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ABSTRACT

This paper describes a methodology for computer matching the Post Enumeration Survey with the
Census.  Computer matching is the first stage of a process for producing adjusted Census counts. 
All crucial matching parameters are computed solely using characteristics of the files being
matched.  No a priori knowledge of truth of matches is assumed.  No previously created lookup
tables are needed.  The methods are illustrated with numerical results using files from the 1988
Dress Rehearsal Census for which the truth of matches is known.  
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1.                            INTRODUCTION
   This paper describes a particular application of the Fellegi-Sunter (1969) model of record
linkage.  New computational methods are used for computer matching the Post Enumeration
Survey (PES) with the Census.  The PES is used to produce adjusted Census counts.  Computer
matching is the first stage of PES processing.  
   All crucial matching parameters associated with comparisons of individual fields are computed
automatically.  The parameters are generally based on characteristics of the files being matched. 
No a priori knowledge of truth of matches is assumed.  Lookup tables that account for the
relative frequency of occurrence of different strings are computed using the files being matched.    
The paper is divided into a number of sections.  
   The second section consists of five parts.  The first part gives background on the Fellegi-Sunter
model.  The second part describes PES and Census files from the 1988 Dress Rehearsal Census
and overall matching procedures.  Truth and falsehood of matches is known for the Dress
Rehearsal files.  
   The third part provides details of a modified Expectation-Maximization (EM) Algorithm for
estimating probability distributions used in a crucial likelihood ratio (see e.g., Winkler 1988,
1989a; Thibaudeau 1989).  In the fourth part, new computational methods for automatically
creating frequency tables accounting for the relative distinguishing power of strings such as
'Smith' and 'Zabrinsky' are given.   The methods are a special case of Winkler (1989b).
   The fifth part describes new string comparator metrics that allow comparison of strings that do
not agree on a character-by-character basis.  The metrics generalize Damerau-Levenstein and Jaro
metrics (see e.g.,  Winkler 1985, 1989c, 1990b).  Methods for modeling how the metric adjusts
matching weights between pure agreement and pure disagreement are covered.
   A new linear sum assignment algorithm that forces one-to-one assignments is described in the
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sixth part.  It is substantially faster than the algorithm of Burkard and Derigs used by Jaro (1989).
   Results are presented in the third section.  Two commonly used matching methods are
compared with the method used in the 1988 computer matching system and the enhanced
methods adopted for 1990.
   The fourth section consists of a six part discussion.  The first describes how matching accuracy
may fall when files are of relatively lower quality than those available in the 1990 Census and
PES.  In the second part, we cover how the string comparator metrics and weight adjustment
methods fit in with the general Fellegi-Sunter model.  The third part presents general limitations
of the parameters produced via the EM Algorithm.  
   In the fourth part of the fourth section, we explain why the specific adjustments of the
frequency-table building procedures are suitable in the applications.  The fifth part covers how the
linear sum assignment procedure improves matching efficacy and why decision rules using it are
still optimal in the sense given by Fellegi and Sunter (1969, Theorem).  In the sixth part, we
discuss different ways of determining cutoff weights.
   The fifth section consists of a summary, conclusions, and future work.

2.                  BACKGROUND AND DESCRIPTION OF METHODS 
2.1.  Fellegi-Sunter Model of Record Linkage
   The Fellegi-Sunter Model uses a decision-theoretic approach establishing the validity of
principles first used in practice by Newcombe (Newcombe et al. 1959).  To give an overview, we
describe the model in terms of ordered pairs in a product space.  The description closely follows
Fellegi and Sunter (1969, pp. 1184-1187).
   There are two populations  A  and  B  whose elements will be denoted by  a  and  b.  We
assume that some elements are common to  A  and  B.
Consequently the set of ordered pairs

     AXB = {(a,b): a,A, b,B} 

is the union of two disjoint sets of matches

     M = {(a,b): a=b, a,A, b,B}

and nonmatches

     U = {(a,b): a…b, a,A, b,B}.

