed into the innovation variance c:, 

which is the one seasonal parameter to be estimated in the TRIG-l model. 

Hannan (1970, p. 174) suggests the following model for a stochastic seasonal 

component: . 

St = 
* 

j~lL7jtCOS(Aj') + CjtsinCAjt)l 

(1 -B) ~jt = ~jt Ijt - i.i.d. N(0, vj) j = 1, . . . , 6 (3.10) 

(1 - B) Cjt = tTt tjt - i.i.d. N(0, vj) j = 1, . . . , 5 

where the ~jt and [it series are independent of each other for all j, k = 1, . . . . 6. Notice 

that sin( A6t) = 0 for all t, so this term drops out of St. Using standard trigonometric 

identities, it can be shown (after tedious manipulation) that the models for Tjtcos(Xjt) + 

<jtsin(Xjt) implied by (3.10) are equivalent to those for the Sjt in (3.8), up to 

multiplication of the vector of innovations [[. <? 
Jt’ Jt 

1’ by an orthogonal 2x2 matrix. 

Therefore, Hannan’s seasonal model and Harvey’s TRIG-6 seasonal model are the same in 

the Gaussian case considered here, and they are also the same when the innovations follow 

a mixture-of-normals distribution as in Bruce and Jurke (1992). 

Haywood and Wilson (1992) suggest a generalization of Harvey’s formulation of the 

TRIG-6 model. Without going into details, their generalization still implies that 

Q’ *** , Sgt follow the nonstationary ARMA(2,l) models given in (3.8). The effect of the 

generalization is to turn al, . . . , o5 into parameters to be estimated. (This includes 03, 
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which is constrained to 0 in Harvey’s formulation. Also, note that the model for Sgt is 

unchanged.) For the 40 time series used in this paper, however, this more general model 

was found to fit uniformly worse (as measured by AIC) than the standard TRIG-6 model. 

For this reason, the Haywood-Wilson model will not be considered further here. 

The TRIG* model can also be written in an alternative “canonical” form, along the 

lines that BP developed a canonical version of the BSM. Details are available from the 

author on request. This canonical form provides an equivalent model for the observed 

series Yt (at least for the Gaussian case), while transferring as much white noise as possible 

from the individual seasonal components Sjt to the irregular It. This is in the spirit of the 

-approach to seasonal decomposition developed by Burman (1980) and Hillmer and Tiao 

(1982) for AROMA models. A canonical form of the TRIG-l model can also be developed 

from tie TRIG-6 model under the restriction vl = ..a = v& BP found the canonical BSM 

to be nearly identical to the original BSM, but such is not the case for the TRIG-6 and 

TRIG-l models. Thus, use of the canonical form has potential consequences for seasonal 

adjustment, although for the one example I have examined so far, seasonal adjustment 

results from the original and canonical TRIG-6 models have been essentially the same. 

BP review some alternative ARIMA component models that have been proposed. 

One such model involves augmenting the BSM with a fourth component to account for 

possible cyclical behavior (Harvey 1985). BP encountered severe numerical problems in 

trying to fit such models, and so did not report results for them. Since that writing I have 

been successful in fitting these models with the fourth component following an AR(2) 

model. The augmenting of the BSM with this fourth component did nothing to improve its 

performance relative to the ARIMA models for the series considered in BP. In fact, for 

about 3/4 of the series the innovation variance of the fourth component was estimated to 

be essentially zero, indicating that the fourth component was not really present anyway. 

(Harvey (1985) also found little evidence of cyclical components in the 5 U.S. postwar 
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economic time series he analyzed, though he found more evidence of cycles in the prewar 

data.) Given these results, models with a fourth cycle component will not be considered in 

this paper. 

4. Data 

The ARIMA and ARIMA component models will be compared using a set of 40 

monthly time series that are broadly representative of the time series that are seasonally 

adjusted by the Census Bureau. 27 of these series were also used in BP, although the time 

frames of the actual data used here are different. The time frames used here are those of 

- Kramer, Bell, and Koreisha (1993), and yield n = 200 observations for each series. 

