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S-Y 

TTme series containing abrupt structural shifts or outliers or both are 

considered. Techniques are developed for handling these using mixtures of 

densities, one component of which is a Gaussian density with a large variance. 

State space models are fitted to the series. The state vectors are estimated 

by the mode of their posterior density given the observations. The mode is 

found by Gauss-Newton iteration using Kalman filtering and smoothing. Three 

approximations to the likelihood function for estimating the hyperparameters 

are given. The techniques are illustrated by applying them to simulated and 

real series. The treatment is extended to deal with heavy-tailed densities. 

Key words: Kalman filter; level shifts; mixtures of densities; outliers; 

robustification; seasonal; smoothing; state space models; time series; trend. 
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1. Introduction 

The object of this paper is to develop methods for dealing with 

outliers, structural shifts and heavy-tailed distributions in time series 

analysis. The state space model we use is very general and covers a wide range 

of applications including ARIMA models and spline smoothing. However, our main 

focus is on structural time series models in which the observed series is made 

up of trend, seasonal and irregular. Although we set out to devise tools that 

have general application, we were particularly anxious that our techniques 

should be applicable to monthly time series, partly because we hope that our 

mthods will prove useful in the development of model-based techniques of 

seasonal adjustment for which automatic or nearly automatic means of handling 

outliers and structural shifts are essential. 

Our basic tool is a mixture of densities in which structural shifts and 

outliers are allowed for by including in the model Gaussian components with 

large variances. The remaining densities can be Gaussian or they can be non- 

Gaussian such as Student's t. Given a sample of observations our object is to 

estimate the state vector. Since we wish the methods to apply to monthly time 

series the state transition matrices will be quite large, at least 13x13, so 

techniques based on numerical integration, such as that of Kitagawa (19871, 

are impractical. Our approach is to consider the posterior density of the 

series of state vectors given the observations and to estimate the state by 

the mode of this density. Our estimates can therefore be regarded as Bayes 

estimates. We use the mode rather than the mean because it is not feasible to 

use the mean. The mode is found by modified Gauss-Newton iteration using a 

Kalman filter and smoother at each step. Hyperparameters are estimated by 

approximate maximum likelihood. 



. 

There is a huge literature on state-space modelling with non-Gaussian 

data, going back more than twenty years. Some of the early work is reviewed in 

Chapter 8 of Anderson and Moore's (1979) text book. Key references are Alspach 

and Sorensen (1972) who introduced approximating by Gaussian mixture densities 

for filtering and Masreliez (1975) who gave filtering formulae when either the 

observation noise or the state noise is non-Gaussian. Good reviews of earlier 

work are given in Kitagawa (1987) and in the discussion of this paper, 

particularly in the extensive comments of Martin and Raftery (1987). Gaussian 

mixtures were used by Harrison and Stevens (1971,1976) under the name multi- 

process models for the treatment of a variety of problems including non- 

Gaussian data; see also Harrison and West (19891, Chapter 12. Pef;a and Guttman 

(1989) robustify the Kalman filter by Gaussian mixtures and give useful 

references to previous work. 

Much of the work referred to above deals only with filtering. The most 

comprehensive treatment of both filtering and smoothing by Gaussian mixtures 

is by Kitagawa (1989,1991). At each updating step he takes a Gaussian mixture 

as the prior state density and then updates exactly to obtain a Gaussian 

mixture for the posterior. However, if this process were to be continued 

unmodified the number of components in the mixture would increase 

exponentially and so would rapidly become unmanageable. Consequently he 

"collapses" the posterior into a mixture of a smaller number of components at 

each update using the Kullback-Leibler distance for each pair of components as 

his criterion for collapsing. This is computationally time-consuming since 

many comparisons must be made at each update. 

A different approach to handling outliers and level shifts has been 

developed by the time series section of the Statistics Research Division of 
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the US Bureau of the Census as part of the X-12 seasonal adjustment procedure 

(see, for example, Bell (1983) for an early version of the method and Bruce 

and Jurke (1992) for discussion of later developments). They define regressors 

xs for handling outliers and ws for handling level shifts, where 

xs = 1, s=t and=O, s = t, 

us = 0, set and = 1, s = t, 

and then fit ARIMA models with these considered as explanatory variables as t 

varies over l,...,n. They have devised an automatic procedure for deciding 

when an outlier or level shift has occurred. While the method seems to be 

efective and robust we believe it lacks the direct elegance of our approach. 

The feature which differentiates our approach from all these 

contributions is that, as far as we are aware, none of the other work uses 

posterior mode estimation. The most time-consuming part of our procedure is 

hyperparameter estimation, which has to be done by any method aiming at a 

complete solution; apart from this our method is very fast and is normally 

implemented in about five seconds on our Unix machine (21 mips) for a seasonal 

series of around 250 observations.. 

In the next section we present the basic theory for the mixture method 

for both the case where the main density is Gaussian and the case where it is 

non-Gaussian. Section 3 gives three different approximations to the likelihood 

function for use in hyperparameter estimation. In section 4 we give three 

alternatives for modelling heavy-tailed densities using posterior mode 

estimation. Section 5 discusses some further aspects of the implementation of 

the theory. In section 6 the theory is illustrated by applying it to simulated 

and real time series. 
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2. Dealing with structural shifts and outliers by means 

of mixtures 

The state space model we consider has the form 

Yt = Ztat + ct, t=l,...,n (la) 

at+1 = Ttat + Gr)t, t=O,...,n (lb) 

where yt is a pxl observational vector, at is an mxl unobserved state vector 

and Zt, Tt and G are non-stochastic matrices. We assume that et and qt are 

white noise series independent of each other with non-singular densities, and 

that Toao = al where, in theoretical work, al will normally be treated as 

f&xed and known, whereas in applications it will normally be treated as 

diffuse or as an unknown vector to be estimated. 

