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Abstract 

This study compares two new seasonal adjustment methods designed to 

handle outliers and structural changes: X-IZARIMA and GAUSUM-STM. X- 

12-ARIMA is a successor to the X-ll-ARIMA seasonal adjustment method, 

and is being developed at the U.S. Bureau of the Census (Findley et al. 

(1988)). GAUSUM-STM is a non-Gaussian method using time series struc- 

tural models, and was developed for this study based on methodology pro- 

posed by Kitagawa (1990). 

, 

The procedures are compared using 29 macroeconomic time series from 

the U.S. Bureau of the Census. These series have both outliers and structural 

changes, providing a good testbed for comparing non-Gaussian methods. For 

these series, the X- 12-ARIMA decomposition consistently leads to smoother 
seasonal factors which are as or more “flexible” than the GAUSUM-STM 

seasonal component. On the other hand, with some significant exceptions, 

GAUSUM-STM generally handles outliers and level shifts better than X- 

12-ARIMA. The differences between GAUSUM-STM and X-12-ARIMA in 

handling outliers and structural changes are swamped by the fundamental 

differences in the nature of the seasonal decompositions. 

Recognizing that seasonal adjustment is a subjective enterprise, we feel 

the X-12-ARIMA procedure yields more appealing seasonal adjustments for 

most of the series examined. However, GAUSUM-STM potentially offers some 
important advantages. This study gives guidance on what problems need to 

be tackled to improve STM-based seasonal adjustments. 



1 Introduction 

. 

Seasonal adjustment at most statistical agencies is currently done using a procedure 
based on the “X-ll-ARIMA” method for seasonal adjustment. While X-ll-ARIMA 
has proven to be reliable and effective, it is primarily an ad hoc method. Re- 
searchers have explored model based alternatives to X-ll-ARIMA. Gaussian “time 
series structural models” (STM), introduced by Gersch and Kitagawa (1983) and 
Harvey and Todd (1983), are a class of models currently enjoying a surge of interest. 
Time series structural models are based on using simple intuitive component mod- 
els for the trend, seasonal and irregular. In a comparison of X-11 and STM with 
relevant Dutch macroeconomic time series, den Butter and Mourik (1990) conclude 
that STM was a competitive method. 

Outliers and “structural” changes (e.g., level shifts or ramps) cause problems 
with both X-ll-ARIMA and the Gaussian STM methods. While X-ll-ARIMA 
provides some protection against outliers, it is not fully robust and cannot handle 

~ level shifts or other structural changes. The X-12-ARIMA procedure, a successor 
to X-ll-ARIMA, is being developed at the U.S. Bureau of the Census to handle 
additive outliers and level shifts (Findley et al. (1988), Monsell (1990)). Time 
series structural models can be adapted to non-Gaussian situations by assuming 
that the innovations of the component models are non-Gaussian (Kitagawa (1990)). 
For this study, we have developed “GAUSUM-STM”, which extends the STM based 
seasonal adjustment to handle outliers and structural changes. GAUSUM-STM is 
derived from a computer program by Kitagawa (1991). 

X-1ZARIMA and GAUSUM-STM differ in very significant ways. X-12-ARIMA 
is a nonparametric method while GAUSUM-STM is model based. The X-12-ARIMA 
seasonal filters are manually selected on the basis of diagnostic plots. By contrast, 
the seasonal decomposition of GAUSUM-STM is automatically obtained by maxi- 
mizing the likelihood. Finally, the two procedures adopt very different methods for 
handling outliers and level shifts. 

The X-12-ARIMA procedure is compared with GAUSUM-STM using 29 macroe- 
conomic time series from the U.S. Bureau of the Census. These series have both out- 
liers and structural changes, providing a good testbed for comparing non-Gaussian 
methods. For these series, the X-12-ARIMA decomposition consistently leads to 
smoother seasonal factors which are as or more “flexible” than the GAUSUM- 
STM seasonal component. On the other hand, with some significant exceptions, 

GAUSUM-STM g enerally handles outliers and level shifts better than X-12-ARIMA. 
The differences between GAUSUM-STM and X-12-ARIMA in handling outliers and 
structural changes are swamped by the fundamental differences in the nature of the 
seasonal decompositions. 

Recognizing the seasonal adjustment is a subjective enterprise, we feel the X- 
12-ARIMA procedure yields more appealing seasonal adjustments for most of the 
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series examined. GAUSUM-STM, or some similar procedure, is not yet a serious 
competitor. Perhaps the main contribution of this study is to give guidance on what 
problems need to be tackled to improve STM-based seasonal adjustments. 

Section 2 discusses the outlier handling scheme for X-12-ARIMA. The GAUSUM- 
STM procedure is described in section 3. Section 4 describes the data and the 
associated filters and models. The plots and diagnostics used to assess and compare 
the seasonal adjustments are discussed in section 5. The heart of the paper lies 
in section 6, which summarizes the conclusions of the empirical comparison. Some 
additional issues regarding the GAUSUM-STM method are explored in section 7. 
Finally, conclusions and directions for future research are discussed in section 8. 

2 X-12-ARIMA 

The X-11 method for seasonal adjustment was developed at the U.S. Bureau of the 
Census by Shiskin et al. (1967). X-ll-ARIMA is an extension of the X-11 method, 

*developed at Statistics Canada by Dagum (1980). X-ll-ARIMA eliminates the 
asymmetric filters of X-11 by using ARIMA models to forecast beyond the ends 
of the series. Both X-11 and X-ll-ARIMA are nonparametric procedures, with a 
design based on practical considerations. 

Numerous empirical studies have examined the X-ll-ARIMA method: see, for 
example, Dagum (1978), Dagum and Morry (1984), den Butter et al. (1985), and 
Jain (1989). X-12-ARIMA offers several new features, including a new “language 
oriented” interface and the “sliding spans” diagnostics (Findley et al. (1990)). The 
primary new feature of interest in this study is the procedure for automatic detection 
of additive outliers and level shifts. This procedure is discussed in more detail below. 

X-12-ARIMA outlier/level shift identification procedure 

To avoid problems caused by additive outliers (AO’s) and level shifts (LS’s), X-12- 
ARIMA does a prior adjustment. AO’s and LS’s are identified using hypothesis tests 
based on the appropriate parametric intervention and ARIMA model. The series is 
adjusted using the estimated interventions. 

The idea of doing hypothesis tests to identify the type of outlier was first intro- 
duced by Fox (1972). Suppose Xt is a time series which behaves according to the 
multiplicative Gaussian ARIMA (p, d, q) x (P, D, Q)s model. Let yt be the observed 
series, which is related to Xt by 

yt = xt + 6 (jZt(f) 
j=l 

yt might contain outliers, level shifts, etc., which are modeled by the O-l processes 
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,Zt(j’ and the parameters C,j. To model an “additive outlier” (AO) at time T, we set 

z,‘j’ = 1 s=T 

0 s#T 

A “level shift” (LS) at time T is given by 

@) = 1 s>T 

0 s<T 

A hypothesis test for the presence of an A0 (or LS) at time T takes the form 

Ho : (j = 0 

Hr : Ci # O 

A large test statistic is indicative of an A0 (or LS). These ideas generalize to other 
* types of interventions, such as innovations outliers, ramps, or variance changes. 

X-12-ARIMA incorporates tests for AO’s and LS’s in an iterative method for 
estimating parameters in a ,multiplicative seasonal ARIMA model. Suppose we 
have an initial estimate of the ARIMA parameters &. The algorithm proceeds as 
follows: 

Step 0: j t 0. 

Forward Addition 

Step 1: Given &j, compute the t-statistics +F” and +ks corresponding to the hy- 
pothesis tests for AO’s and LS’s at times t = 1,2, . . .,N. 

Step 2: If 

then go to step 5. Otherwise, flag the observation which is the most significant 
A0 or LS according to the t-statistics. 

Step 3: Subtract the least squares estimate [j of the flagged intervention from the 
series Yt. Re-estimate the parameters &j+r with the adjusted data. 

Step 4: j t j + 1. Go to step 1. 

Backward Elimination 

Step 5: Let fl be the set of indices corresponding to the identified AO’s and LS’s. 
Re-estimate the t-statistics for all identified AO’s and LS’s. 
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Step 6: If 

then we are done. Otherwise, drop the least significant estimated intervention 
from the index set R and go to step 5. 

For step 1, an efficient algorithm is available for ARIMA models, reducing the 
computational burden of computing the test statistic for all observations simultane- 
ously. In step 2, the cutoff C is used to determine if there are any more significant 
AO’s or LS’s remaining in the series. In this study, a cutoff of C = 3.1 is used. 

Note that only the most significant A0 or LS is identified on each iteration. This 
“one-at-a-time” approach is computationally slower than identifying all significant 
AO’s and LS’s on each pass. However, for several of the series examined in this study, 
the multiple identification procedure is unstable and leads to poor decompositions. 
Hence, the multiple identification option is not recommended for general use. 

Other types of interventions could be incorporated into the procedure. However, 
*for economic time series, the most important and natural situations to attempt to 

model in this manner seem to be additive outliers and level shifts. This iterative 
identification procedure was first developed by Chang and Tiao (1983). Hillmer 
et al. (1983) applied this iterative estimation method in the context of ARIMA 
model based seasonal adjustment. See Bell (1986), Chang et al. (1988), and Tsay 
(1988) for further development of the method. 

3 GAUSUM-STM 

Many model based approaches to seasonal adjustment have been proposed. Advan- 
tages of model based seasonal adjustment are articulated by Bell and Hillmer (1984). 
Models provide an interpretable decomposition whose characteristics adapt to the 
nature of each series. One approach towards model based seasonal adjustment is 
based on fitting ARIMA models: see Box et al. (1978), Burman (1980), Hillmer 
and Tiao (1982), Maravall (1985), and Maravall and Pierce (1987). The ARIMA 
model is decomposed into trend, seasonal and irregular components, maximizing the 
variance of the irregular. This is often call the canonical decomposition. 

In this study, we work with an approach based on time series structural models 
(STM). Gersch and Kitagawa (1983) and Harvey (1984) have explored the use of 
structural models for seasonal adjustment (see also Kitagawa and Gersch (1984), 
Harvey (1989), and den Butter and Mourik (1990)). There are several advantages 
of STM-based seasonal adjustment. Structural models are constructed by using 
simple component models for the trend, seasonal, and irregular. Hence, Harvey 
(1989) argues that structural models are more interpretable than ARIMA models. 
Harvey and Valls Pereira (1989) 1 c aim that structural models yield superior seasonal 
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decompositions and adjustments than the canonical decomposition of ARIMA mod- 
els. The fitting process is simpler for structural models, with only one or two basic 
model forms needed for a broad range of series (of the three models considered in 

this study, one model was consistently superior). Finally, structural models easily 
and naturally incorporate simple structural changes, such as level shifts and ramps. 
This is discussed further below. 

3.1 Gaussian Time Series Structural Models 

A time series structural model is based on forming models directly for each of the 
components in the decomposition 

Yt=Tt+St+It. (1) 

yt is some suitable transformation of the original observed series (in this study, yt 
is the log-transformed data). T,, St, and It are the trend, seasonal and irregular. 

The irregular is usually considered to be Gaussian white noise with zero mean and 
* 

variance CT;. This is denoted by It N GWN(O,aF). 
A typical model for the trend is given by 

Tt = z-1 + b-1 + q+ (2) 

where qt N GWN(O,ai). The term bt acts as a “slope”, and is permitted to evolve 
according to a random walk 

bt = L-1 + tt 

where & N GWN(0, CY,?). 
Following Harvey (1984), we consider two different models for the seasonal com- 

ponent. Let s be the seasonal period (for monthly data s = 12). The first seasonal 
model, which makes up part of Harvey’s “Basic Structural Model” (BSM), is defined 

by 
s-1 

St = - C St-j + Wt (3) 
j=l 

where wt - GWN(O,o;). A n a It ernative and more flexible seasonal model is given 

by 
b/21 

St = c 7j,t (4) 
j=l 

with 

+lii,t = yj,t-1COSXj + yi,t-lSinXj + Wj,t 

l 

‘Yj,t = -yj,t-1sinXj + Y~,t-,COSAj + WT,t 

where Xj = 2rj/s. The innovations Wj,t and w;,~ are uncorrelated with Wj,t w 

GWN(O,az,j) and w;,~ w GWN(O,oi,j) for j = 1, . . . ,6. 
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Modeling Calendar Effects 

Structural models are easily extended to handled such things as calendar and holiday 

effects. Instead of (l), we might use the model 

. 