   The records corresponding to members of  A  and  B  are denoted by  "(a)  and  ß(b),
respectively.  The comparison vector  (  associated with the records is defined by:

  (["(a),ß(b)] / {( ["(a),ß(b)],( ["(a),ß(b)],""",( ["(a),ß(b)]}. 1  2  K

Each of the  ( , i = 1, """, K, represents a specific comparison.  For instance, (   could represent i               1

agreement/disagreement on sex.   (   could represent the comparison that two surnames agree 2
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and take a specific  value or that they disagree.
   Where confusion does not arise, the function  (  on  AXB  will be denoted by  ((",ß),  ((a,b),
or  (.  The set of all possible realizations of  (  is denoted by  '.  
   The conditional probability of  ((a,b)  if  (a,b),M  is given by

       m(() / P{(["(a),ß(b)]|(a,b),M} 

            =    E     P{(["(a),ß(b)]}·P[(a,b)|M].
                    (a,b),M

  Similarly we denote the conditional probability of  (  if  (a,b),U  by u(().
   We observe a vector of information  ((a,b)  associated with pair  (a,b) and wish to designate a
pair as a link (denote the decision by A ), a possible link (decision  A ), or a nonlink (decision 1       2

A ).  A linkage rule  L  is defined a mapping from  ', the comparison space, onto a set of random3

decision functions  D = {d(()} where

      d(() = {P(A |(),P(A |(),P(A |()}; (,'1 2 3

and

      3 
      E P(A |() = 1.i

     i=1 

   There are two types of error associated with a linkage rule.  A 
Type I error occurs if an unmatched comparison is erroneously linked.  It has probability

     P(A |U) =  E  u(()·P(A |()1      1

                  (,'

A Type II error occurs if a matched comparison is erroneously not linked.  It has probability 

     P(A |U) =  E  m(()·P(A |()3      3

                  (,'

   Fellegi and Sunter (1969) define a linkage rule  L ,  with associated decisions  A ,  A , and  A , 0       1   2    3

that is optimal in the following sense:

   Theorem (Fellegi-Sunter 1969).  Let  L´ be a linkage rule with associated decisions  A ´,  A ´,1   2

and  A ´ such that it has the same error probabilities  P(A ´|M) = P(A |M)  and P(A ´|U) = P(A |U) 3           3   3    1   1

as  L .  Then  L   is optimal in that  P(A |U) # P(A ´|U)  and  P(A |M) # P(A ´|M).0     0       2   2     2   2

   In other words, if  L´ is any competitor of  L   having the same Type I and Type II error rates0
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(which are both conditional probabilities), then the conditional probabilities (either on set  U  or 
M) of not making a decision under rule  L´  are always greater than under  L .  0

   To describe rule  L , we need the following likelihood ratio   0

       R / R[((a,b)] = m(()/u(().                                                                  (2.1)

   We observe that, if  (  represents a comparison of  K  fields, then there are at least  2  K

probabilities of form  m(().   If  (   represents agreements of  K  fields, we would expect this to
occur more often for matches  M  than for nonmatches  U.  The ratio  R  would then be large. 
Alternatively, if  (  consists of disagreements, the ratio  R  would be small.    
   If the numerator is positive and the denominator is zero in (2.1), we assign an arbitrary very
large number to the ratio.  The Fellegi-Sunter linkage rule  L   takes the form:0

  If  R > UPPER, then denote  (a,b)  as a link.
 
  If LOWER # R # UPPER, then denote  (a,b)  as a possible link.                         

  If  R < LOWER, then denote  (a,b)  as a nonlink.

The cutoffs LOWER and UPPER are determined by the desired error rate bounds.
   The Fellegi-Sunter linkage rule is actually optimal with respect to any set  Q  of ordered pairs in 
AXB  if we define error probabilities  P   and a linkage rule  L   conditional on  Q.  Thus, it mayQ       Q

be possible to define subsets of  AXB  on which we make use of differing amounts and types of
available information.
   For instance, if we have a set of pairs in which telephone number is present, we might use
telephone number and a few characters from the name to designate links.  With other pairs, we
may additionally have to utilize information from the street address and the city name.
   Sets of ordered pairs  Q  on which the Fellegi-Sunter linkage rule is applied are often obtained
by blocking criteria.  Blocking criteria are sort keys that are used to reduce the number of pairs
that are considered.  Rather than consider all pairs in  AXB, we might only consider pairs that
agree on the first three digits of the ZIP code or on a suitable abbreviation of surname.  
2.2.  Empirical Data Bases and Description of Matching Procedures
   Files for three geographic regions, (1) St Louis, MO, (2) Columbia, MO and vicinity, and (3)
rural WA, were computer matched during the 1988 Dress Rehearsal Census and Post
Enumeration Survey.  The PES is a reenumeration of all individuals in all households in a sample
of Census subregions.  Each subregion, referred to as a block cluster, may be a Census block, a
subsample of a Census block, or a group of Census blocks.  The Census file consists of the
individuals in the Census for the same sampled block clusters and for individuals in blocks or
geographic subregions surrounding the PES blocks.  
   On the first computer matching pass, individuals in the PES are matched only with those
individuals in the Census that are in the same block cluster.  As almost all true matches that are
ultimately found are identified during the first computer matching pass and associated clerical
operations, the results of this paper only consider the first pass.  Subsequent matching passes
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against the entire Census file (which is typically 25 to 30 times the size of the PES) are primarily
intended to identify individuals who have been counted in the wrong location (i.e., near-by
blocks).  File sizes for within-block matching are given in 