Our objective is to estimate al,...an when the observations yt contain 

outliers and the state at has structural shifts such as abrupt changes of 

level or slope of trend. We allow for structural shifts and outliers by using 

as our models for state and observation errors mixtures of densities which 

include Gaussian components with large variances. Denoting the set of 

observations yl,...,yt by Yt, we adopt as our state estimates the posterior 

mode estimates (PME's) of al,...,an given Y,, that is, the estimates obtained 

by maximising the posterior density of al,...,an given Y,. Since this density 

is just the joint density of al,...,an and Y, divided by the marginal density 

Of Yn, and since this latter density does not depend on the a's, we can obtain 

the PME's by maximising the joint density. These estimates are intuitively 

appealing. They can be thought of as analogues for random parameters of 

maximum likelihood estimates for fixed parameters. They can also be regarded 

as Bayes estimates that are obtained by taking the mode of the posterior 

distribution instead of the mean when, as for the problems considered in this 
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paper, calculating the mean is impractical. PME's have been considered for 

related problems by Whittle (19911, Fahmeir and Kaufmann (19911, Fahmeir 

(1992) and Durbin and Koopman (1993). 

We assume that p(ytlal,...,q,Yt-1) = P(Yt Iat) and that 

p(at+llq,...,a1,Yt) = p(q+llat). In general the densities of ct and r)t, and 

possibly the matrices Zt and Tt also, will depend on an unknown hyperparameter 

vector I), but for the development of the theory in this section we shall 

assume that JI is known, deferring the estimation of II, until section 3. 

The main reason for the inclusion of the matrix G in (lb) is that some 

CC the constituent relations in (lb) may be identities. The function of G is 

then to select those relations that have non-degenerate error terms. We 

therefore confine ourselves to the case where G is the identity matrix I, or 

the columns of G are a subset of the columns of I,. Thus G'G = I, where r is 

the number of non-degenerate error terms in (lb) and r)t = G'(at+i - Ttat). 

Returning to the problem of dealing with outliers and structural shifts, 

we shall show that the following simple device is remarkably effective in 

handling both problems. Let x be a component of ct or nt and suppose that the 

density of x in the absence of outliers or structural shifts is f(x,&) where 

o2 is the variance of x. Then take the density of x with allowance for 

outliers and shifts to be the mixture 

Cl-/31f(x,& + ,f3 N(0,A2&) (2) 

where ,8 is a pre-assigned small number and A2 is a pre-assigned large number. 

The results are relatively insensitive to the values 6 and A2; we have found 

values B = 0.01 and A2 = 100 to be effective. For simplicity we have 

considered here a mixture of two components only; later we present a general 

theory for an arbitrary number of components. 
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Before treating the general mixture model let us consider from the PME 

point of view the classical Gaussian model where ct - N(O,Ht) and r/t - 

N(O,Qt), with Ht and Qt positive-definite, since this provides the basis for 

our treatment of the general case. The density of al,...,at+l,yl,...,yt is 

pt(al,...,at+l,Yl,...,yt) where, apart from irrelevant constants, 

log pt = -1 2 sio(aS+l-T sas)'GQ~lG'~as+~-Tsas~ 
= 

- i s~l~ys-ZsasI.H;'~ys-Zsas~. (31 
= 

Note that Var(as+l-Tsas) = Var(G7),) = GQ,G' and that this and GQ,'G' are 

Mgore-Penrose generalised inverses of each other (see, for example, Rao (1973) 

section lb.51. 

The PME's of al,... ,at+l given Yt are obtained by differentiating (31 

with respect to al,...,at+l and equating to zero. This gives 

-GQ,~~G'(aS-T s-las-ll+T~GQslG'(as+l -Tsas)+Z~H~l~ys-Zsasl=O (4a) 

for s = l,..., t together with 

GQi'G' (at+1 - Ttat) = 0. (4b) 

Since the conditional distribution of al,...,at+l given Yt is Gaussian, its 

conditional mode is equal to its conditional mean, Thus the PME of as given Yt 

is equal to E(a,lYt), s = l,...,t+l. 

Let at = E(atlYt-11, Pt = Var(atlYt-11, vt = Yt-Ztat, 

Ft = E(vtv;) = ZtPtZ; + Ht and Kt = TtPtZ;Fil. It is well known that at+1 can 

be calculated recursively by the Kalman filter, which can be written in the 

form 

at+1 = Ttat + Ktvt (Sal 

Pt+1 = TtPtCTt-KtZtI' + GQtG' (5b) 

for t = l,...,n. (See, for example, Harvey (1989)(3.2.4)1. 
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Let it = E(atlY,). Then Gt is called the smoothed value of at and can be 

calculated by a variety of smoothers including those of Anderson and Moore 

(19791, Chapter 7, de Jong (1989) and Koopman (1992). The most convenient for 

our purpose is Koopman's since it is the fastest. It is calculated by the 

forwards recursion 

(61 
A 

at+1 = Tt&t + GGt, t = O,...,n-1 

where it = E(qtlYn) and is given by 

fit = QtG'rt, t = n,...,O (71 

where rt can be calculated by the backwards recursion 

* 
't-1 = ZiF;'vt + L;rt, t = n,...,l (8) 

with rn = 0 and Lt = Tt - KtZt. Relations (7) and (81 can be obtained by a 

slight modification to allow for the inclusion of G of the derivation given in 

section 3 of Durbin and Koopman (19931. 

We now investigate methods of filtering and smoothing for model (11 when 

h&t) = F Pihit( (9) 
i=l 

ct has the mixture density 

and T)t has the mixture density 

qtht) = i aiqit(V,t), 3i 2 0, i aj, = 1, (10) 
i=l i=l 

where hit and qit are suitable densities. We shall begin by supposing that 

all the component densities are Gaussian with hit - N(O,Hit), qit - N(O,Qit). 

The density of al,...,at+l,Yt is pt(ai,...,yt) where, apart from constants, 

1% Pt = ; log qs( s) 
t 

+ 1 log hS(cS) 
s=o s=l 

with vs = G'(as+l-T,a,), cS = ys-Z,a,. Differentiating with respect to 

al,...,q+l, equating to zero and using (9) and (10) gives 
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for s = l,..., t together with 

&;lG'(at+l - Ttat) = 0, (lib) 

where 

--1 
Qs = 

1 
i Siqis(ss)QTi, (12a) 

qs(Vs) i=l 

--1 
H, = h ic ) i Bihis(cs)H~~ (12b) 

s s i=l 

with ns = G'Ca,+l - Tsas) and cS = y, - Zsas. The PME 's of al,...,an given Y, 
. 

are obtained by solving equations (111 with t=n. 