~=Tt+Ct+St+It. (5) 

where Ct represents the calendar effect. Ct is estimated as a fixed effect by construc- 
tion of the appropriate regression variables: see Bell and Hillmer (1983). Dynamic 
models for trading days also fit nicely within the structural model framework: see 
Monsell (1983) and Dagum et al. (1988). 

3.2 Robustness through Gaussian Mixtures Models 

One of the strengths of the structural model is the simplicity and interpretability 
of the component models. This is illustrated when we consider non-Gaussian ex- 

I tensions to the trend model. It can readily be seen that outliers in It, qt, and & 
translate directly into additive outliers, local level shifts, and ramps respectively. 
Hence, these types of events can be accommodated for in the model by assuming 
that It, nt, and & are generated from an appropriate outlier producing distribution. 

Gaussian mixture distributions are one way to model outliers. For example, to 
generate additive outliers, we assume that 

It - 
N(0, a:) with probability 1 - 61 

N(O, 5;) with probability EI (6) 

where 5-1 >> a;. The factor EI represents the “prior” probability of an additive 
outlier. 

To avoid too many mixture terms with small probabilities, it can be assumed 
that only one type of structural change can occur at a given time point. In other 
words, we shall assume that either a level shift or a ramp can occur, but not both. 
Hence, the joint distribution of nt and Et is given by 

with probability 1 - cq - q 

with probability cs 

with probability q 

(7) 

where 5: >> 0: and 15: >> a;. The factors E,, and q represent the prior probability 
of a level shift and ramp. 
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In the statistics literature, the model defined by (6) and (7) was introduced by 
Harrison and Stevens (1976), who called it the “Multiprocess Model” (see also Har- 
rison and Stevens (1971)). Th is model has been successfully used in a Bayesian 
setting for several applications: see, for example, Smith and West (1983) and Gor- 
don and Smith (1990). Kitagawa (1990) uses a similar model for robust seasonal 
adjustment, except that 0,’ and 5: are constrained to be zero (so ramps but not 
level shifts are modeled). 

It is interesting to note that from the perspective of generating outlier models, 

the seasonal models given by (3) and (4) may not be so good. In any case, seasonal 
breaks are not considered in this study. 

3.3 Technical Issues 

Evaluation of the Likelihood 

In structural time series models, the likelihood function is often decomposed in the 
* form 

qY,,Y,,..., YN) = P(K)P(yzIK) . . .P(YNIK y2, * * *, h-1) (8) 

In the purely Gaussian case, (8) is readily computed by casting the model in state 
space form and applying the Kalman filter (see, for example, Harvey (1989)). For 
the Gaussian mixture model of (6) and (7), exact computation of (8) involves an 
algorithm with complexity of 6 N1 This is because the one-step ahead predictive . 
distribution for Yt is a Gaussian mixture of 6t components. 

Different approaches have been adopted to circumvent this difficulty. Alspach 
and Sorenson (1972) develop a “Gaussian sums” method in which low probability 

components of the mixture are pruned. Harrison and Stevens (1976) invoke a collaps- 
ing procedure in which a number of terms in the mixture at each time are replaced 
with a Gaussian distribution. The replacement is done through moment matching, 
and minimizes the Kulback-Leibler distance. Kitagawa (1990) adopts a collaps- 
ing approach similar to Harrison and Stevens. The main difference is that while 

Harrison and Stevens collapse the same densities at each time, Kitagawa succes- 
sively collapses the pair of densities which are “closest” in terms of Kulback-Leibler 

distance. Bruce and Martin (1992) combine a variety of pruning and collapsing 

methods in an adaptive tree growing algorithm. 

Obtaining the seasonal decomposition 

To obtain a seasonal decomposition, we need an estimate of the “smoothed” 

trend and seasonal. Most procedures yield the expected trend and seasonal: 

JqGIK, y2, * * - , YN) and %W’i,y2,. . . , YN). Using a “Gaussian sum” smoother, 

Kitagawa (1990) h s ows how we can actually get an estimate of the densities 

P(TtIK,y2, - - * ,YN> and p(StlK, y2,. . . , YN). From the densities, we could obtain 
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a point estimate using the expected value. However, in the non-Gaussian setting, a 
more natural point estimate is given by the median. 

A particularly nice feature about this approach is that we can readily obtain 
confidence intervals. In addition, Bruce (1992) h s ows how to obtain estimates of the 
posterior probabilities of outliers, level shifts, and ramps. 

Initialization of the Filters 

To compute the likelihood (8) and t o use the two-filter smoother of Kitagawa (1990), 
we need to handle densities such as p(yt(Yi, Y2,. . . , x-1). For t < 14 with monthly 
data and the models considered above, certain assumptions are needed about initial 
conditions. In the purely Gaussian case, the most natural approach is to assume a 
“diffuse prior” : see Ansley and Kohn (1985), Bell and Hillmer (1987), and De Jong 
(1991). In the G aussian mixture case, a “diffuse prior” could be used as well. The 
exact distribution, though, is a Gaussian mixture involving an intolerable number 

I of terms for t bigger than 5 or 6. The various schemes for reducing the number 
of components do not work: the distributions are partially diffuse and it is not 
possible to determine which observations are likely outliers, level shifts, etc.. As a 
result, the current implementation of GAUSUM-STM does not properly handle the 
initialization. This causes problems in the seasonal adjustments with three series. 
Two possible solutions are available to overcome this problem. These are discussed 
in section 8. 

3.4 The GAUSUM-STM program 

A non-Gaussian seasonal adjustment method based on time series structural models, 
called “GAUSUM-STM”, was developed for this study. It is based on a computer 
program developed by Kitagawa (1991). It permits trend models of the form (2) 
and a choice of either (3) or (4) for the seasonal model. The irregular is assumed 
to be white noise. Gaussian mixture distributions of the form (6) and (7) can be 
specified. The mixture distribution for structural changes, given by (7), can be 
extended to accommodate seasonal breaks as well. The method of Kitagawa (1990) 
is used for reducing the number of mixture terms in computing the likelihood and 
smoothed estimates. GAUSUM-STM is implemented in Fortran- as a function in 
the S language (Becker et al. (1988)). 

Ease of Use 

Potentially, GAUSUM-STM is easier for the naive seasonal adjuster to apply than 
X-1ZARIMA. In this study, only the transformation choice was not automatic (but 
it could easily be done so). By contrast, both an ARIMA model and the seasonal 
filters had to be specified for X-12-ARIMA. 
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Offsetting these advantages is the relative computational inefficiency of 
GAUSUM-STM. I n g eneral, GAUSUM-STM is an order of magnitude slower than 
X-12-ARIMA. However, much can be done to improve the speed of GAUSUM-STM. 
With the increasing computing power available to a broad spectrum of users, this 
should not be a major factor in the near future. 

Continuity property of GAUSUM-STM 

An important property of the GAUSUM-STM method is that it employs a con- 
tinuous scheme for handling outliers and level shifts. GAUSUM-STM can adapt 
to different magnitudes of AO’s or LS’s using appropriate posterior probabilities. 
Large AO’s or LS’s are given probabilities close to 1 while small AO’s or LS’s are 
given probabilities close to 0. By contrast, the X-12-ARIMA outlier prior adjust- 
ment procedure declares observations as either AO’s or LS’s or neither. Essentially, 
X-12-ARIMA assigns a posterior probability of either 1 or 0. As a result, we can 

*expect the X-12-ARIMA seasonal adjustment to change discontinuously as an ob- 
servation passes the threshold and is declared as an A0 or LS. While this disconti- 
nuity is mitigated by the outlier treatment intrinsic to X-11, we shall see that the 
GAUSUM-STM outlier method leads to more stable seasonal adjustments. 

4 The Data, Filters, and Models 

4.1 The Data 

The empirical study involves 29 monthly U.S. macroeconomic time series, selected 
by time series staff at the Statistical Research Division, U.S. Bureau of the Census. 
These series have both outliers and structural changes (such as level shifts). Table 1 
lists the series along with their abbreviations. Of the 29 series, 13 are retail trade 

series, 7 are housing starts series, and 9 are inventory series. The series exhibit 
a range of seasonal behavior. The retail trade series usually display very strong 
seasonal patterns. The construction series are often very erratic and quite difficult 
to adjust. The inventory series tend to have large level shifts but relatively stable 
adjustments. On the whole, this collection of economic time series gives a broad 
range of problems with which to assess and compare seasonal adjustment methods. 

4.2 Log Additive Seasonal Decomposition 

Time series staff at the Statistical Research Division identified a multiplicative de- 

composition in all of the series for the X-12-ARIMA seasonal adjustments. In tL 
study, we transform the data by taking logarithms and multiplying by 1001’ 
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Abbrev- SABL 
iation Series Description transform 

Bl BAUTRS Retail Sales of Automobiles 0 
B2 BFRNRS Retail Sales of Furniture 0 
B3 BGMRRI Retail Sales of General Merchandise -0.5 
B4 BGRCRS Retail Sales of Groceries 0 
B5 BHDWWS Wholesale Sales of Hardware 0 
B6 BLQRRS Retail Sales of Liquor 0 
B7 BMNCRS Retail Sales of Men’s Apparel -0.25 
B8 BSHORS Retail Sales of Shoes 0 
B9 BSPGWS Wholesale Sales of Sporting Goods 0.25 
BlO BTAPRI Total Retail Sales of Apparel -0.25 
Bll BTNDRI Retail Sales of Nondurables -0.25 
B12 BVARRS Variety Store Retail Sales 0.25 
B13 BWAPRS Retail Sales of Women’s Apparel 0 

Cl4 CMWlHS One Family Housing Starts in the Midwest -0.25 
Cl5 CMWTHS Total Housing Starts in the Midwest 0 
Cl6 CNElHS One Family Housing Starts in the Northeast 0.25 

Cl7 CNETHS Total Housing Starts in the Northeast 0.25 

Cl8 CSOTHS Total Housing Starts in the South 0 
Cl9 CWETHS Total Housing Starts in the West 0.25 
C20 C24THS Total Housing Starts - 2 to 4 0.25 

121 IBEVTI Total Inventories of Beverages -1 
122 ICMETI Total Inventories of Communications Equipment -1 
123 IFATTI Total Inventories of Fats and Oils -1 
I24 IFMETI Total Inventories of Farm Machinery and Equipment 0 
I25 IGLCTI Total Inventories of Glass Containers -0.25 

126 IHAPTI Total Inventories of Household Appliances -0.25 
I27 INEWUO Unfilled Orders for Newspapers and Magazines 0.25 

I28 ITVRTI Total Inventories of TV’s and Radios 0.25 
I29 ITVRUO Unfilled Orders for TV’s and Radios 0.5 

Table 1: List of abbreviations for the 29 series studied and power transformations 
used by the SABL seasonal adjustment procedure. The choice of powers is roughly 
consistent with a logarithmic transform (power = 0). 
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then apply an additive seasonal adjustment. The log-additive seasonal adjustment 
is used so that GAUSUM-STM can be fairly compared with X-12-ARIMA. While 
multiplicative and log-additive seasonal adjustments should be similar, there is a 
consistent downward bias in the trend from the log-additive procedure (see Ozaki 
and Thomson ( 1992)). 

For simplicity and conceptual clarity, we have chosen not to consider other possi- 
ble transformations (e.g., square root). Table 1 displays the transformation powers 
for each of the series chosen by the robust seasonal adjustment procedure SABL 
(Cleveland and Devlin (1980)). The powers range from -1 to 0.5, with the majority 
being f0.25. Th is is reasonably consistent with a logarithmic transformation. 

4.3 X-12-ARIMA Filters 

For the 29 series in this study, the options required by X-12-ARIMA were provided 
by the time series staff of the U.S. Bureau of the Census. This includes the choice of 

PRIMA models, filters, and trading day and Easter effects. For the retail trade and 
inventory series, the default filters are used (see Dagum (1980)). For the construction 
series, a 3 x 9 moving average is used, yielding smoother seasonal factors than the 
default filter. Trading day prior adjustment is done for all of the retail trade series 
and three of the construction series. Prior adjustment for the timing of Easter is 
done for five of the retail trade series. 