Space constraints prevent my giving further information on the data here. Details on 

the dlta series are available on request. 

5. Emnirical Results 

The ARIMA and the ARIMA component models (BSM, TRIG-l, and TRIG-6) were 

fit to the 40 time series by maximum likelihood using the REGCMPNT computer program 

developed by the time series staff of the Census Bureau. The likelihood function is defined 

as the joint density of the differenced data: (1 - B)(l - B12)Yt for t = 14, . . . , n. 

REGCMPNT evaluates the likelihood using the Kalman filter initialized as described in 

Bell and Hillmer (1991). The fit of the various models will be compared here in terms of 

various commonly used model selection criteria. These are AIC (Akaike 1973); AIC,, a 

bias corrected version of AIC (Hurvich and Tsai 1989); HQ (Hannan and Quinn 1979); and 

BIC (Schwarz 1978). If t denotes the value of the log-likelihood evaluated at the 

maximum likelihood parameter estimates for a given model, and m is the number of 

parameters in the model, then the criteria are defined as follows, using n - 13 (= 187) as 

the number of observations of the differenced data. 



AIC = -2l!, + 2m 

AIC, = -2L + 2m/[l- (m+l)/(n-13)] 

HQ = -2L + 2m [log(log(n-13))] 

BIC = -2i + [log(n-13)] m . 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

* When comparing models for a given time series using any of the criteria (5.1) - (5.4), the 

model giving the smallest value of the criterion being used is the preferred model. * 

The criteria (5.1) - (5.4) differ in regard to the “penalty terms” added to -2i. Since 

the BSM and TRIG-l models have the same number of parameters (4 plus the number of 

regression parameters), and the ARIMA models chosen generally have a similar number of 

parameters (e.g., the airline model contributes 3 parameters in addition to the regression 

parameters), the use of different criteria matters most in comparisons involving the 

TRIG-6 model (which has 9 parameters in addition to the regression parameters). 

Therefore, BP’s comparisons of ARIMA models with the BSM would have come out 

essentially the same if one of the other three model selection criteria had been used. 

The particular ARIMA models used here are those I selected for a study comparing 

alternative approaches to ARIMA model selection (Kramer, Bell, and Koreisha 1993). 

These selections were based on examination of sample autocorrelations and partial 

autocorrelations of (1 - B)(l - B12)[Yt - C’~ixit], where B/B includes trading-day and 
i i 

ixit 

Easter holiday regression variables when appropriate, but not outlier terms, which are not 

available at the model identification stage. The 4 are obtained by ordinary least squares 

regression of (1 - B)( 1 - B12)Yt on the (1 - B)( 1 - B12)xit. The other judgemental 
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ARIMA model selections reported in Kramer, Bell, and Koreisha (1993) produced, on 

average, comparable AIC values. Therefore, the empirical results presented here might be 

regarded as representative in regard to the performance of ARIMA models. 

Table 2.a presents a summary of the AIC differences over the 40 time series for each 

pair of models considered. The first 3 lines of the table show the results comparing the 

ARIMA and ARIMA component models. Positive values favor the ARIMA models; 

negative values favor the ARIMA component models. AIC expresses a strong preference 

overall for the ARIMA models: only a few of the AIC differences in these comparisons are 

negative, and those that are negative are almost all small to moderate in magnitude (< 8), 

* while most of the AIC differences are positive, and many of these positive differences are 

large f> 8). 

The middle 3 lines of Table 2.a present comparisons of the ARIMA component 

models with each other. The median AIC differences are small for the two comparisons 

involving the BSM, and there is a median AIC difference of 3.2 slightly favoring the 

TRIG-l over the TRIG-6 model. However, the presence of negative values large in 

magnitude in all of these comparisons shows that sometimes the BSM fits quite poorly in 

comparison with the TRIG-l and TRIG-6 models, as can the TRIG-l in comparison to 

the TRIG-6. Thus, the TRIG-l and TRIG-6 models appear definitely favored over the 

BSM, while the choice between the TRIG-l and TRIG-6 models is less clear. In general, 

having the 6 different seasonal variance parameters of the TRIG4 model sometimes is 

unnecessary, but occasionally this achieves a major improvement in model fit over the 

TRIG-l model (as measured by AIC). 