* We solve equations (11) iteratively by a modified Gauss-Newton technique 

similar to the one developed by Durbin and Koopman (19931 for exponential 

family observations. Suppose that a:j) is the jth approximation to the 

smoothed value ks of as where il,...,Gn+l are the solution of equations (11) 

when t=n. Let 

Q;tj) = 
1 

i 
qs,(~~j)) i=l 

8iqis (VLj) IQ:: (13a) 

and 

Hitj) = 
,,(~~j)) i=l i is Es 

f jt? h ( 'j',H;; (13b) 

where psj) = G'(aLJi - T,aAj)) and c:j) = y, - Z,ai'). Now substitute Qstj, 

for ii1 and H,ij) for $1 in (11). The resulting equations are 

-GQ,!l(j]G'(as - Ts-las-l) + Ts'cQ,tj~G'(as+l - Tsas) 

+Zs'H,tj) (Ys - Z,a,) = 0 (14a) 

for s = l,..., t together with 

GQttj )G' (at+1 - Ttat) = 0 (14b) 

These equations are linear with exactly the same structure as equations 
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(j+l) (4) for the classical Gaussian model. Let at+1 be the value of at+1 obtained 

in the solution of these equations. (j+l) It follows from (4) and (51 that at+1 

can be calculated recursively by the Kalman filter relations 

(j+l) 
at+1 

= Tta$j+l) (jl (j) 
+ Kt Vt (15a) 

P:$ = TtPij)LTt - K[j)Zt)' + GQt(jJG' (15b) 

where vljJ 
= Yt 

(j+l) 
- ztat and (j) 

Kt = TtPiJ)Z; F;fj) with Ft(j) = 

ZtP:j'Zi + Ht(j) for t = l,...,n. 

Similarly, let ai'+l) be the value of as in the solution of the 

(j+l) equations when t=n. Then at can be computed by the smoother (51, (6) and 

(Y) with Qt replaced by Qt(j), Ft replaced by Ft(j) and Lt replaced by Lt (3 = 

(jl 
Tt - Kt Zt for t=l,...,n. (j+l) It follows that at is the (j+l)th approximation 

to the PME kt of at for t = l,...,n. Iteration is continued until suitable 

convergence has been achieved. The PME's of a1 ,... ,a, can therefore be 

computed iteratively by the standard Kalman filter and smoother, provided, of 

course, that the iterative process converges. Since there is no guarantee that 

the function log pt is always unimodal care must be taken in the provision of 

starting values for the iteration. A suitable technique for the purpose will 

be given in section 5. 

We now demonstrate how the theory is modified when one or more of the 

component densities of the mixture are non-Gaussian. For simplicity let us 

take the case where yt is univariate, the elements of ')t are independent, each 

mixture has only two component densities, the distributions of ct and T)t are 

the same for all t and the second component of each mixture is Gaussian. To 

begin with, let us assume that whereas the density of ')t is a Gaussian mixture 

, the density of ct is 

h(ct) = 1SihlCct) + &h&t), 61 + 82 = 1, 
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where hl is a non-Gaussian density with variance C$ and h2 m N(0,h2u$). Let 

g(c) = -log h1f.c) and let g(c) be the derivative of g(c). Then 

dlog hk,) z; BlhlksIgks) 
=- 

[ 
+ @2h2(cs) ES 

da, hk,) ES ii&g I 

(j) where cS = ys- Zsas. With as as the jth approximation to ks we approximate 

the right-hand side of this by 

ZS 

hk;j'I 

,53lhl(E;j))gk~j)) 
+ 
/32h2kAj)) 

(j) 1 (ys-Zsas 1 
ES &rg 

. where c&j) = y, - Zsa&j). We therefore obtain the same equations (14) as in 

the Gaussian mixture case except that, instead of (13b), H,tj) is given by the 

s&lar 

/31hlk6j1 ,&chj)) 132h2k;j)) 

$) + I ' 
(16) 

A&g 

Similarly, if the density of the ith element vit of the state error l)t 

has density 

qi(V,it) = alqli(Vit) + 8242i(Qit)2 81 + 62 = 1, 

2 
where qli is a non-Gaussian density with variance Cvi and qi2 - N(0 A?'cr2 I 9 ir)i' 

the same equations (14) are obtained except that QSij) is given, not by (13a) 

but by 

Qstj) 
1 

= diag 

{ [ 

3lqli(T)is lf(??$i)) 
(j) * . 

62CQi(R~~)l 

(j) 
+ 

22 (17) 

qivis 
(j) 

qis Aicrqi 11 

where f(v) = -log qli(n) and f(q) is its derivative. 

As an example, when hl is the scaled t-density with variance erg, 

hlk) = 
c(v) 

[ 
l+ 

c2 (v+1)/2 (v>2) (18) 

(v-2)($ I 
then g(c6j1)/c~j' (jl2 in (161 is equal to (v+l)/I(u-2)~~ + cs I; this obviously 

converges to l/cc2 as v tends to infinity. This density is one of those that 
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we shall consider in section 6 for fitting heavy-tailed distributions. 

3.Approximate maximum likelihood estimation of hyperparameters 

We now consider the estimation of the unknown hyperparameter vector 3. 

Our approach is to construct approximations to the likelihood which are then 

maximised by numerical optimisation algorithms. We begin by considering the 

Gaussian form of model (1) in which ct M N(O,Ht) and qt u N(O,Qt). Let 

w pG(YnI#) be the density of Y, given @ or, equivalently, the likelihood of # 

given Yn. 

* It is well known that pG is given by the prediction error decomposition 

form 

pG(YnI#) = (2X)-np’2 g IFtl-1'2 exp( 

t=1 

-; t;lv;F;lvt ) 
= 

(see for example Harvey (1989) equation (3.4.5)) where Ft and vt are defined 

in the paragraph containing (2). Let p(Y,I#) be the density of Y, given # in 

the general case.By analogy with this expression our first approximate form 

for the likelihood in the mixture case is 

pl(YnI#) = (2x1 
-np/2 n 

n IFttc) l-1’2 ew(-l 
; p’ 

4c dc)l 
t=1 2 t=1 

(19) 

(cl where Ft(,.) and vt (j) are the final values of Ft(j) and vt at convergence of 

(cl 
the iterative estimation of the Gt's' and where Ft(c) and Vt are defined in 

the paragraph containing (151 with j = c. 