4.4 GAUSUM-STM Models 

Structural Models 

Three types of seasonal models are fit to all 29 series: the “BSM” seasonal (3), the 
trigonometric seasonal (4) with the assumption that all of the noise terms Wj,t have a 
common variance CT:, and the trigonometric seasonal (4) allowing different variances 
a~,j. These models will be denoted by BSM, TRIG-l, and TRIG-6. 

The parameters for the structural models include: 

l The variances of the mean and slope of the trend component 0: and 0:. 

l The variances of the seasonal component ai (or ~~,j in the case of TRIG-6). 

l The variance of the irregular component a:. 

l The prior probabilities of an additive outlier and a level shift cr and ctl. 

The variances of the outlier and level shift processes, 5-r” and et, are set to a large 
fixed value. 

In addition, a constrained version of the BSM is fit, and will be denoted by 
BSM-CONS. Let gt denote a time series for which the default filters of X-11 are 
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“optimal”. Then BSM-CONS corresponds to the basic structural model with an ucf 
which closely matches the acfof AA12yt. This model optimizes over a single variance 
u2, which is related to the other variances as follows (Maravall (1985), Harvey and 
Valls Pereira (1989)): 

a,2 = u2 a,2 = 0.133~~ a: = 0.167~~ ui = 0.067~~ (9) 

This model is discussed further in section 7.5. 

Outlier Model 

A simplified version of the level shift and ramp model (7) is used in this study. The 
prior probability of a ramp cc is set to zero, reducing the Gaussian mixture in (7) 

. to just two terms. This restricted model provides for most of what is desired in 
terms of modeling structural changes while significantly reducing the computational 
burden. Section 7.3 explores the more general ramp model. 

il 

4.5 Model Parameters 

Table 2 gives the maximum likelihood estimates of the parameters for TRIG-6 for 
each of the series. See appendix A for details on the fitting procedure. The table dis- 
plays the variances a;, ai, ui, the mean of the variances of the seasonal components 

@i = CyZ1 u~,j/6. and the prior probabilities es and ~1. 
The type of convergence achieved by the optimizer is also given in Table 2. Five 

types of convergence are possible: (R)elative function convergence, (X)-convergence, 
(B)oth X- d 1 t an re a ive function convergence, and (F) 1 a se convergence (see appendix 
A for details). These are denoted in the table by the letters in the parentheses. A 
convergence code of R, X, or B indicates that the optimizer successfully found a 
local maximum. A convergence code of F means that the optimizer may be stuck 
at a non-critical value. 

Note that a few series have false convergence for TRIG-6. By contrast, almost 
all of the fits for the BSM and TRIG-l acheived successful convergence (Bruce and 
Jurke (1992)). Th is is probably due to the number of seasonal parameters and the 
relative flatness of the likelihood. Since the TRIG-6 uses the maximum likelihood 
estimates of TRIG-l as starting values, we expect that reasonably good estimates 
are obtained in all cases. Furthermore, our experience with the optimizer indicates 
that many of the false convergences are at a local maximum. 

Comparison of Seasonal Parameters 

Table 3 compares the variances of the seasonal components for TRIG-l and TRIG- 
6. The TRIG-6 variances are given relative to the TRIG-l variance. Let a~,j for 
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mean 
2 

ul) 

variances Probabilities Type of 
slope irregdar se~oncd outher level shift 

6 

convergence 
2 

UC @zJ CI % 

1488 
285.9 
81.22 
4.624 
471.2 
137.4 
123.3 
408 
1934 
132.6 
41.84 
134.1 
189.1 

1.22%08 
9.55~08 

1.514 
0.5419 

7.394005 
0.05058 
0.09107 

0.001657 
9.571-05 
2.174e-05 
0.002471 

0.0261 
0.0149 * 

0.004631 
67.15 

0.005892 
100 

354.3 
121.7 
335.6 
317.2 
843.3 

6.783e-06 
0.05045 

342.5 
217.6 

1.657 
0.3738 
0.4867 

9.696e-14 
0.6132 
0.2775 
4.963 
1.616 
4.77 

0.1578 
0.2091 
0.8838 
2.153 

BAUTRS 0.008848 0.0001354 X 
BFRNRS 5.943e-05 0.0005969 R 
BGMRRI 0.0003415 0.0284 R 
BGRCRS 9.294005 0.0004777 R 
BHDWWS 5.643e-05 0.0001864 R 
BLQRRS 0.006969 0.004569 F 
BMNCRS 8.679e-05 8.67~05 R 
BSHORS 7.074005 0.008381 F 

* BSPGWS 0.006177 o.ooo2729 B 
BTAPRI 6.098e-05 0.002837 R 
BTNDRI 0.0001406 0.01906 F 
BVARRS 0.000809 0.01346 F 
BWAPRS 0.000111 0.0901306 B 

C24THS 0.0007437 0.0006874 R 
CMWlHS 0.028 0.0095 R 
CMWTHS 0.008784 0.00821 
CNElHS 0.00503 0.000751 R 
CNETHS 0.01361 0.001678 X 
CSOTHS 0.0004325 0.001477 R 
CUSTHS 4.054e-05 4.344e-05 F 
C WETHS 0.0005571 0.0005949 R 

IBEVTI 9.929e-05 0.001752 R 
ICMETI l.O52e-08 0.006383 R 
IFATTI 5.976e-05 0.002057 B 
IFMETI 0.0009216 0.01885 R 
IGLCTI 0.0001653 0.01075 
IHAPTI 0.0901042 0.005982 x” 
INEWUO 7.64005 0.002101 R 
ITVRTI 0.0008571 1.561005 R 
ITVRUO 6574 0.01101 906.3 85.11 0.02277 0.003414 F 

8946 
5728 

11940 
4596 
7683 
5014 
4276 
8078 

8.627e-05 
0.0008224 
0.0001437 
5.12e-05 
0.001412 
0.001275 
3.132~06 
0.000324 

11830 
9063 
9377 
11230 
18370 
3083 
816.3 
3979 

3.336 
4.575 
9.969 
34.2 
17.77 

0.4219 
2.903 
2.895 

152.6 
20.16 
4044 
284.6 
517.3 
443.3 
2221 
751.4 

0.2058 
17.83 

0.002189 
6.747 

0.1818 
0.02705 
0.9796 
18.72 

5.47e-08 
23.91 

2.959e-05 
26.04 

0.001409 
1.685e-05 
0.000118 
0.006499 

0.521 
0.05469 

4.974 
1.50~09 

0.1159 
0.6787 
4.472 

0.5567 

Table 2: Structural model parameters as estimated by GAUSUM-STM for the 
TRIG-6 model. Note that az = CY&l O~,j/6. Th e individual seasonal variances 
are given in Table 3. 
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TRIG-1 TRIG-6 variances I AIC 
2 

I 
Qw 

1 
oW,l 

L 
aw,2 

L 
U&J,3 

L 
ulAs4 

L 
uw,5 

L 
uw,6 M TRIG-l TRIG-6 

BAUTRS 0.84 0.0020 
BFRNRS 0.40 0.0011 
BGMRRI 0.19 12.09 
BGRCRS 7.19e-15 27.87 

. BHDWWS 0.31 1.14 
BLQRRS 0.068 18.58 
BMNCRS 2.71 5.96 
BSHORS 1.61 2.93 

. BSPGWS 2.59 6.16 
BTAPRI 0.059 11.7 
BTNDRI 0.073 13.69 
BVARRS 0.76 3.81 
BWAPRS 0.99 1.10 

C24THS 3.33 0.010 
CMWlHS 1.78 11.18 
CMWTHS 0.0067 $352 
CNElHS 34.01 2.41 
CNETHS 5.54 10.86 
CSOTHS 3.25e-08 9437 
CWETHS 0.86 15.87 

IBEVTI 0.072 
ICMETI 0.055 
IFATTI 1.22 
IFMETI 4.66e10 
IGLCTI 0.040 
IHAPTI 0.019 
INEWUO 2.0 
ITVRTI 0.25 
ITVRUO 49.98 

33.44 
0.00036 

15.94 
1.91 
1.93 

207.6 
7.09 
5.97 
1.22 6.24 0.50 0.91 0.066 1.28 3818 3798 3782 

8.84 2.44 
0.86 2.37 
2.90 0.88 
0.37 0.069 
1.54 0.045 

0.066 4.59 
3.00 0.94 

0.0037 0.26 
0.64 2.74 
1.25 2.01 
2.08 1.39 
1.65 3.27~36 
5.77 4.94 

0.23 0.10 
7.55e-07 3.98 

535.7 82.7 
2.51 0.56 
5.81 1.22 

42650 18040000 
0.00042 0.037 

6.86 2.73 
3.28 1.07 
3.64 4.47 
10.19 0.0087 
0.83 0.22 
6.32 0.00031 
2.76 2.95 
6.52 0.44 

0.54 0.0025 0.0027 2748 2742 2736 
1.51 0.48 0.37 2351 2350 2355 

0.041 0.43 0.015 1764 1751 1729 
17.69 0.046 34.9 2049 2049 2059 
8.03 0.76 0.48 2566 2565 2572 
0.36 0.12 0.95 2290 2289 2296 
0.85 0.15 0.089 2577 2559 2544 
2.37 0.39 0.071 2607 2604 2603 
0.75 0.26 0.51 2888 2884 2888 
1.21 3.12e-05 7.92.2-06 1667 1664 1663 

0.00041 0.025 0.0029 1519 1500 1484 
0.97 0.53 0.016 2506 2493 2489 
1.07 0.094 0.081 2441 2435 2434 

1.29 0.39 3.99 3855 3853 3860 
3.12e-05 3.11e-05 0.2555 3880 3879 3883 

0.80 0.25 0.19 3858 3889 3865 
0.034 0.48 0.043 3877 3866 3868 

0.0048 1.34 0.0036 3970 3968 3974 
59730000 141800 250.6 3564 3564 3570 
0.00092 2.48 1.87 3686 3684 3691 

0.31 0.28 6.12e-05 2460 2455 2435 
1.34 0.26 0.016 1959 1958 1963 

2.32e-07 0.34 0.052 3327 3323 3315 
1.49 2.34 3.43 2879 2879 2889 
13.84 0.30 0.36 3003 3003 3011 

0.00018 1.78 1.19 2913 2913 2911 
0.34 0.225 0.071 3186 3177 3169 
0.24 0.024 1.84005 2895 2882 2877 

Table 3: Seasonal parameters as estimated by GAUSUM-STM for the TRIG-l and 
TRIG-6 models. The TRIG-6 variances are given as ratios to the TRIG-l varaince: 

2 ~~,j ~ U~,jlb,. The AIC values are given for the BSM, TRIG-l, and TRIG-6. 
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j = l,... ,6 be the variances for the TRIG-6 model and let CT: be the variance for 
the TRIG-l model. Table 3 gives 0: and ~~,j - o~~/U:. 

Table 3 also gives Akaike’s Information Criterion (AIC) for the BSM, TRIG-l, 

and TRIG-6 models. AIC is defined by 

AIC = -2 x 1ogL +2p 

where log L is the log-likelihood at the maximum and p are the number of parameters 
fit. AIC gives a guide towards selecting the “best” model, and models with lower 
AIC values are preferable. 

5 Assessing and Comparing Seasonal Adjustments 

Seasonal adjustments are assessed using a variety of criteria: see, for example, 
Dagum (1978), Granger (1978), Cl eveland and Terpenning (1982), den Butter and 

&Iourik (1990), and Findley et al. (1990). Th’ is empirical comparison is done mainly 
on the basis of a set of 9 diagnostic plots produced for each series. Naturally, only a 
small subset of these plots are given here. The complete “book” of plots is in Bruce 
and Jurke (1992). A brief description of the plots and statistics and what they are 
trying to assess is given below. Refer to Appendix B for detailed descriptions of 
each plot. 