Bruce and Jurke (1992) report AIC’s for the non-Gaussian versions of the BSM, 

TRIG-l, and TRIG-6 models as fitted by the MING program to 29 of the 40 series 

considered here. Their results would not be expected to be the same as those reported here 

because of the non-Gaussian fitting, and because Bruce and Jurke used different time 
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frames of the series. Still, the AIC relationships for their non-Gaussian BSM, TRIG-l, 

and TRIG-6 models are similar to those found here for most of the series they consider, 

although there are some notable exceptions. 

The final four lines in Table 2.a compare the fit of the four models already considered 

(ARIMA, BSM, TRIG-l, and TRIGd) with the airline model (3.3). As in BP, these 

comparisons are presented to check the possibility of selection bias favoring the ARIMA 

model. (The particular ARIMA models chosen were not chosen to minimize AIC, but the 

usual identification procedures could have a similar effect.) The first of these lines 

compares the airline model with the selected ARIMA models. The median AIC difference 

* is 0; in fact, 14 of the 40 selected ARIMA models were the airline model. Aside from this, 

the results are as would be expected: almost all the nonzero AIC differences are negative, 

indicating that selection of a particular ARIMA model for each series improved model fit 

as measured by AIC. There are a few exceptions where the airline model comes out 

slightly favored, but what is more important is the occurrence of some negative AIC 

differences that are large in magnitude, indicating that for a few series the airline model 

provided poor fits. Two of these series are responsible for the large-in-magnitude negative 

AIC differences in the final three lines of Table 2.a, indicating a strong preference for the 

ARIMA component models over the airline model for these two series. Apart from these 

two series, the results are not very different from the results of the ARIMA and ARIMA 

component model comparisons. On balance, AIC expresses a strong preference for the 

airline model over the ARIMA component models. 

As expected, the effects of using one of the model comparison statistics other than 

AIC is very slight for comparisons that do not involve the TRIG4 model. The effect of 

using the bias corrected AIC (AIC,) is to make the TRIG-6 model look slightly worse 

relative to the other models. The effect of using HQ or BIC, however, is to make the 

TRIG-6 model look dramatically worse relative to the other models. This is seen by 



12 

comparing the results in Tables 2.a and 2.b that summarize AIC and HQ differences 

involving the TRIG-6 model. The effects in going to the BIC are even more dramatic. 

This effect is, of course, due to the penalty terms. The increases in the HQ and BIC 

penalty terms for the TRIG-6 model versus the BSM or TRIG-l models are: 

HQ : penalty increase = 2{log[log(187)]}(9 - 4) = 16.5 

BIC : penalty increase = [log(187)](9 - 4) = 26.2 a 

- 6. Discussion 

The results presented here provide further evidence to that in BP and Findley (1990) 

of the*superiority of ARIMA models to the BSM. Actually, for the 27 of the 40 series used 

here that were used in BP, albeit over different time frames, the ARIMA-BSM 

comparisons reported here are best interpreted as confirming the findings of BP with a 

more controlled study of almost the same data. What is both new and important in this 

paper is that the results also show marked superiority of the ARIMA models (and the 

airline model) over the TRIG-l and TRIG-6 models for the series considered. Thus, in 

general, it appears that all the ARIMA component (structural) models tend to provide a 

poor fit to the sort of time series seasonally adjusted by the Census Bureau. 