To derive our second approximation form, let a, k be the stacked vectors 

[a;,...,a~l’,[ii;,...,i~l’. For the Gaussian and mixture models denote 

E[(a-;I (a-&I’1 by VG and V respectively and let pG(a,YnI$), p(a,Y,I@) be the 

joint densities of a,Y, under the two models. Then 
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PG(cZIYnIG1 = pG(Ynlq)(2n) -nm/21vGle1’2exp -iCa-&I’Vil ((x-G-1 , I 
so on putting a = G we obtain 

Durbin and Koopman (19931, equation (201, have shown that 

IvGl = ; IQ+1lIHtllFtl-‘. 
t=1 

Hence, 

pG(YnIq) = (2n)“m/2 i IQt-i11'21Ht11'21FtI-1/2pG(k,YnI$). 
t=1 

. By analogy with this our second approximate form for the likelihood is 

P2(Y,I$) = (2~)“~~ ! IQt-~(C)11’21Ht(c)11’21Ft(c)l-1’2P(~,YnI~) 
* t=1 

(20) 

where Ftcc) is as in (20) and QTi1(,,, H;t,) are the final forms in the 

iteration of Q;!lcj, and H;icj) given by (13) or (16) and (17). 

Our third approximation is obtained by a special case of Kitagawa's 

(1989) "collapsing" method. This applies only to Gaussian mixtures. The basic 

idea is to collapse mixtures after updating at each time point into a single 

Gaussian density and then use this to obtain a manageable expression for 

p(yt+llYt,*) for t=l,...,n-1, from which the likelihood is obtained. In fact, 

the idea of collapsing to a single Gaussian goes back to Alpbach and Sorenson 

(19721, Masreliez (1975) and Harrison and Stevens (1976). To simplify the 

notation we suppress the dependence on I) in the derivation. We first show how 

to get from a single Gaussian for p(at-l IYt-1) to a mixture for p(atIYt) and 

how to collapse this to a single Gaussian. We then show how to obtain 

p(yt+iIYt) from this as a mixture. 

Write the observationa 1 and state mixtures as 

P(Ytlat) = C PiPi(Yt 
i 

Iq), C Si = 1 
i 

(21a) 
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P(at+llat) = 1 ajPj(at+llatI, 1 “j = 1. 
j j 

Denoting Kitagawa (19891 by K we have from K(5) 

P(Ytlq)p(atlYt-1) 
p(atlYt) = 

P(YtlYt-1) 

C BiPi(Ytlat)P(atlYt-l) 
i = 

P(YtlYt-1) 

and from K(4) 

cn 

p(atlYt-1) = 
I 
p(atlat-1)p(at-1IYt-l)dat-i 

* ‘Q) 

= c dj~mpj(atIat-~)p~at-~IYt-l)dat-l 

j -co 

=: ajPj(atlYt-1). 

Substituting in (23) gives 

.C .PiQ jPi (Yt l at)Pj(atlYt-1) 

p(atlYt) = lSJ 
P(YtlYt-1) 

‘iEjPiS jPi jtPi j (at l Yt ) 
, 

on using (221, where 

(21b) 

(22) 

(23) 

(24) 

Pij(YtlYt-1) Pij(YtlYt-1) 
Pijt = 

P(Yt I q-1 1 = 1 PiajPij(YtlYt-1) 
(25) 

i,j 

and where Pij(atIYt) and Pij(YtIYt-1) are obtained by standard Kalman 

filtering assuming p(ytlat) = pi(ytIat) and p(atlat-1) = pj(atlat-1) and also 

assuming that p(at-1IYt-11 is a single Gaussian. 

To collapse the right-hand side of (24) into a single Gaussian, assume 

that Pij(atIYt) N N(pijt,Vijt) where pijt, Vijt are the values given by the 

Kalman filter, and let pt = E(atlYt) and Vt = Var(atlYt). Then 
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Crt = C BiajPijtpijt (26a) 

i,j 

Vt = C BisjPijt[vijt + (clijt-crt)(clijt-rt)‘l. (26b) 

i,j 

Now assume that p(atlYt) - N(pt,Vt). This completes the operation of updating 

Ot-1IYt-1). 

We now calculate p(yt+l IYt I from the single Gaussian density p(atlYt). 

From K p.505 

P(Yt+l IYt) = 
1 

P(Yt+llat+l)P(at+llYt)dat+~ 

= C PiSj JmPi (Yt+l Iat+ )pj (at+1 IYy)dat+l 

i,j -co 

= 1 BiajPij(Yt+llYt) (27) 

i,j 

where pij(yt+llYt) is obtained by standard Kalman filtering steps assuming 

P(Yt+llat+l) ‘Pi(Yt+llat+i) and P(at+llq) =Pj(at+l Iat). Our third 

approximation to the likelihood is then 

P3(ynI@) =n;llP(Yt+llYt,#) (281 

t=o 

where p(yt+llYt,$) is calculated using (27) for trl. 

These approximate likelihoods are to be maximised numerically. For the 

first two approximations, values of the likelihood are calculated from the 

results of the iterated estimation of & and are therefore subject to small 

errors since the iteration cannot be continued until these errors are 

infinitesimal. Consequently,they are not suitable for maximising routines that 

calculate gradients from adjacent values of the hyperparameters and proceed 

from the last approximation along directions determined solely by these 

gradients, so routines should be used such as the downhill simplex method, 

given in section 10.4 of Press et al -- -. (19881, Powell’s method, given in 
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section 10.5 of the same book or the Gill-Murray-Pitfield algorithm, which is 

E04JBF in the NAG library. The third approximation is not subject to errors of 

the same type so a wider range of algorithms can be employed. Since this 

approximation is computationally economical we suggest that in the Gaussian- 

mixture case it should be used either as the sole method or to provide 

starting values for one of the other two. 