In addition to the plots, seven statistics were computed to measure various 
aspects of the seasonal adjustment: roughness of adjusted data (ADJ ROUGH), 
trend roughness (TREND ROUGH), orthogonality (ORTHOG), seasonal magni- 
tude (SEAS MAG), seasonal flexibility (SEAS FLEX), seasonal roughness (SEAS 
ROUGH), and remaining seasonality (SEAS SIGNIF). These statistics are discussed 
in more detail below. Table 4(a) and 4(b) g ive the diagnostic statistics for X-12- 

ARIMA and TRIG-6 for each of the series. 
Figures l(a)-(f) display these statistics with boxplots for BSM, BSM-CONS, 

TRIG-l, TRIG-6, and X-12-ARIMA. The boxplots are broken down by series type 
(retail sales, construction starts, or inventories). The statistics ADJ ROUGH, 
TREND ROUGH, SEAS MAG, SEAS FLEX, and SEAS ROUGH are all “median 
corrected” within each plot (i.e., the median of all observations within a plot are 
subtracted). 

5.1 Criteria for Assessment 

Nature of seasonal factors 

In this study, we focus on the “flexibility” and “smoothness” of the seasonal factors. 
Flexibility measures the amount that the seasonal effect for a given month is allowed 
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Series 
ADJ ROUGH ORTHOG TRENDROUGH 

TRIG-6 x-12 TRIG-6 x-12 TRIG-6 x-12 

BAUTRS 3.21 3.21 -1.24 -1.51 2.68 1.17 
BFRNRS 1.51 1.54 1.93 1.81 1.16 0.83 
BGMRRI 1.08 1.17 3.46 3.99 1.08 0.84 
BGRCRS 1.25 1.23 0.63 0.47 0.61 0.63 
BHDWWS 2.56 2.20 0.01 -0.35 1.31 1.02 
BLQRRS 1.46 1.44 2.06 2.15 0.69 0.55 
BMNCRS 1.89 2.31 2.53 1.63 0.52 0.63 
BSHORS 2.48 2.59 1.39 1.60 1.23 0.93 
BSPG WS 4.36 4.48 3.12 2.58 2.39 1.27 
BTAPRI 1 .Ol 1.03 3.47 3.61 1.01 0.72 
BTNDRI 1.01 0.83 2.76 3.87 1 .Ol 0.81 
BVARRS 2.37 2.21 2.06 2.05 0.69 0.69 
BWAPRS 1.94 1.91 0.72 2.08 0.83 0.69 
C24THS 13.60 13.40 1.56 -2.43 4.65 3.24 
CMWlHS 13.89 13.70 6.00 6.54 4.37 3.52 
CMWTHS 13.20 12.80 4.19 6.84 5.82 3.64 
CNElHS 12.40 13.30 1.12 1.28 2.71 2.52 
CNETHS 16.70 16.80 3.58 6.82 3.41 2.05 
CSOTHS 8.07 7.91 0.82 0.68 3.92 2.40 
CWETHS 9.89 9.94 0.97 -0.14 5.28 3.20 
IBEVTI 0.98 1.03 0.68 0.45 0.98 0.66 
ICMETI 1.09 1.10 -1.57 -1.78 0.91 0.90 
IFATTI 4.19 4.22 1.59 1.11 4.19 2.10 
IFMETI 1.74 1.60 -1.37 -0.70 1.57 1.08 
IGLCTI 1.93 1.82 -0.49 -0.81 1.94 1.20 
IHAPTI 1.61 1.59 -1.48 -1.73 1.61 1.09 
INEWUO 3.14 3.25 1.22 0.40 3.14 1.87 
ITVRTI 2.32 2.23 -0.39 -1.15 2.23 1.45 
ITVRUO 7.01 9.74 7.89 7.12 4.27 2.46 

Table 4: ADJ ROUGH, given by (13), measures the roughness of the seasonally 
adjusted data. TREND ROUGH, given by (14), measures the rougness of the trend. 
ORTHOG is 100 times the correlation between the seasonally adjusted data and the 
seasonal component. 
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Series 
SEAS FLEX SEAS ROUGH SEAS SIGNIF SEAS MAG 

TRIG-6 X-12 TRIG-6 X-12 TRIG-6 X-12 TRIG-6 x-12 

BAUTRS 
BFRNRS 
BGMRRI 
BGRCRS 
BHDWWS 
BLQRRS 
BMNCRS 
BSHORS 
BSPGWS 
BTAPRI 
BTNDRI 
BVARRS 
BWAPRS 
C24THS 
CMWlHS 
CMWTHS 
CNElHS 
CNETHS 
CSOTHS 
CWETHS 
IBEVTI 
ICMETI 
IFATTI 
IFMETI 
IGLCTI 
IHAPTI 
INEWUO 
ITVRTI 

0.34 

0.15 
0.22 

0.00 
0.18 

0.10 
0.71 
0.34 

0.52 

0.10 
0.18 
0.23 
0.35 

0.41 

0.46 

0.71 

1.57 

0.87 

0.10 
0.28 

0.21 

0.06 
0.50 
0.00 
0.06 
0.16 

0.48 

0.16 

2.60 

0.44 
0.22 

0.16 

0.08 
0.24 
0.16 

0.45 
0.36 
0.67 

0.13 

0.10 
0.23 
0.29 
0.76 

0.69 
0.74 

0.77 

0.76 
0.31 
0.48 

0.17 
0.10 
0.59 
0.20 

0.22 

0.24 

0.69 
0.30 

1.54 

0.11 
0.04 
0.09 
0.00 
0.06 
0.03 

0.28 

0.08 

0.12 
0.03 

0.08 
0.05 
0.10 
0.08 

0.08 

0.11 
0.41 

0.18 
0.02 

0.04 

0.05 

0.01 
0.10 
0.00 
0.01 
0.04 

0.11 
0.03 

1.21 

0.07 
0.03 

0.02 

0.02 
0.04 
0.03 

0.06 
0.05 

0.10 
0.02 

0.01 
0.03 
0.04 

0.11 
0.11 
0.10 
0.11 
0.16 
0.06 
0.09 
0.02 
0.01 
0.07 

0.03 

0.03 

0.03 

0.08 
0.04 

0.22 

0.90 0.98 9.53 9.60 

0.98 1.00 6.07 6.18 
0.96 0.98 6.43 6.28 

0.98 0.96 3.37 3.37 
1.00 0.98 6.19 6.62 

0.97 0.98 8.93 8.97 

1.00 0.90 17.50 17.40 
1.00 1.90 12.60 12.60 

1 .oo 1.90 9.33 9.65 

1.00 0.99 5.47 5.43 

0.00 0.91 3.63 3.84 

0.99 1.99 16.10 16.10 

0.99 0.96 13.60 13.60 

1.00 0.98 16.30 17.80 

0.99 0.96 44.10 44.10 

1.00 0.99 40.80 39.60 

1.00 0.94 43.40 43.10 

0.99 0.35 36.50 34.90 
1 .oo 0.96 14.80 14.90 

1.99 0.97 15.80 15.80 

1.09 1.90 1.65 1.63 
1.00 1.90 0.68 0.79 

0.58 0.93 10.40 9.97 

1.00 0.76 3.55 3.52 

1.00 0.99 1.71 2.09 

1.00 1.99 4.28 4.31 

0.97 0.98 5.90 6.20 

1.00 0.98 4.89 4.89 

ITVRUO 0.84 0.28 14.10 12.30 

Table 4: SEAS FLEX, SEAS ROUGH and SEAS MAG measure the flexibility, 
roughness, and magnitude of the seasonal component as defined by (lo), (12), and 

(11) respectively. SEAS SIGNIF represents the significance of seasonality in the 
seasonally adjusted data. 
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Figure 1: (a) The diagnostic ADJ ROUGH, given by (13), and (b) the diagnostic 
TREND ROUGH, given by (14). The boxplots are “median” corrected within each 
plot (i.e., the median of all observations within a plot are subtracted). 
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Figure 1: (c) The absolute value of the diagnostic ORTHOG, given by (15), and 
(d) the diagnostic SEAS MAG, given by (12). The boxplots for SEAS MAG are 
“median” corrected within each plot (i.e., the median of all observations within a 
plot are subtracted). 
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Figure 1: (e) The diagnoistic SEAS FLEX, given by (10) and (f) the diagnostics 
SEAS ROUGH, given by (11). The boxplots are “median” corrected within each 

plot (i.e., the median of all observations within a plot are subtracted). 
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to “bend” or change from year to year. A certain amount of flexibility is desirable 
to allow the factors to adapt to the data. 

Seasonal factors of a given flexibility can either be slowly varying or rapidly 
changing. This corresponds to a monthly effect which evolves smoothly or roughly 
from year to year. All things being equal, smoother seasonal factors are preferable. 
Hannan (1964) states 

. ..there seems little point in allowing for anything more than the very 
slowest change in seasonal variation. It would seem wrong here to con- 
cern oneself too much with faithfully representing a possibly rapidly 
changing seasonal because of the consequent risk of seriously distorting 
the series. 

. A very effective diagnostic for displaying the nature of the seasonal factors is 
the “SSI-plot” (Cl eveland and Terpenning (1982)). Figure 11 gives an example of 
an SSI-plot. The detrended transformed data is displayed for each month with the 

* seasonal factors superimposed as a line. It is also useful to plot the evolution of 
the seasonal factors from year to year, as in Figure 10. This plot is an adaptation 
of similar plot in Cleveland and Terpenning (1982). The top plot shows the mean 
seasonal factor for each method and the subsequent plots show the deviations from 
the mean. See Appendix B for a complete description of these plots. 

We measure seasonal flexibility by the year to year change in the smoothed 
seasonal factors. Denote the seasonal factors of the log-transformed data by St. Let 
,!?, be the result of smoothing St using a linear filter of length three with weights 
.25, .5 and .25. The diagnostic is given by 

SEAS FLEX - N t=to it!! 2 la”‘3 00) 

SEAS FLEX corresponds roughly to the mean annual percentage change in the 
smoothed seasonal: 

exp $ - exp St-12 

exp St-12 

M A12$. 

Seasonal roughness is measured by simply looking at the mean absolute residuals 
from the smooth: 

SEAS ROUGH = N t=to 100 2 1st - $1. 

Another useful concept is the overall magnitude of the seasonal effect. We mea- 

sure this by 

SEAS MAG = $ 2 IS,]. 
t-to 

(12) 
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Nature of seasonal adjustments 

A simple but important plot is to look at the decomposition produced by the ad- 
justment procedure. An example of this plot is given by figure 8. While this plot 
is good at describing the overall nature of the decomposition, it is of little help 
for comparison of the adjustments. Figure 22 gives an example of a more direct 
comparison of seasonal adjustment methods. The top plot compares the seasonally 
adjust series given by TRIG-6 and X-12-ARIMA. The middle plot shows the ratio 
of these adjusted series, and the final plot compares the trends. See Appendix B for 
a complete description of these plots. 

All things being equal, smoother seasonal adjustments are seen as desirable (den 
.Butter and Mourik (1990)). Let At be the log transformed seasonally adjusted data. 
Roughness of the seasonally adjustments is measured by 

ADJ ROUGH - N t=tO i!f 2 [AA,/. (13) 

* 

This corresponds approximately to the mean percentage change in the untrans- 
formed seasonally adjusted data: 

exp At - exp At-1 

exp At-1 
x AAt 

Very smooth series have roughness close to zero. 
A diagnostic for the roughness of the trend is similarly defined: 

TREND ROUGH 3 N t=tO 100 2 IAT,\. (14) 

where Tt is the trend of the log transformed data. While smoother trends are often 
visually more appealing, there is no consensus that a smoother trend is necessarily 
better. 

Another desirable feature of a seasonal decomposition is for the seasonally ad- 
justed data to be orthogonal to the seasonal factors. To measure this, we define 

ORTHOG z 100 x corr(St, At) (15) 

where “corr” is the correlation between two variables. 

Comparison of outlier treatments 

It turns out that there is relatively little difference in the effect of outlier treatments 
on the adjusted data: see section 6.1. Hence, outlier treatments are compared mainly 
by examining their effect on the trend, as in figure 21. The top plot compares the 
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trends with the location of outliers and level shifts as identified by X-12-ARIMA 
marked. The middle plot gives the ratio of the trends, and the final plot gives 
the posterior probabilities of outliers and level shifts as identifed by TRIG-6. See 
Appendix B for a complete description of these plots. 

The stability of the outlier treatments is also considered in the sliding spans plots 
(see below). 