BP noted that the BSM is much more difficult to fit than ARIMA models. In 

performing this study I have further found the TRIG-6 model to be even more difficult to 

fit than the BSM. The TRIG-l model is also more difficult to fit than the BSM, though 

not so difficult to fit as the TRIG-6 model. One problem that arises in fitting all the 

ARIMA component models occurs when the maximum likelihood estimate (MLE) of 77 in 

(3.5) is 1, something that occurs fairly frequently. Another problem that surfaces with the 

TRIG-6 model occurs when the MLE of one or more of the 6 seasonal variance parameters 
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is essentially 0. This is also not an infrequent occurrence. The need to estimate 

parameters at such boundary values poses rather difficult numerical problems for nonlinear 

optimization algorithms. The same sort of difficulty arises with the ARIMA model (3.2) 
. 

when g12 = 1. This occurs occasionally, but much less frequently than the analogous 

problems for the ARIMA component models. It also appears that, for all the ARIMA 

component models, the likelihood is rather flat in certain directions in the parameter space. 

Given this, I find the oft-claimed advantages of simplicity and interpretability for ARIMA 

component models difficult to accept. 

. 
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Table 1 

a. ARlMA Representations for the Individual TRIG-6 !Zeasonal Components 

6 
TRIG-6 Seasonal Model: St = C S. 

1 Jt 

[l - 2 cos(Xj)B + B2] Sjt = (1 - “jB) &jt j = 1, *** 9 5 (‘j = 2r.i/12) 

(l + B, ‘gt = &(jt Ejt - i.i.d. N(0, CT!) j = 1, . . . , 6 

“Differencing” MA 
Operator Operator 

l-&B+B2 1 - (@/3)B 
1-B+B2 1 - (2-,@B 

1 +B2 1 

l+B+B2 1+ (24)B 

1+ p+ +BB2 1 + ywP 

b. ARIMA Representation of the TRIG-1 Seasonal Component 

(1 + B + *** + B”) St = (1 - alB - ... - ctlOB1’) ct ct - i.i.d. N(0, CT:) 

a1 = -.737378 9 = -.627978 ct3 = -.430368 cr4 = -.360770 

a5 = -.219736 a6 = -.180929 (u7 = -.088488 a8 = -.071423 

cl9 = -.020306 “10 = -.016083 
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Table 2 

a. AIC Comparisons 

(-oo,-30 
P,--2) 

k-2,21 
BSM-ARIMA 0 0 0 1 

TRIGl-ARIMA 0 0 1: 
TRIGG-ARIMA 0 i 2 : 2 

TRIGl-BSM 
TRIGG-BSM Fi x i: x 

23 
4 

TRIGG-TRIG1 0 2 4 6 6 

WARIMA-Airline 1 3 2 24* 
BSM-Airline 1 1 1 x 10 

TRIGl-Airline 1 1 14 
TRIGfi-Airline 1 : 1 s 2 

PA 

12 
14 
13 

2 
12 
19 

3 
11 
15 
13 

b. Hannan-Quinn (HQ) Comparisons 

(-q-30 
-3O,-16 

I 1 -16,-8) 
P,-2) 

[-WI 
cul 

BSM-ARIMA 0 
i i 

2 4 15 
TRIGl-AR.IMA 0 
TRIGG-ARIMA 0 0 0 ii i 

19 
2 

TRIGl-BSM 0 5 23 2 
TRIGG-BSM 
TRIGG-TRIG1 

ii 
ii 

: 47 
1 3 i 8’ 

ARIMA-Airline 1 2 11 21* 4 
BSM-Airline ; 

TRIGl-Airline : : 0 : : 8; 
TRIGG-Airline 0 1 1 1 2 2 

w31 
(16,301 

(3OF) 

7 

2: 
: 

2 

2 i 

ii i i 
3 0 0 

: 6 0 0 2 

5 2 17 1 i!i 

@,W 
(16,301 

(3Ow) 

8 2 
10 : 1 
15 19 1 

0 

ii 
x 8 
0 0 

ii 
!: 

0 
2 

4 3 1 
15 17 1 

* 14 of the AIC and HQ differences are exactly 0 because 14 of the selected ARTMA models 
are the airline model. 