4. Heavy-tailed distributions 

In the last section we assumed that the main densities for both 

o&ervations and state errors are Gaussian. However, it is well known that in 

many areas of application, particularly with economic data, actual 

distributions tend to have heavier tails than the Gaussian distribution. In 

this section we therefore consider how to modify the theory of the previous 

sections in order to accommodate heavy-tailed densities. 

To begin with, let us leave aside questions of handling structural 

shifts and outliers. We shall consider three different forms of heavy-tailed 

density. Since our prime concern is with univariate series and with the 

observational error ct we start with this case. The first form of heavy-tailed 

density we shall take for ct is the Gaussian mixture 

h(c) = Cl-p)hl(c) + Ph2(cL ospr1 

where hl m N(0,t2) and h2 N N(0,A2,2), A>l. The variance of E is r2 = (1-/3)r2 

+ ph272 = [l + /3(A2-l)]r? In the type of application we are concerned with 

in this paper it is important to keep the number of parameters to be estimated 

as low as possible. We therefore recommend that the value of A should normally 

be pre-assigned by the investigator, say in the range 2 to 4 and possibly 

after experimentation. The values of fl would normally be estimated as part of 
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the likelihood maximisation procedures though if the estimation turns out to 

be difficult this could also be pre-assigned or estimated roughly by trial and 

error. We suggest that the pair &, /3 be estimated rather than t2, B since & 

is relatively independent of 6. This discussion has been based on the 

assumption that the density is homogeneous over time, which is the normal 

situation. There is no difficulty in principle in extending the treatment to 

densities which change over time in a predetermined way. Similar 

considerations apply to state error densities. Since these models are Gaussian . 

mixtures, the theory required for handling them carries over from sections 2 

arRl 3 unchanged, subject to the inclusion of additional unknown parameters in 

the hyperparameter vector. 

The second heavy-tailed distribution we consider is Student's t- 

distribution, which we write in the form 

rev/2 + l/2) 1 
h(c) = 

cr[(u-2)n11'2r(v/2) 1 + c2 
(v-2I(r2 I 

(v+1)/2' 
v > 2 

so that Var(c) = c2 for all v thus keeping estimation of tr2 and v relatively 

independent in the estimation process. Since 

dlog h(c) u+l E (v+l)& 
= = 

dc (v-2Ic2 1 + c2 
[ (v-2)l.J I 

[(v-2)C2+&21 

the contribution of alog h(y, -Zsas)/~as to alog pt(al,...,at+l,yl,...,yt)/3as 

is 

(v+l)Zk(ys-Zsas) 

[(v-2)C2 + (ys-Zsas)21’ 

Suppose that in the iterative estimation of the PME's of al,... ,an+l the jth 

approximation to & is a;'). Let 

H,tj) = 
v+l 

[(v-2)fr2 + (ys-Zsa~J)121 
(29) 

Substituting this in (14a1, where Q;fj, is suitably defined for r = s-l,s, we 
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can then obtain the (j+l )th approximation as (j+l) by Kalman filtering and 

smoothing as before. 

Since the t-density is not a Gaussian mixture, except as an integral 

form, the third approximate likelihood (28) cannot be used for estimation and 

one of the other two approximate forms (19) or (20) should be used instead. 

The Gaussian density, corresponding to Y = m in (291, could be employed to 

start the iterations. Mixtures in which the principal density is a t-density 

with variance c2 and the subsidiary density is Gaussian with variance h202 may w 

be used as in (16) with hl given by (18). Similar considerations apply when 

tRe t-distribution is used to model the principal component of state error 

densities, with (17) being used to bring in Gaussian subsidiaries. 

Our third heavy-tailed distribution is the general error distribution 

with density 

W(K) 

[ 

K 
h(c) = - exp -C(K) ISI , I 1 <Kc2 (30) 

CT 

where 

2[r(3~/4)$‘~ 
W(K) = 

K[r(K/4) ]3’2 ’ 

C(K) = [ -;;’ lK/,. 

Some details about this distribution are given by Box and Tiao (19731, section 

3.2.1, from which it follows that Var(&) = c2 for all K. We include this 

density for completeness since it is often advocated for the representation of 

heavy-tailed data but we have not investigated its performance and it may turn 

out that it is not suitable in the present context because Hiij) in (31) below 

takes large values when lys -Z,a, (j) I is small. 

Since 

dlog h(c) C(K)K 
= ----$- lcIK-2c 

ds 

the contribution of alog h(y,-Zsas)/i3as to alog pt(al,...,at+l,y1,...,ytl/3as 
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is 

C(K)K 
- I ys-Zsas I 

Thus if 2" 

Ki2 ( y,-Zsas I. 

is the jth approximation to ai we can take 

Gtj) 

C(K)K = .ax 1 ys-Z,aAj) lKw2 (31) 

and proceed as with the t-distribution. Since K-SO, it is desirable to put an 

arbitrary ceiling on the value of H,tj) to guard against the possibility that 

(jl y, is equal to or very nearly equal to Z,a, . Similar considerations apply to 

the state error densities. 
. 

In principle K can be estimated by approximate maximum likelihood by 

ifiorporating it into the hyperparameter vector and using one of the first two 

approximations of section 3. However, it is important to bear in mind with 

regard to all three densities and particularly the t-density and this density 

that the objective is to achieve a better performance than with the Gaussian 

density rather than to achieve excellence in the estimation of parameters of 

the densities other than their variances. Thus rough and ready preassignment 

based on residual analysis assuming Gaussianity, or on experimentation, may be 

justifiable on occasion. 