Remaining seasonality in the seasonally adjusted data 

There should not be any seasonality remaining the in the seasonally adjusted data. 
In a stable seasonal pattern, this is easily checked using a one-way ANOVA signif- 
icance test for the presence of seasonality. The test is not very effective for testing 
the residual seasonality in a changing seasonal pattern. For this, we need to look 
at the periodogram of the detrended seasonally adjusted data, as in figure 12. It 
is probably desirable for a seasonal adjustment procedure to eliminate power in 
the periodogram at and near the fundamental frequency n/6 and perhaps its first 

*harmonic (Hannan (1964)). 
Let Lt be the prior adjustment for level shifts in the log scale as identified by 

X-12-ARIMA. Let Tt be a smoothed version of the log transformed trend obtained 
by taking 23 point triangular moving average smooth of Tt - Lt. The detrended 
seasonally adjusted data is given by At = At - (Lt + 5?;), where At are the original 
log transformed seasonal adjustments. The diagnostic “SEAS SIGNIF” corresponds 
to the pvalue of the one-way ANOVA test for the presence of a fixed seasonal 
effect in the series Ai,. The one-way ANOVA test is computed by fitting the least 
squares regression. The regression matrix is composed of 12 dummy variables, each 
representing the effect of the jth month. 

Other authors have used a test for “idempotency”, which is defined by measur- 
ing the size of the seasonal factor obtained by reapplying the seasonal adjustment 
procedure to the seasonally adjusted data. A procedure is fully idempotent if no 
additional seasonality is found. Idempotency is distinct from detecting residual sea- 
sonality: if a procedure inadequately removed seasonality initially, it may still fail to 
do so in the second application. We have not looked at idempotency, but expect to 
achieve results similar to those obtained by den Butter and Mourik (1990): in con- 
trast to X-12-ARIMA, the structural model procedures are nearly fully idempotent. 
It is natural that X-12-ARIMA, which is a semi-parametric procedure that yields 
more flexible seasonal factors, uncovers more seasonality in the second application. 

Stability of the seasonal adjustments procedure: 

Another crucial aspect of seasonal adjustment is the stability of the procedure. 
Seasonal adjustment is often done on official statistics, and it is especially important 
that the procedure does not contain any inherent volatility. The sliding spans of 
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Findley et al. (1990) are one measure of volatility involving adjustment of the data 
using four overlapping spans of approximately eight years in length. This plot shows 
the volatility of the month-to-month percentage change in the seasonal adjustments. 
For time t and span k, these are defined as 

MM (k) _ ex~At(V - ~XP At-#4 
t - 

exp At(k) 

where At(k) is the log transformed seasonally adjusted value at time t in span k. 
Using the notation of Findley et al. (1990), th e value plotted for a given time t is 

MM,“” = mpxMM,(k) - mjnMM,(k) (16) 

where k varies over those spans that contain both months t and t - 1. Seasonal 
adjustments with more than 25% of the months with MM,“” > 0.03 are almost 
never acceptable. 

I The sliding spans concept is used to construct a “Sliding Spans Plot”, such as 
figures 23 and 24. The top plot shows the seasonally adjusted data for the four spans 
The second and fourth plots display the statistic MM,““. The third plot compares 
the outlier treatments over the spans. 

6 Main Results 

6.1 Comparison of Seasonal Factors 

Smoothness and Flexibility of X-12-ARIMA 

X-12-ARIMA and structural models yield significantly different seasonal decompo- 
sitions and seasonal adjustments. This is fundamental to the nature of the methods, 
and has nothing to do with the difference in outlier treatments. For the business 
and inventory series, X-12-ARIMA produces smoother seasonal factors than TRIG- 
6 as defined by the year to year change: see figure l(f). At the same time, the 
X-12-ARIMA seasonal is as or more flexible than any of the structural models: see 
figure l(e). Correspondingly, X-1ZARIMA often removes significantly more power 
in the periodogram around the fundamental frequency 7r/6 (this is reflected in the 
periodogram plots). 

The X-1ZARIMA and TRIG-6 seasonal factors clearly differ in 15 of the 29 of 
the series (Bl, B2, B3, B5, B6, B7, BlO, B13, C20, 121, 123, 124, 125, 127, and 
128). Th e 1s mc Ion is still noticeable, though less significant, in 10 others (B8, d’ t’ t’ 
B9, Bll, B12, C14, C15, C20, 122, 126, and 129). In general, in series with little 
structure or linear changes in seasonal patterns, the differences between the methods 
is small. Both procedures can capture basically linear evolution in a seasonal cycle. 
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The differences are the greatest in series which exhibit strong, non-linear changing 
seasonal patterns. 

As discussed in section 5, smoothness is a desirable feature. Increased flexibility 

is also important for adapting to changing seasonal patterns. Hence, disregard- 
ing other important considerations such as stability, we feel that the X-12-ARIMA 
seasonal factors are “preferable” in the above series. The short term evolution of sea- 
sonal patterns for GAUSUM-STM are much “rougher”. We are probably better off 
putting this “excess” local variation of a seasonal pattern into the trend or irregular 
component. Seasonal patterns which are allowed to evolve into very different shapes 
in a short time frame, such as those produced by the GAUSUM-STM method, are 
probably not capturing what “most users” think of as a seasonal effect. 

Consider, for example, the IGLCTI series. Figures 8 and 9 give the seasonal 
decompositions obtained by the X-12-ARIMA and TRIG-6 methods (see appendix . 
B for a description of these and other plots). The seasonal factors for X-12-ARIMA 
are much more flexible. This is reinforced by figure 10, which compares the seasonal 

*factors for X-12-ARIMA, BSM, TRIG-l and TRIG-6. The SSI-Plot, figure 11, 
indicates that much is gained from this additional flexibility. The slow variation of 
the August effect is captured by X-12-ARIMA. By contrast, the structural models 
estimate a constant August effect. The power near the fundamental frequency is 
considerably reduced for X-12-ARIMA: see figure 12. 

A less dramatic but equally revealing example is given by the BMNCRS series 
(figures 13-15). In this case, the structural models are as or more flexible than 
X-12-ARIMA. However, this flexibility is achieved at a significant increase in rough- 
ness. The seasonal factors for structural models exhibit a great deal of seemingly 
undesirable local variation. The X-12-ARIMA seasonal factors are intuitively more 
appealing. 

These conclusions are in contrast to the study by den Butter and Mourik (1990), 
who found no consistent difference in the flexibility between the two methods. The 
criteria used by den Butter and Mourik (1990) is apparently not sufficient to dis- 
tinguish between the performance of seasonal factors. Not only should flexibility be 
distinguished from roughness, but it is also necessary to see how well the seasonal 
factors fit the data. 

These results are not surprising. X-12-ARIMA is semi-parametric while 
GAUSUM-STM is based on parametric structural models. Hence, X-12-ARIMA 
has significantly more degrees of freedom to devote to the seasonal factors. The 
smoothness of X-12-ARIMA seasonal factors has been explicitly incorporated into 
the procedure based on practical considerations. By contrast, the seasonal factors 
for structural models are based on the maximum likelihood estimates. This does 
not guarantee seemingly desirable features such smoothness. 

Seasonal factors for structural models which mimic those of X-12 might obtained 
by constraining the variances of the model (see section 7.5). Inclusion of a local AR 
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component may help some by sopping up local variability. A more fundamental 
solution probably lies in development of a better model for the seasonal component. 

Rigidity of the 

In all the trigonometric models (TRIG-l TRIG-6) provide 
or more seasonal factors the BSM model. TRIG-l 
significantly better changing seasonal than the in 8 (B3, B7, 

BlO, B12, 127, 128). these series, removes more around 
the frequency, although seasonal factors generally rougher. 

BGMRRI series a dramatic of the of the 
seasonal model. 16 gives SSI-Plot for the movements the 
BSM factors bear resemblance to data! Considerable is left 

the periodogram at and the fundamental (see figure 
Recall that and BSM the same of parameters. only one 

is to considered for adjustment, on basis of results, we 
would prefer 

TRIG-6 is flexible than 

Optimizing over six variances of just for the model 
makes significant difference. to be TRIG-6 is or more 
than TRIG-l all series. 15 of series, this to significantly fits to 

seasonal patterns removal of near the frequency 
(Bl, B6, B9, C14, C15, C19, 121, 125, 126, 128). A 
example of flexibility gained optimizing over six variances given by 

BGMRRI series. the seasonal progress in from BSM 
TRIG-l to The X-12-ARIMA looks like smoothed version 
the TRIG-6 See Figures and 17 a typical of this. 

regards to of fit, (1989) ar ues that is rarely 
to optimize all six of the seasonal model. AIC’s 
of 3 favor in several This indicates optimizing over 

variances may lead to significantly better In regards seasonal 
adjustment, diagnostic plots that optimizing additional parameters 
quite important. 

of Simple 

These results point out need for range of and plots evaluate 
the of a adjustment procedure. for example, 
simple one-way test for seasonality, discussed section 5.1. 
test has little power is sometimes For the series, the 
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test has a “pvalue” of essentially 1 for all structural models, indicating no seasonality 
remaining in the residuals. On the other hand, the pvalue for X-12-ARIMA is 0.761. 
On the surface, this would indicate that the structural models are quite adequate, 
and do a better job of removing seasonality from the data. Examination of figures 
19 and 20 tells otherwise: X-12-ARIMA seasonal factors adapt to the data in an 
appealing manner and considerable power is reduced in the periodogram around the 
fundamental frequency. 

The results also indicate that a better fitting model, according to AIC, doesn’t 
mean a more appealing seasonal factor. For example, compared with TRIG-l or 
BSM, TRIG-6 has a much lower AIC value for the ITVRUO series. However, exam- 
ination of the seasonal factors with the SSI Plot does not show a strong preference 
for TRIG-6. The ITVRUO series is difficult to fit, and in that sense is atypical 
(the series undergoes a variance shift in the latter portion). A more typical exam- 
ple is given by BLQRRS, for which TRIG-6 has a slightly higher AIC value but 
significantly more flexible seasonal factors. 

I 

6.2 Comparison of outlier treatment methods 

Advantages of the GAUSUM-STM method 

For many of the series, GAUSUM-STM detects fewer outliers/level shifts or the 
same number with lower probability (Bl, B2, B4, B5, B7, B9, B13, C16, C17, C19, 
121, 123, 126, 127, 128). Th’ 1s is illustrated by figure 25, which compares the outlier 
detection schemes for IFATTI. Eight outliers and ten level shifts are detected by 
X-12-ARIMA. By contrast, TRIG-6 detects only 3 major level shifts. This is partly 
a reflection of the rather arbitrary level at which the outlier threshold is set for the 
X-12-ARIMA procedure. Setting it to a higher level would obviously reduce the 
number of series for which X-12-ARIMA detects more outliers/level shifts. 

In some series, GAUSUM-STM detects numerous low probability level shifts 
or outliers not identified by X-12-ARIMA (B3, B6, B8, B12, C14, C15, C20, 122, 
124, 125, 129). F or example, GAUSUM-STM picks up several small level shifts 
for ICMETI not identified by X-1ZARIMA ( see figure 26). These level shifts are 
barely visible in a plot of the seasonally adjusted data. For the series BLQRRS, 
GAUSUM-STM models a “ramp” using two successive level shifts of moderate to 
high probability while X-12-ARIMA uses one large level shift. The GAUSUM-STM 
approach seems intuitively more appealing in these cases. 

For the series listed above, the two procedures handle major outliers and level 
shifts in a similar manner. The only difference for these series is the way in which the 
methods handle small outliers and level shifts. The GAUSUM-STM procedure has 
two apparent advantages. First, it has an automatic way to adapt the “cutoff” level 
based on the likelihood. Second, it can incorporate small level shifts or outliers by 
giving them low probability. However, these advantages are more theoretical than 
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practical: the data does not give strong evidence supporting the GAUSUM-STM 
outlier procedure over the X-12-ARIMA method. 