5. Further aspects of the mixture-PIE technique 

The key to our method of handling outliers and structural shifts is the 

use of mixtures of the form 

h(e) = (1-/3)N(0,c2) + @N(0,A2& (32) 

Consider the use of this mixture for the observational density in the 

univariate case; similar considerations apply in the multivariate case and to 

state errors. The first question we discuss in this section is the extent of 

the downweighting of the contribution of observation yt to the estimation of 
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state when yt is an outlier so Iyt-Ztatl is large. The contribution of yt to 

alog p(al,...,Qn+l,yl,...,ynI/&t is, using (lla), 

,dlog h(ct) 
-zt 

z; 

d&t 
= ,2 (yt-Ztat)f(xt) 

where 

c2 dlog h(ct) 
f(xt) = - - 

Et d&t 

with ct = yt - Ztat and xt = stir. When /3 = 0, f(x) = 1 for all x, emphasising 

the linearity of (lla) in the Gaussian case. When /3 > 0 and A2 > 1, the weight 

function f(xt1 indicates the downweighting of the contribution from yt as Iyt- 

TtatI becomes large. For the mixture (321, 

f(x) = 
cl-pie-x2/2 + pA-3e-x2/2A2 

(l-p)e-x2/2 + pA-le-x2/2h2 
(33) 

which tends to [(1-P) + /3AV3]/[(1-j3) + PA-11 as x + 0 and to A-2 as 1x1 + w 

for B > 0. Of course it is only the relative magnitudes which matter, so the 

fact that f(x) is always < 1 when p > 0 whereas it always equals 1 when the 

errors are Gaussian is of no significance. 

Figure la gives the weight function (33) for the case /3 = 0.01, A2 = 100 

which are the values we have used for all the work on outliers and structural 

shifts in this paper. We see that the weight drops from over 0.9 when the 

standardised irregular x is 2 to near to 0.01 when it is 4 or more; this is 

consistent with the kind of treatment that is often advocated for outliers in 

applied work. Figure lb gives the function for B = 0.25, A2 = 9, values that 

might be considered appropriate for a heavy-tailed density in the absence of 

large outliers. Here the weight drops smoothly from x = 0 to x = 4 by a factor 

of around l/7. Figure lc has /3 = 0.35, A2 = 4 and is intended for moderately 

heavy tails. Figure Id adds provision for large outliers to allowance for 
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heavy tails by taking a mixture of 0.65 times N(O,&), 0.34 times N(O,~C~) and 

0.01 times N(0,100~~1. This gives a relatively slow decline from 0.74 to 0.08 

as x moves from 0 to 6. This diagram suggests the possibility of the 

investigator designing his own function f(x) a priori either with an 

appropriate Gaussian mixture or by taking f(x) as a piecewise linear function 

and integrating dlog h(e)/dc to give a density with a piecewise cubic function 

of E in the exponent; however, these possibilities will not be pursued further 

in this paper. 
. 

For Student's t-distribution considered in section 4 we have 

U+l 
* f(x) = 

v-2+x2 
9 v > 2. 

This is plotted for u = 8 in Figure le. The function drops fairly rapidly 

from 1.5 at x = 0 to 0.6 at x = 3. For the general error distribution of 

section 4, 

f(x) = Ck)KIXIK-2, 1 < K < 2 

which is plotted for K = 1.5 and f(x) I 2 in Figure If. The steep drop for 

x < 1 seems to confirm the impression that this density might be unsuitable 

for the approach of this paper; however, we have not investigated the matter 

in detail. 

The manner in which the mixture model (32) handles outliers by 

downweighting the contribution to trend estimation of large deviations yt-Ztat 

is evident from Figure la. However, it is not immediately obvious why the same 

device should be equally helpful in handling abrupt structural shifts. In 

fact, similar considerations apply. If a component of at+l-Ttat is large, it 

is given less weight by the mixture model than the Gaussian model and is 

correspondingly more acceptable in the state estimation process. 

The contribution of yt to alog p(al,... ,y,)/aat can also be written as 
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Z;(yt-Z’tat)/~ where 

g?!=- &t 
= (1-/31e-E2’2~2 

-1 -c2/2A2,2 
+/3A e 

dlog hktVd&t -&2/2s2 -3 -.s2/2h2,2 
&. (341 

Cl-f3)e +&I e 

We call 2 the quasi-variance and have found it a useful concept for 

indicating outliers. Similar considerations apply to state errors and 

structural shifts. It is interesting to relate (341 to the posterior 

probability of an outlier. Suppose we postulate a model in which for most of 

the time the error has density N(0,(r2) while if it is an outlier its error has 
. 

density N(0,h2~2), the overall density being given by (32 

pcobability of an outlier is /3 and the posterior probability 

-1 -c2/2A2,2 
;= 

13A e 

(l-P)e 
-E2/2& -1 -e2/2A2,2 

+&I e 

1. Then the prior 

is 

(351 

We see that as I c I increases, G2 increases to A2cr2 and /3 increases to one. In 

effect, both quantities are indicating the same behaviour pattern. Some 

examples are shown in the next section. 

Of these two measures we prefer G2, for two reasons. First, we see no 

need to introduce a probabilistic mechanism for the occurrence of outliers. To 

us, (321 is a statistical model for a particular type of data set, one thought 

to contain a small proportion of large deviations, and its justification is to 

be found in the extent to which it facilitates an acceptable analysis of the 

data, rather than whether it correctly reflects the mechanism by which these 

large deviations occurred. Secondly, we find the scale of measurement in terms 

of variance more directly intelligible than a scale of measurement in terms of 

probabilities. 

The second aspect we consider in this section is the estimation of 

trend. Our basic model for the trend pt is the local linear trend (LLT) model 



pt = /q-l + fit-1 + St 

f3t = Bt-1 + Tt 

where St and (5t are white noise. In the absence of slope in the trend this 

collapses to the random walk (RW) model Apt = ct. A competitor to the LLT is 

the integrated random walk (IRW) model A2pt = white noise, favoured by P. 

Young and his collaborators; see for example Young et & (19911. We have found 

all three models capable of coping with level shifts in non-seasonal series 

when used with our mixture model, but in the presence of seasonality we have 

found that the IRW sometimes has a tendency to follow the seasonal pattern. At 

the same time some workers feel that the output of the RW or the LLT model is 

somewhat lacking in smoothness for an estimate of trend. As will be 

illustrated in the next section, our general recommendation is therefore that 

when allowing for level shifts the RW or the LLT should be used, but that if a 

smoother final trend estimate is desired the IRW or equivalently the LLT with 

level variance set equal to zero, together with the mixture model for the 

errors, should be applied subsequently to the deseasonalised series or the 

initial trend estimate. 

We mentioned in section 2 the importance of good starting values for the 

state iteration. We now discuss a two-filter method for obtaining first 

approximations to the state vectors which have been very good in the examples 

we have considered. Let Yf+l = (Yt+l,**-tYn)* On using the Markovian 

assumptions made for model (1) we have 
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. 

P(atlYt)P((ZtlY~+l)C(Yn) = 
iCat 

where c(Y,) depends only on Y, and p(at 1 is the marginal density of at. This 

formula has been derived in a wider context by Solo (1989). If, as in the 

cases considered in this paper, we initialise our Kalman filters by a diffuse 

density for al then p(at) is also diffuse so the estimate of at obtained from 

Yt using a Kalman filter going forwards in time and the estimate obtained from 

y" t+1 using a Kalman filter going backwards in time are effectively 

independent. Of course, the method only applies when, under the model, 

bzckwards travel is as valid as forwards travel, as is the case in the 

examples considered here. 

Our suggestion is that Kalman filters are run through the data in both 

directions for our Gaussian mixture model, collapsing to a single Gaussian 

density after each update in the way described for the third approximation to 

the likelihood in section 3. Each filter automatically produces an estimate of 

the variance matrix of the estimated state vector at each step. Suppose that 

the forwards and backwards estimates of a particular element of at are f and b 

and that their estimated variances are vf and vb. We then take as our starting 

value for this element the ordinary weighted average 

(f/Vf + b/Vb)/(l/Vf + l/Vb). Although we have been greatly surprised by how 

good these approximations are, they cannot be recommended as final estimates 

since they are based on two approximations, first the collapse to a single 

Gaussian after each update and secondly the weighting of the two estimates by 

reciprocal variances instead of weighting the two estimates of the state 

vectors by reciprocals of variance matrices. Since only filtering is involved 

the process is very fast and in our examples took only a few seconds on our 
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Sun network. It should be noted that the state transition matrix and the state 

error variance matrix usually need adjustment for travel in the reverse 

direction. For densities which are not Gaussian mixtures the same two-filter 

technique could be employed using an extended Kalman filter in each direction. 

This idea could be used, for example, to obtain improved starting values for 

hyperparameter estimation in the exponential-family models considered by 

Durbin and Koopman (1993). 

. 
It is worth observing that the two-filter technique offers a solution to 

the "k adjacent outlier" problem for state space models considered by Martin 

ati Bruce (19891 for ARIMA models. Using a mixture model, the investigator 

could track the quasi-variances considered above for the observation error in 

each direction. When these indicated a group of adjacent possible outliers he 

could then decide whether to treat them as outliers or as representing a 

genuine level shift; if the former, it would be straightforward to treat them 

as missing values in the standard way for state space models. See for example 

Harvey (1989) sections 3.4.7 and 6.4.1. While this possibility will not be 

pursued in general in this paper, as an experiment we considered the special 

case of two adjacent outliers from a slightly different standpoint in one of 

the examples given in section 6. 

A final observation is that although we have concentrated in this paper 

on the special case of symmetric error densities, it is obvious that the 

methods could be adapted to deal with non-symmetric densities. 

6. Applications to real and simulated series 

We now consider the application of the techniques to a number of 

simulated and real series. Our simulated series are all of 120 observations, 
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intended to represent ten years of monthly data. Our first simulated series is 

generated by the RW plus noise model yt = pt + ct, tit = pt-1 + et, where ct 

and et are Gaussian white noise. Superimposed on this are an outlier at t = 40 

and a level shift at t = 80. Figure 2a shows the original series and the trend 

as estimated by the standard filter and smoother for the state space model 

(10) assuming that ct and Et are Gaussian. Figure 2b shows the original series 

and the posterior mode estimate of trend, assuming mixture model (32) for both 

ct and $‘t with pre-assigned values 6 = 0.01 and A2 = 100. In this, as in all 
. 

the examples considered in this section, hyperparameters have been estimated 

bp approximate maximum likelihood using the third approximation of section 3. 

It is evident that a dramatic improvement has been achieved in the 

handling of both the outlier and the level shift by using the mixture-PME 

technique. This improvement is reflected by the large difference in the values 

of the loglikelihood which is -152.0 for the Gaussian model and -100.4 for the 

mixture model. The number of iterations needed to obtain the PM!Z of the state 

vector for the mixture model was 6. The convergence criterion was 

Cjl 
;a: 1% 

Cjl - at1 I < 10 
-7 

, that is, the maximum change in any component of the 
, 

state vector over the last iteration is 10 
-7 

. We appreciate that this 

criterion is severe but we found it worked well with our examples; indeed the 

number of iterations was always between 5 and 9, and we used it for all our 

illustrations. 

Our second simulated series is intended to represent a seasonal series 

in which there is a shift in trend and in seasonal amplitude as well as an 

outlier and a level shift. For the seasonal we took a sine wave of period a 

year whose amplitude was a random walk. For the trend we took the LLT. The 

underlying series is generated by the model 
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yt = Pt + Y;rt + &t rt = #tsin g 

Crt = Pt-1 + St-1 + St @t = @t-1 + @t 

et = Bt-1 + 5t 

This was modified by including a trend slope shift at t = 24, a fifty percent 

amplitude reduction of the seasonal at t = 48, an outlier at t = 72 and a 

level shift at t = 96. Figure 3a shows the original series and estimate of 

trend while figure 3b shows the true seasonal and its estimate as obtained by 

assuming the Gaussian model. We see that the Gaussian method has failed to 

deal with either the outlier or the level shift satisfactorily and that it 

pfoduces a slow change in the seasonal instead of indicating an abrupt change 

at t = 48. Figures 3c and 3d present the corresponding comparisons for the 

mixture-PME technique which show that it has coped satisfactorily with slope 

shift , the outlier and the level shift and in addition has responded well to 

what was an abrupt change in seasonal. The difference between the values of 

the loglikelihoods was enormous; for the Gaussian model it was -142.3 while 

for the mixture model it was -9.2. The number of iterations needed for the 

calculation of the PME of the state vector was 5. 