Problems GAUSUM-STM 

several GAUSUM-STM a with moderate if 
shifts present B3, 121, 124, For BVARRS 

both and pick several level (see 
29). also several level with to 
probability. X-12-ARIMA identifies at and The 

of seasonal data supports 12/74 3/86 out 
outliers. GAUSUM-STM 12/74 a probability 

shift 3/86 a probability shift outlier. fails 
detect “obvious” this 

This illustration general with GAUSUM-STM 
When series mostly shifts a of the 

*posterior of occurrence an tends be small. 
converse as when series many and single shift, 

estimated probability a shift small is by 

For there several level and moderate 
The gives relatively probability level These a 
degree protection the outliers this (by the 
ance). giving low to the is since 
does incur “penalty” modeling when aren’t (as the 

for but observations). 
problem analogous that determining smoothness the 

The which estimated the is rougher is 
appealing. possible to a trend to the 
mization and (1983)). this the probabilities be 

to greater a value. could justified a 
framework. or the is since likelihood 
be flat this case. 

level or outlier 

X-12-ARIMA GAUSUM-STM use different to 
non-Gaussian in number series BlO, C18, 

129). the tends treat series one more 
shifts, identifies outlier A example this 

given figure which the procedures the series. 
series a hump three 10/75, 
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and 12/75. X-12-ARIMA models this by declaring lo/75 and l/76 as outliers, while 
GAUSUM-STM identifies these as level shifts. According to the data, both modeling 
approaches are plausible. In general, when X-12-ARIMA and GAUSUM-STM differ 
in this way, neither method is demonstrably superior. 

Difference in outlier treatments not important 

As discussed above, the GAUSUM-STM and X-12-ARIMA outlier procedures differ 
in significant (although not major) ways. This difference, however, is usually not 
very important in terms of the estimated seasonally adjusted data (some exceptions 
are given below). The difference in the seasonally adjusted data is primarily due 
to the different estimation methods of the seasonal factors (see section 6.1). The 
relative effect of the outlier methods on the seasonal adjustments is generally small. 
For example, the outlier treatments for the series IFMETI are substantially different: 
see figure 21. Figure 22 illustrates that the dominant differences in the estimates of 
the seasonal factors are clearly due to the different way in which the seasonal factors 

*are estimated (see also figure 19). 
In a few cases, the outlier treatments lead to quite notable differences in the 

seasonal adjustments (Bl, B3, B6, BlO, B12, C16, C17, 123). For CNETHS, the 
X-12-ARIMA procedure identifies 5 outliers in January and 4 in February. TRIG- 
6 also identifies most of these outliers, but generally with probability less than 
one. As a result of the outlier identifications, the X-12-ARIMA seasonal factors for 
January are elevated: see figure 34. According to the periodogram (figure 35), there 
is considerable seasonality remaining in the X-12-ARIMA decomposition. For this 
series, it would seem that exceptionally low January values are part of the seasonal 
effect. The outlier procedure of X-12-ARIMA is perhaps adjusting too much for 
these values. 

Another example is given by the series BVARRS. Recall that GAUSUM-STM 
has difficulty in picking up a fairly major outlier in this series at time 3/86 (see 
the above discussion and figure 29). Th’ is outlier clearly seems to have leaked into 
the seasonal pattern for the GAUSUM-STM decomposition: see figure 30. A less 
dramatic, and more typical, example is given by the BAUTRS series. Some of the 
largest differences between the seasonal adjustment are at times in which the outlier 
treatments are different. However, the difference in the seasonal adjustments for 
BAUTRS are still mainly due to the different seasonal factors. 

For seasonal adjustment, the crucial thing is to deal with moderately large out- 
liers and level shifts in an adequate manner. It is not crucial to handle small outliers 
or level shifts. The way in which the procedure deals with non-Gaussian behavior 
is not especially important: e.g., either a local level shifts or an outlier patch may 
suffice. 
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Problems with doublets and triplets 

Often economic data has two or three adjacent aberrant values, which we call a 
“doublet” or “triplet”. These are due to strikes, weather, or any condition which 
has a temporary effect on the economy. For example, the CMWlHS series has 
a doublet at l/79 and 2/79 ( see figure 33), presumably caused by unusually cold 
weather. X-12-ARIMA models this using a local level shift. This leads to very 
unnatural looking trends. GAUSUM-STM is not very satisfactory either. It uses a 
combination of outliers and level shifts to model the patch. This results in a trend 
which chases after the peaks and valleys. 

Both of the procedures can be modified to handle this situation better. An ad 
hoc solution exists for X-12-ARIMA: the identification procedure can automatically 
search for adjacent or near adjacent level shifts of opposite sign, and replace them 
with an outlier patch. GAUSUM-STM can be modified by extending the outlier 
model underlying the procedure to to incorporate outlier patches: see section 7.4. 

-6.3 Stability of GAUSUM-STM 

X-12-ARIMA is less stable according to sliding spans 

According to sliding spans statistics, the X-12-ARIMA seasonally adjusted data is 
less stable than GAUSUM-STM with the BSM fit in 16 series (Bl, B2, B7, B8, B9, 
B12, C14, C15, ClS, C19, C20, 124, 125, 127, 128). Note that the BSM fit is used 
for comparison in this case rather than TRIG-6. X-12-ARIMA is significantly more 
stable for only two series, and only then because of problems with the initialization 
of the GAUSUM-STM method (BlO and Bll; see section 6.5). 

Some tradeoff between stability and flexibility is inevitable. The BSM seasonal 
factors are much less flexible than those of X-12-ARIMA: see figure l(e). Hence, it is 
not surprising that X-12-ARIMA is less stable. For example, the X-12-ARIMA sea- 
sonal factors for IFMETI are quite flexible relative to those of the structural models, 
capturing the changing seasonal pattern (see figures 19 and 20). Correspondingly, 
the seasonal adjustments are significantly less stable: compare figures 23 and 24. In 
this case, the decrease in stability is probably a price worth paying for the increase 
in sensitivity. 

A more worrisome cause of instability in X-12-ARIMA seasonal adjustments is 
the instability in its outlier identification procedure. For example, X-12-ARIMA 
identifies completely different outliers and level shifts for each span of the series 
BSPGWS. Figure 27 shows the consequences of an unstable outlier procedure: the 
sliding spans statistic MM,““” exceeds 0.25 in one case. By contrast, the maximum 
value of MM,““” for the GAUSUM-STM procedure is about 0.09: see figure 28. 
This problem is discussed in more detail below. 
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GAUSUM-STM outlier identification procedure is more stable 

X-12-ARIMA outlier identification procedure is less stable than the GAUSUM-STM 
method for 13 series (Bl, B2, B8, B9, B12, B13, C15, C17, C18, C19, C20, 125, and 
127). In all but one of these series, this instability leads to significantly less stable 
seasonal adjustments (as measured by the diagnostic MMtmax). One example was 
shown above with the series BSPGWS. Another example is given by the series 
BVARRS. In spans 2 and 3, an outlier is identified at 2/86. In span 4, no outlier is 
identified at 2/86. The corresponding seasonally adjusted data for span 4 is much 
lower since the influence of the data value leaks into the seasonal (see figure 31). The 
GAUSUM-STM procedure is quite stable for BVARRS, including both the estimates 
of posterior probabilities of outliers and the seasonal adjustments (see figure 32). 

GAUSUM-STM is less stable for 6 series (B6, BlO, Bll, C16, 124, 129). Three of 
. these (BlO, Bll, and 129) are due to a problem with the initialization procedure (see 

below). In two others (B6 and 124), GAUSUM-STM estimates several additional 
I level shifts with moderate or low probability in one span. This has very little effect 

on the seasonal adjustments. For CNElHS, an outlier is only identified in two spans 
by GAUSUM-STM, leading to quite a large value of MM,“” for that month (this 
it the type of instability which is more typical of X-12-ARIMA). 

It seems reasonably safe to conclude that the X-12-ARIMA outlier identification 
procedure is less stable. Furthermore, the instability of X-12-ARIMA has a greater 
effect on the instability of the seasonal adjustments. These results are not surprising. 
X-12-ARIMA uses a discontinuous outlier detection and estimation method. This 
means that fitting to subsets, such as with the sliding spans procedure, is more 
likely to lead to large changes in the estimates. By contrast, GAUSUM-STM uses 
a continuous scheme. Similar results should hold with respect to perturbations in 
the data. Hence, we can expect that GAUSUM-STM is a more robust-resistant 
procedure than X-12-ARIMA. 

It is interesting to note that the outlier identification for X-12-ARIMA in the 
spans is sometimes quite different than for the entire series (121, 123, 129). This is 
due to the different estimate of variance when a shorter segment of the series is used. 
It is not clear, though, why GAUSUM-STM d oes not exhibit the same behavior for 
these series. 

6.4 X-12-ARIMA trends are smoother 

X-1ZARIMA has smoother trends in all but 3 series (the exceptions are B4, B7, 
122). The decompositions of IGLCTI, given in figures 8 and 9, give a typical example 
of this. The X-1ZARIMA trends are visually more appealing. This is a well known 
feature of the time series structural model seasonal decomposition. Harvey and Valls 

Pereira (1989) defend the rough trends yielded by structural models. 
Smoother trends for structural models can be obtained simply by constraining 
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the variances (see section 7.5). Including a local AR trend in the STM’s may also 
produce more stable trends, although the fitting would become more difficult and 
perhaps unstable. 

6.5 Problems with GAUSUM-STM Initialization 

As discussed towards the end of section 3.3, the current method for initializing the 
filter for the GAUSUM-STM procedure is inadequate. Problems with initialization 
crop up in three series: BTAPRI, BTNDRI, and ITVRUO. These series have poor 
or unstable estimates of the seasonal factors. The problems with ITVRUO stem 
from having large outliers within the first thirteen observations. With the current 
initialization procedure, GAUSUM-STM identifies adjacent level shifts in the fourth 
span. In all other spans, these observations are identified as outliers. 

The seasonal pattern for BTAPRI and BTNDRI drops dramatically from Novem- 
ber to December. Instead of capturing this drop in the seasonal, GAUSUM-STM 

*partially models it using a level shift. As a result, the estimated seasonal factors 
for BTNDRI are quite poor: see figure 36. Note that this effect is worst at the 
beginning of the series. Considerable power is left in the periodogram for BTNDRI. 

7 More on GAUSUM-STM 

7.1 Estimation of standard errors 

A big advantage of a model based procedure over X-12-ARIMA is in the availability 
of standard errors for the seasonally adjusted data. GAUSUM-STM is especially 
good in this regard, since it incorporates outliers and structural changes within the 
model. GAUSUM-STM actually produces an estimate of the posterior density, not 
just standard errors. Kitagawa (1987) g ives several nice examples of the advantages 
of non-Gaussian confidence intervals. See Kitagawa (1988) for examples in the 
context of seasonal adjustment. 

In the parametric outlier procedure used by X-12-ARIMA, the estimate of stan- 
dard errors is not as realistic. This is partly because the standard errors are calcu- 
lated under the assumption that the location of the outlier or level shift is known. 
This can make a big difference, since the timing of a local level shift or outlier patch 
is often in doubt, especially towards the ends of the series. In addition, the intervals 
produced by the ARIMA outlier identification procedure are purely Gaussian, and 
cannot capture the long tailed nature of the densities. 

Figure 2 gives 99% confidence intervals for the seasonal adjustments for the 
BVARRS series. The top plot shows the seasonally adjusted data with the intervals 
and the bottom plot indicates the width of the intervals. The intervals widen towards 
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the ends of the series, reflecting “end effects”. The intervals also tend to get wider 
near level shifts and outliers. 

The importance of non-Gaussian intervals is better exhibited by the 99% con- 
fidence intervals for the trend, which are given in figure 3. Each of the level shifts 
identified in figure 29 are associated with a significantly wider confidence interval. 
Note that the greatest uncertainty is not near the large level shift in 1976, which is 
easy to identify and model. Rather, it is near the series of smaller level shifts in 1986. 
The confidence interval is over twice as wide near the patch of level shifts in 1986. 
The GAUSUM-STM confidence regions do a good job of reflecting the difficulty 
of tracking the trend. One could not expect the parametric outlier identification 
procedure of X-12-ARIMA to perform as well in this regard. 

. 7.2 Modeling calendar effects 

In the fits done for GAUSUM-STM, trading day and Easter effects were handled by 
- -prior adjustment based on X-12-ARIMA. Optimizing over trading day and Easter 

regression variables is not very critical, and is unlikely to lead to significantly dif- 
ferent results. This is mainly because both GAUSUM-STM and the ARIMA model 
underlying X-12-ARIMA give reasonable fits to the data and adequately deal with 
outliers and level shifts. Hence, fitting a fixed effects regression variable such as for 
trading day should be roughly equivalent with either procedure. 

For example, the trading day coefficients were optimized for the BAUTRS series. 
The top plot in figure 4 shows the original “REGCMPNT” calendar effect. The 
ratio of the calendar effect obtained by optimizing over the regression coefficients 
to the REGCMPNT calendar effect is given in the second plot. Clearly further 
optimization in this case makes little difference. 

7.3 Building in Ramps and Other Outlier Models 

For the sake of parsimony, simplicity, and computational efficiency, the model used 
to fit the series only accommodated level shifts. A slight generalization of this model 
can be obtained by inflating both the variances of qt and & in the second component 
of the Gaussian mixture model (7): 

This more general “ramp” yields very similar estimates for the trend or seasonal 
in a representative subset of eight series. The series experiencing the largest change 
in the estimated trend is IFMETI, for which the maximum difference is only 3~0.5%. 



36
 

38
 

40
 

42
 

44
 

46
 

48
 

5(
 

I 
I 

I 
I 

I 
I 

I 

+
 

60
00

 
62

00
 

84
00

 



8 
8 

. 

. 
. . 

. . . l 
. l 

. . 

. 
. 

. l . l 

. 
. 

. 

. 
. . 

. 

. l 

. 

. 

. . 
l 

. : 

� . 

. 

: 

1 I I I 

1970 1980 

38 

Figure 3: The BVARRS data with 99% confidence intervals for the trend (top plot) 
and the width of the confidence intervals (bottom plot). 
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Figure 4: (a) The original REGCMPNT calendar effect for BAUTRS and (b) the 
ratio of the optimised calendar effect to the original. 
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Figure 5 compares the trends for the model with and without the “ramp” effect. 
The top plot displays the log-transformed seasonally adjusted data along with both 
trends. Note that the trends are virtually indistinguishable. The second plot dis- 
plays the differences between the transformed seasonally adjusted series. The third 
plot compares the probability of detection of a level shifts and outliers, with the 
dashed lines corresponding to the “ramp” model. 

The interesting thing to note here is that the ramp model detects a patch of 
very high probability structural changes in the beginning of 1975. This corresponds 
to the sudden change in the slope of the series at that time. This indicates that 
the main benefit from including ramps may be to improve the overall fit from the 
model. 

7.4 Handling Doublets 

GAUSUM-STM does not produce very appealing decompositions in the presence 

il of adjacent outliers (called “doublets” or “triplets”). A fairly unappealing spike 
appears in the trend, which “chases” after the outliers. An example of this is given 
by the CMWlHS series (see figure 33). 

This behavior of GAUSUM-STM stems from shortcomings in the model: the 
occurrence of an outlier is assumed to be independent of whether an outlier occurred 
at the previous observation. This is counter to what we know about economic (and 
many other) time series: outliers often come in patches. Indeed, the number of 
outliers in a patch often depends on the sampling interval. A sensible generalization 
of the outlier model is to allow Markov behavior in the outlier generating process. 

Let 2, be a O-l process which indicates whether an outlier has occurred at time 
t. We assumed in section 3.2 that p( 2, = 1121, . . . ,2,-i) = p( 2, = 1) = cr. A more 
natural assumption is 

p&z* = l[Z,, . . . ) 2,~,) = p(Zt = q.&-1) = 
1 

:I ;; 2 1; 
t- 

where 6: > cr. Hence, if an outlier occurs at time t - 1, than an outlier is much 
more likely to occur at time t. 

Figure 6 compares the trends obtained by fitting the “doublet” outlier model (17) 
and the usual model (6) for the CMWlHS series. In the doublet model the outlier 
pair in 1979 is excluded completely from the trend. In addition, although masked in 
plots due to the size of the outlier, the trend for the doublet model smooths several 
sharp peaks prominent in the original trend. For this example, c: is set to 0.25. 

7.5 Constraining the Variances 

To find a model “similar” to the X-11 decomposition, a constrained version of the 
basic structural model was fit to the series (BSM-CONS). To match acf’s, the 
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variances of BSM-CONS are set as in (9) (see Maravall (1985)). This results in 
much smoother trends: see the boxplots of figure l(b). However, for the business 
and inventory series, the seasonal factors are only slightly more flexible and rougher 

(see figure l(e)-(f)). 
For the construction series, the seasonal factors are much more flexible and 

rougher. These series are noisier, and the longer filters of X-12-ARIMA produce 
smoother seasonal factors than the default filters. Hence, it is not surprising that 
the constrained model leads to very flexible but rough factors for the construction 

series. 
A typical example of the difference constraining the parameters makes on the 

seasonal factors is given in figure 7. The constrained BSM is slightly more flexible 
than the BSM, but is also significantly rougher. Neither the BSM nor BSM-CONS 
match the seasonal factors of X-12-ARIMA in terms of smoothness and fit to the 
data. 

It seems likely that simply constraining the parameters of the BSM will not lead 
to a decomposition very similar to X-12-ARIMA. Maravall (1985) acknowledges 

e this by noting that equivalent acj’s do not translate into equivalent decompositions. 
Increased flexibility for the BSM seems inevitably to require increased roughness. A 

more promising but more complicated approach is to constrain the variances in the 
TRIG-6 model. 

8 Open Problems and Conclusions 

On one level, this study can be viewed as an endorsement of X-12-ARIMA. The 
procedure adequately handles most of the series with both outliers and structural 
changes. The decompositions would appear to be more appealing than those gener- 
ated by an STM based method. 

However, X-12-ARIMA has some significant shortcomings, such as the discontin- 
uous nature of the outlier identification procedure. In addition, a procedure such as 

GAUSUM-STM offers several potential advantages, including estimates of standard 
errors, generalization to multivariate seasonal adjustment, and an appealing under- 
lying methodology. Hence, we should not give up on alternatives to X-12-ARIMA. 

Several issues need attention if GAUSUM-STM is to become a serious competitor 
to X-12-ARIMA. 

l We feel that the seasonal models used in this paper are inadequate. The 
assumptions underlying these models need to be investigated. Alternative 
models should be explored: see, for example, Harvey and Valls Pereira (1989) 
and Hannon et al. (1970). 

l Inclusion of a local AR component may help in a number of ways. By sopping 
up local variability, it may cause both the trend and the seasonal term to 



44 

SSI plots: bhrrs 
January February 

0 
0 I31 

1975 two 

November 

tom lW3 lW0 loa4 two ,975 l!Mo 1985 

March 

September 

I 

1070 ton la00 (@es 

Figure 7: Comparison of the seasonal factors for the BSM model (short dashed 
line), BSM-CONS model (medium dashed line), and X-1ZARIMA (solid line) for 
the BLQRRS series. BSM-CONS offers only a slight improvement in flexibility over 
BSM, and only at the cost of “rougher” factors. Neither matches the flexibility of 
the X-12-ARIMA seasonal factors. 
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be smoother. Note that inclusion of an AR term will involve more difficult 
optimizations. 

l The initialization method used for GAUSUM-STM is clearly inadequate, as 
exhibited by several examples. One possible solution is to use an “EM ap- 
preach”, estimating the posterior probabilities of outliers and level shifts in 

the beginning of the series using a backwards filter. This method is relatively 
time consuming to program. A simpler, but computationally expensive, ap- 
proach is to estimate the initial conditions (see De Jong (1988) for the Gaussian 
case). See Bruce (1992) for further discussion. 

l GAUSUM-STM is relatively slow. Several changes could be made to speed up 
the likelihood evaluations. In particular, use of a different criteria to deter- 
mining which densities should be collapsed could lead to substantial improve- 
ments. More dramatic computation savings could be achieved if an adaptive 
tree approach, as in Bruce and Martin (1992)) is adopted. 

* 
l Only a couple of possible outlier models were used in this study. It is worth- 

while investigating whether more complex models offer any significant improve- 
ment. In particular, experimentation needs to be done in terms of modeling 
seasonal breaks. Several of the series (e.g., BGMRRI) seemed to exhibit a 
seasonal break, and this appeared to cause problems in fitting the models. 

l The initial parameters for the optimization of GAUSUM-STM were obtained 
by first running X-12-ARIMA and then running REGCMPNT. For GAUSUM- 
STM to be useful as a stand-alone routine, a good robust but fast method needs 
to be developed to estimate initial parameters for the optimizer. 

l The seasonal factors for structural models are based on the maximum like- 
lihood estimates of the models discussed in section 3.1. It is possible more 
appealing seasonality can be obtained by simply constraining the variances in 
the existing models. However, as section 7.5 indicates, this approach is not 
promising with the BSM. 

l Fitting time series structural models by maximum likelihood is often a difficult 
task due to the flatness of the likelihood. It may be possible to “tune,, the 
optimizer to obtain successful convergence. A more fundamental solution to 
this problems lies in finding alternative transformations of the parameters for 
easier optimization. 
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A Fitting Details for GAUSUM-STM 

. 

The likelihoods are maximized using the quasi-Newton nonlinear optimizer of Gay 
(1979) (see also Dennis et al. (1981)). Th e o pt’ imizer uses a trust region approach 
with a double dogleg step. Finite difference gradients are used with the BFGS secant 
update to the hessian. 

The initial values to the optimizer for the BSM are obtained by fitting the BSM 
Gaussian model. To ensure robust initial estimates, the outlier identification scheme 
of X-12-ARIMA are used to first identify AO’s and LS’s. These are included in the 
model as fixed regression effects. The fits are done using the program REGCMPNT 
(Monsell and Otto (1991))) h’ h w ic is more efficient than GAUSUM-STM for purely 
Gaussian models. The TRIG-l model was fit with the initial values derived from 
the maximum likelihood estimates for the BSM. The TRIG-6 model was fit with 
the initial values derived from the maximum likelihood estimates for TRIG-l. 

Prior adjustment is done for trading days based on the REGCMPNT procedure. 
*While GAUSUM-STM accommodates fitting trading day variables, this involves 

nonlinear optimization over six parameters, greatly increasing the computations. 
Some examples indicate that further refinement of the estimates for trading day 
effect is not important (see section 7.2). 

Convergence Criteria 

The optimizer is considered to have converged successfully if little improvement has 
been achieved in the objective function from the previous iteration. This is known 
as “relative function convergence”, and is satisfied if 

I 1% w - 1% w - 1) I 
1 log L(j)1 + I log L(j - 1)l 5 o.oooo5 (18) 

where log L(j) is the log-likelihood on the j-th iteration. Alternatively, the optimizer 
converges if the change in the estimated parameters is small. This is known as 
“relative X-convergence” and is satisfied if 

maxi=l,...,p 
i 

l&(j) - qj - l)[ 

IS;(j)1 + l&;(j - 1)l 1 5 O-Oo5. 

where & is a vector of the scaled parameters. 

B Description of plots 

The empirical comparison was done mainly on the basis of a set of 9 diagnostic plots 
which were generated for each of the 29 series. Naturally, only a small subset of 
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. 

these are here illustrative The “book” plots 
given Bruce Jurke Th o 11 is description the 

plots. 

(a) X-12-ARIMA Decomposition 

The first plot shows the X-12-ARIMA log-additive seasonal decomposition of the 
series. An example of this plot is given in figure 8. The untransformed data, 
trend, seasonal, calendar (if present), and irregular components are all plotted. The 
seasonal, calendar and irregular components are factors centered on 1. Multiplying 
these factors by the trend gives the original data. To the right of the plots of the 
seasonal, calendar, and irregular is a bar which portrays the relative scaling of that 
plot. The bar spans the same number of units in each plot, so a shorter bar implies 
a more variable component. 

,(b) GAUSUM-STM Decomposition 

This plot is identical to (a) except that it is for the GAUSUM-STM decomposition 
with the TRIG-6 model (the trigonometric seasonal model optimized over six vari- 
ances). The median of the distributions are used to estimate the seasonal, trend, 
and irregular. An example of this plot is given in 9. 

(c) Seasonal Adjustment Comparison 

This consists of three plots as in figure 22. The top plot compares the seasonally 
adjusted series (trendxirregular) given by TRIG-6 (dashed line) and X-1ZARIMA 
(solid line). Th e a a d t p oints plotted are the original series. The data and seasonally 
adjusted data are untransformed. 