The first real series we consider is monthly retail sales of automobiles 

in the US from 1977 to 1985. We chose this series because it seemed free of 

outliers and structural shifts and we wished to illustrate aspects of the 

behaviour of the mixture model for this type of series. Figure 4a shows the 

original series and the trend given by the mixture model. (Note that for all 

the real series in Figures 4,s and 6 the vertical scale for observations yt is 

1,000 log ytl. Figures 4b and 4c compare the Gaussian and mixtures estimates 

of the trends and seasonals. As can be seen, the two estimates are close, 

illustrating that when a series has no outliers or structural shifts, the 
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introduction of the mixture components does not distort the analysis. This is 

also bourne out by the two values of the loglikelihood which for the Gaussian 

model was -527.1 while for the mixture model it was very little different at 

-529.4. In this comparison no adjustment needs to be made for number of 

parameters fitted since it is the same in both cases. Thus our loglikelihood 

comparisons are essentially equivalent to AIC comparisons. Figures 4d and 4e 

compare the quasi-variances of the observation errors with the posterior 

probabilities of outliers. The two graphs are virtually indistinguishable, 

illustrating the claim in section 5 that the quasi-variances and posterior 

pfobability are more or less equally informative about the presence, or in 

this case the absence, of outliers. 

For figure 5 we took the same automobile sales series as in Figure 4 and 

added to it outliers of 200 at Sept 78 and July 81 and a level shift of 300 at 

Aug 83. Figure 5a shows the original series and the mix*ure model trend 

estimate. Figure 5b graphs the observation and the level quasi-variances. 

These graphs demonstrate the power of the quasi-variances as diagnostic 

pointers to outliers and structural shifts. Figures SC and Sd compare the 

seasonally adjusted series and the estimated trend for the Gaussian model and 

the mixture model respectively for the case of adjacent outliers of 200 and 

325 at Sept and Ott 78. For handling adjacent outliers we found it advisable 

to experiment with proportions in the mixtures. For the present example we 

found that the mixture 0.98 N(0,(r2) + 0.02 N(0,100c2) worked best. It is clear 

that the mixture model has coped well with the outliers and level shift in all 

cases whereas the Gaussian model has not.The number of iterations needed for 

convergence of the PME with the mixture model was 5 for all cases with this 

series. 

. 
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Figure 6 refers to US retail sales of liquor from Jan 67 to Feb 89. We 

chose this series as an example of a series that is generally well-behaved but 

has a moderate outlier and moderate shift. Figure 6a displays the original 

series and the Gaussian trend, Figure 6b shows the seasonally adjusted series 

and the mixture trend and Figure 6c graphs the seasonal. Inspection reveals a 

level shift at around Jan 84 and an outlier at Sept 85. To highlight these, 

Figures 6d and 6e graph the seasonally adjusted series and the Gaussian and 

mixture trends for the period Jan 83 to Dee 86. They show a worthwhile 

improvement by the mixture model, particularly in dealing with the outlier. 

The number of iterations for the PME was 9. The loglikelihoods were -1,104.g 

for the Gaussian model and -1,130.7 for the mixture model, indicating a 

substantially better fit for the mixture model. 

Summing up our experience based on the analysis of these series, we 

believe that the mixture model provides an effective automatic technique for 

handling certain types of outliers and structural shifts. Apart from 

estimation of the hyperparameters, computation was very fast. We think that 

further work is needed on choice and development of maximisation routines 

suited to hyperparameter estimation for models of the kind we have employed. 

We used mainly the standard maximisation optmisers in the S-PLUS system, which 

are basically quasi-Newton algorithms, applied to the third approximation to 

the likelihood function in Section 3. We also experimented with the downhill 

simplex method and Powell's method mentioned in Section 3, together with the 

first approximation to the likelihood given in that section; these are capable 

of working adequately in suitable cases. Finally, we concluded at the end of 

this work that the two-filter estimate of state was so good as a starting 

value for the PME iteration that any questions we had about possible 
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complications due to multiple modes in the posterior state density had been 

effectively resolved. 
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Fig.1 Weight function for different error models 

Fig. 1 a. Mixture for outliers and structural shifts 
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Fig. 2. Performance of Gaussian and mixture models on a simulated series 
with one outlier and one level shift 

Fig. 2a. Original series and estimate of trend: Gaussian model. 
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Fig 2b. Original series and estimate of trend: Mixture model. 
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Fig. 3. Performance of Gaussian and Mixture model on a simulated 
seasonal time series with structural changes 

Fig. 3a. Original series and estimate of trend: Gaussian model 
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Fig. 3b. True seasonal and estimate of seasonal: Gaussian model 
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Fig. 3~. Original series and estimate of trend: Mixture model 
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Fig. 3d. True seasonal and estimate of seasonal: Mixture model 
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Fig. 4. Performance of Gaussian and Mixture models on 

U. S. retail sales of automobiles 1977-85 

Fig. 4a. Original series and estimate of trend: mixture model 
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Fig. 4b. Gaussian and mixture trends 
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Fig. 4c. Mixture and Gaussian: estimate of seasonal. 

I ” . . . , 

1977 197% 1979 1980 1981 1982 1983 1904 1985 

Fig. 4d. Variance of the observation equation error. 
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Fig 4e. Posterior probability of observation outliers. 
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Fig. 5. Performance of Gaussian and Mixture models on U. S. retail sales of automobiles 

with outliers and level shift superimposed 

Fig. 5a. Seasonally adjusted data and estimate of trend: mixture model 
(Twoseparate oudiers and alevel shift) 
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Fig. 5b. Variance of the observation error 
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Fig. 5c. Seasonally adjusted series and estimate of trend: Gaussian model 
(Two consewtfve outliers and a level shift) 
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Fig. 5d. Seasonally adjusted series and estimate of trend: mixture model 
(Two consecutive wtliers and a level shift) 
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Fig. 6. U.S. retail sales of liquor Jan.67-Feb.89 

Fig 6a. Original series and Gaussian trend 
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Fig. 6b. Seasonally adjusted series and mixture trend 
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Fig. 6c. Mixture seasonal 
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Fig. 6. U.S. retail sales of liquor Jan.83-Dec.86 

Fig. 6d. Seasonally adjusted series and Gaussian trend. 

Fig. 6e. Seasonally adjusted series and mixture trend. 
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