The middle of the three plots shows the ratio of the two untransformed seasonally 
adjusted series from the top plot. Tick marks on the interior of the top axis of the 
plot show the times at which X-1ZARIMA identifies additive outliers. Tick marks 
on the interior of the bottom axis show times at which levels shifts are identified by 
X-12-ARIMA. These are given to see if there is any association between outliers/level 
shifts and large discrepancies in the seasonally adjusted data. 

The third plot compares the untransformed trends yielded by the two procedures. 
The X-1ZARIMA trend is the solid line. As in the middle plot, tick marks on the top 
and bottom axes show the locations of additive outliers and level shifts respectively. 
In addition, the identified outliers are plotted as circles, and a triangle is plotted on 
each end of the X-12-ARIMA trend line connecting the two points on either side of 
a level shift. 
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(d) Treatments 

consists three as figure The plot similar the 
plot (c), that compares 1000 log trends the 
procedures. points to adjusted from TRIG-6 

The plot the between transformed from 
two Outliers level identified the are 
using and respectively. 

The plot the of and shifts the 
STM The of outlier each in series plotted 

a line upwards the line. level proba- 
extend Times which and shifts identified 

X-12-ARIMA shown dashed of length the direction. 

Month 

A plot comparing seasonal of is “Month-Plot” 
and (1982)). n of Month-Plot given figure 

In version the used this the seasonal 
for procedure displayed the plot. procedures are BSM 

dashed TRIG-l me ium line), (long line) 
X-12-ARIMA line). the plots, deviations the 
cycle each are by for procedure. plot especially 

at the in range the factors. 

SSI 

The diagnostic determining nature the factors the 
Plot” and (1982)). n of SSI-Plot given 
figure For month, SSI-Plot the transformed 
with seasonal superimposed a The and types 

the as used plot The solid corresponds the 

The is by removing level and as 
by from data trend. a X-12-ARIMA 
is off data. reason smoothing X-12-ARIMA is 

different tend lead different Smoothing trend 
minimize differences. trend smoothed a 23 triangular 

average. a of smoothing a worth data 
dropped each 

Usually data the is by subtracting trend 
from seasonal The method adopted this 
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case since we comparing several with possibly breaks in 
trend. 

(g) Plot 

This of a of periodograms, one corresponding a seasonal 
An example this plot given in 12. If seasonal adjustment 

is successful, the periodogram have very power at 
near the frequency w n/6 and harmonics wj j7r/S (indicated 

the dashed 
The top is of transformed and data. The at the 

frequency and harmonics is to zero. corresponds roughly 
what one obtain by a fixed pattern. The is detrended 

a smoothed of the trend. As figure (f), 23 point 
moving average of the is used adjusting for level 

shifts by X-12-ARIMA. e subsequent are of 
*and detrended adjusted data the BSM, TRIG-6 and 
12-ARIMA procedures. seasonally adjusted is detrended above is 
except that appropriate trend substituted for X-12-ARIMA trend. 

Sliding Spans for GAUSUM-STM 

figure consists four plots to sliding applied using GAUSUM- 
STM for the An example the sliding plot for 
STM is in figure The first shows the seasonally adjusted 

obtained when procedure is to each four 8 spans. 
The plot displays of (16). is the difference 

in month-to-month percentage in the adjusted data As 
a to judge dashed horizontal are drawn k x 0.01 for 
k = 3,4,. . . . The cutoff of 0.03 comes from Findley et al. (1990). Adjustments with 

more than 25% of the months with MM,““” > 0.03 are almost never acceptable. 
Good seasonal adjustments seem to have less than 15% greater than the cutoff. This 
criteria is designed for the X-ll-ARIMA procedure and may not be suitable for the 
structural models. The histogram at the right of this plot shows the distribution of 
the Mr. Boxplots of the Mi&-” by month are shown in the fourth plot. 

The third plot of this figure is in fact four plots, each corresponding to a different 
span. The plots show the probability of outliers and level shifts, as in the third plot 
of figure (d). As with the third plot of figure (c), tick marks on the interior of 
the upper and lower axes show times at which X-12-ARIMA identified outliers and 
levels shifts respectively. 
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(i) Sliding Spans Plot for X-12 

This figure gives the sliding spans diagnostics for X-12-ARIMA. An example of this 
plot is given in figure 24. The first, second and fourth plots are analogous to those 
given figure (h). The third plot shows the outliers and level shifts detected by X-12- 
ARIMA in each span. Level shifts are indicated by “steps”. Outliers are indicated 
by points, and connected to the level by vertical lines. The size of the step or vertical 
line indicates the relative magnitude of the level shift or outlier. 
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List of Figures 

The figures on the following pages are selected from the “book” of plots given in 
Bruce and Jurke (1992). The table below provides a summary of the figures that 
have been selected and the gives pages in this report on which they occur. 

Series 

Figure from “book” of plots 

(4 04 (4 (4 (4 (f) k) (h) 6) 

BAUTRS 
BFRNRS 
BGMRRI 
BGRCRS 
BHDWWS 
BLQRRS 
BMNCRS 
BSHORS 
BSPGWS 
BTAPRI 
BTNDRI 
BVARRS 
BWAPRS 
C24THS 
CMWlHS 
CMWTHS 
CNElHS 
CNETHS 
CSOTHS 
CWETHS 
IBEVTI 
ICMETI 
IFATTI 
IFMETI 
IGLCTI 
IHAPTI 
INEWUO 

ITVRTI 
ITVRUO 

62 60 61 

57 58 59 

72 71 

80 
74 73 

77 

76 75 

78 79 

70 
69 

66 65 63 64 67 68 
52 53 54 55 56 
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Figure 8: X-12-ARIMA Decomposition for IGLCTI. 
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Figure 9: Gaussian Sum Decomposition (TZG-6) for IGLCTI. 



Figure lO?Se=ynal c”ompobnent TransErmei by $00 zag) ?k IC!kTr The top 
plot shows the mean for the BSM (short dashed line), TRIG-l (medium dashed 
line), TRIG-6 (long dashed 1’ ) me and X-12-ARIMA (solid line). Subsequent plots 
show the deviation from the mean. 
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Figure 11: SSI plots for IGLCTI. The procedures compared include the BSM (short 
dashed line), TRIG-l ( me d ium dashed line), TRIG-6 (long dashed line) and X-12- 

ARIMA (solid line). Th e h orizontal solid line corresponds to the mean. 
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Figure 12: The top plot is the periodogram of the detrended data for IGLCTI 
(with the fundamental and its harmonics suppressed). The other plots give the 
periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG- 
6, and X-12-ARIMA. 



Figure 13TSeasGal czmpozent (zansfzrmec?by l%O x zg) fz BM?CRE The top 
plot shows the mean for the BSM (short dashed line), TRIG-1 (medium dashed 
line), TRIG-6 (long dashed line) and X-1ZARIMA (solid line). Subsequent plots 
show the deviation from the mean. 
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Figure 14: SSI plots for BMNCRS. The procedures compared include the BSM 
(short dashed line), TRIG-l ( me d ium dashed line), TRIG-6 (long dashed line) and 
X-12-ARIMA (solid line). The horizontal solid line corresponds to the mean. 
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Figure 15: The top plot is the periodogram of the detrended data for BMNCRS 
(with the fundamental and its harmonics suppressed). The other plots give the 
periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG- 
6, and X-12-ARIMA. 
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Figure 16: SSI plots for BGMRRI. The procedures compared include the BSM 
(short dashed line), TRIG-l ( me mm dashed line), TRIG-6 (long dashed line) and d’ 
X-12-ARIMA (solid line). Th e h orizontal solid line corresponds to the mean. 
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Figure 17: The top plot is the periodogram of the detrended data for BGMRRI 
(with the fundamental and its harmonics suppressed). The other plots give the 
periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG- 
6, and X-12-ARIMA. 
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Figure 18: The top plot compares the trends for TRIG-6 and X-12-ARIMA for 
BGMRRI. The middle plot displays the ratio of the trends. The bottom plot gives 
the posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-12-ARIMA 
(dashed lines - either 0 or 1). 
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Figure 19: SSI plots for IFMETI. The procedures compared include the BSM (short 
dashed line), TRIG-l ( me d ium dashed line), TRIG-6 (long dashed line) and X-12- 
ARIMA (solid line). Th e h orizontal solid line corresponds to the mean. 
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Figure 20: The top plot is the periodogram of the detrended data for IFMETI 
(with the fundamental and its harmonics suppressed). The other plots give the 
periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG- 
6, and X-12-ARIMA. 
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Figure 21: The top plot compares the trends for TRIG-6 and X-1ZARIMA for 
IFMETI. The middle plot displays the ratio of the trends. The bottom plot gives 
the posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-12-ARIMA 
(dashed lines - either 0 or 1). 
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Figure 22: The top plot shows the data for IFMETI (points), the TRIG-6 seasonally 
adjusted data (dashed line), and X-12-ARIMA seasonally adjusted data (solid line). 
The middle plot shows the ratio of the seasonally adjusted data and the bottom plot 
compares the trends. 
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Figure 23: BSM sliding spans for IFMETI. The top plot shows the seasonally ad- 
justed data for the four spans The second and fourth plots display the statistic 

MM,““. The third plot compares the outlier treatments over the spans. 
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Figure 24: X-12-ARIMA sliding spans for IFMETI. 
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Figure 25: The top plot compares the trends for TRIG-6 and X-12-ARIMA for 
IFATTI. The middle plot displays the ratio of the trends. The bottom plot gives the 
posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-1ZARIMA 
(dashed lines - either 0 or 1). 
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Figure 26: The top plot compares the trends for TRIG-6 and X-12-ARIMA for 
ICMETI. The middle plot displays the ratio of the trends. The bottom plot gives 

the posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-1ZARIMA 
(dashed lines - either 0 or 1). 
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Figure 27: X-12”ARIMA sliding spans for BSPGWS. The top plot shows the sea- 
sonally adjusted data for the four spans The second and fourth plots display the 
statistic it4Mt-“. The third plot compares the outlier treatments over the spans. 
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Figure 28: BSM sliding spans for BSPGWS. The top plot shows the seasonally Figure 28: BSM sliding spans for BSPGWS. The top plot shows the seasonally 
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MM,““. MM,““. The third plot compares the outlier treatments over the spans. The third plot compares the outlier treatments over the spans. 
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Figure 29: The top plot compares the trends for TRIG-6 and X-1ZARIMA for 
BVARRS. The middle plot displays the ratio of the trends. The bottom plot gives 
the posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-12”ARIMA 
(dashed lines - either 0 or 1). 
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Figure 30: The top plot shows the data for BVARRS (points), the TRIG-6 seasonally 
adjusted data (dashed line), and X-12”ARIMA seasonally adjusted data (solid line). 
The middle plot shows the ratio of the seasonally adjusted data and the bottom plot 
compares the trends. 
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Figure 31: X-12-ARIMA sliding spans for BVARRS. The top plot shows the sea- 
sonally adjusted data for the four spans The second and fourth plots display the 
statistic MM,““. The third plot compares the outlier treatments over the spans. 
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Figure 32: BSM sliding spans for BVARRS. The top plot shows the seasonally 
adjusted data for the four spans The second and fourth plots display the statistic 
MM,““. The third plot compares the outlier treatments over the spans. 
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Figure 33: The top plot compares the trends for TRIG-6 and X-IZARIMA for 
CMWlHS. The middle plot displays the ratio of the trends. The bottom plot gives 
the posterior probability of AO’s and LS’s for TRIG-6 (solid lines) the X-12-AI?,IMA 
(dashed lines - either 0 or 1). 
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Figure 34: SSI plots for CNETHS. The procedures compared include the BSM 
(short dashed line), TRIG-l ( me mm dashed line), TRIG-6 (long dashed line) and d’ 
X-1ZARIMA (solid line). The horizontal solid line corresponds to the mean. 
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Figure 35: The top plot is the periodogram of the detrended data for CNETHS 
(with the fundamental and its harmonics suppressed). The other plots give the 
periodograms for the detrended seasonally adjusted data for BSM, TRIG-l, TRIG- 
6, and X-12-ARIMA. 
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Figure 36: The top plot compares the trends for TRIG-6 and X-12-ARIMA for 
BTNDRI. The middle plot displays the ratio of the trends. The bottom plot gives 
the posterior probability of AO’s and U’s for TRIG-6 (solid lines) the X-12-ARIMA 
(dashed lines - either 0 or 1). 
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