    Table 1.  File Sizes from the 1988 Dress Rehearsal Census
              Nonmovers for Within Block Cluster Matching
                                                
        City              Census             PES
                                                
       St Louis            15048           12072 

       Columbia             9794            7649

       Washington           3030            2214 
                                                
.  

   Matching within block clusters is mandated by the fact that PES-estimation procedures produce
adjusted counts at the block-cluster level and aggregate.  For matching within block cluster, we
additionally use first character of the surname as a logical blocking criteria.  Use of first character
of surname reduces computation by a factor of 150 but generally causes 3-5 percent of true
matches to be missed.  Approximately 2 percent of the missed true matches (about half of the 3-5
percent) are in households for which at least one person is correctly matched by computer
procedures and, thus, quickly located during clerical review.  
   The printouts used for the initial clerical review bring together all individuals in a Census
household with all individual in a PES household if at least one individual is designated as a
computer match or possible match.  This, for instance, allows matching of children that are listed
under different last names if at least one of the parents is matched.  
   The remaining 1-2 percent that are not quickly identified as a result of the  computer matching
operations are located during additional clerical review procedures.  This involves manual
comparison of PES and Census lists that have been alphabetically sorted by last name and also by
address.
   Fields available for matching are first name, middle initial, last name, house number, street
name, rural route number, postal box number, conglomerated address, unit, telephone number,
age, sex, marital status, relationship to head of household, and race.  The last name field receives
minor processing to separate out words such as Junior, Senior, and III.  The first name field
receives processing to change nicknames to standard roots of their given first names.  A modified
version of the Census Geography Division address standardizer is used for delineating address
components.  
   Generally, if house number and street name are not missing, then rural route and box number
are missing and vice-versa.  The conglomerated address is used as a default identifier for those
addresses failing standardization.  As the PES reenumerates hard-to-count regions, many
addresses such as those associated with trailer courts, migrant worker camps, and various
institutional group quarters such as retirement homes and university dormitories are difficult to
standardize.  



6

   For each PES individual, their true match status and, where appropriate, to whom they were
matched is known.  The quality of the matching status is very high.  The quality is covered in the
discussion.
   Telephone number, although generally a very good identifier in many applications, is only a
somewhat good identifier for the applications in this paper.  For instance, in St Louis, only 66
percent of those individuals that were eligible for computer matching had a nonblank telephone
number agreeing with the telephone number of the individual to whom matched.  For some
individuals who were ultimately correctly matched, say those living in trailer courts, telephone
numbers sometimes disagree. 
2.3.  Expectation-Maximization Algorithm
   Applying the Fellegi-Sunter model involves determining estimates of the conditional
probabilities  m(()  and  u(().  To obtain maximum likelihood estimates we use the EM
Algorithm.
   For record pairs  r , j = 1, 2, """, N, from  Q, index the comparison vectors  (   as follows:j                j

i

  (   = 1  if field  i  agrees for record pair r  j               j
i

      = 0  if field  i  disagrees for record pair r . j

   The elements in  Q = (Q1M)U(A1U) are distributed according to a finite mixture with the
unknown parameters  M = (m, u, p)  where  p  is the proportion of matched pairs in  Q.  Let  x  be
the complete data vector
g = <( , g >  where j   j

   g  = (1,0)  if  r  , M1Q  and j       j

   g  = (0,1)  if  r  , U1Q. j       j

   Then the complete data log-likelihood (Dempster, Laird, and Rubin 1977, pp. 15-16) is given by 

                   N
  ln f(x | M) =  E  g  · <ln P((  | M1Q), ln P((  | U1Q)>    j    j     j

                  j=1

            N
         + E  g  · <ln p, ln(1-p)>. j

           j=1      

Fitting using the EM Algorithm will be performed under the following conditional independence
assumption:  There exist vector constants m / (m , m , """, m )  and  u / (u , u , """, u )  such that,1  2   K       1  2   K

for all  (,',
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                     K      (        (1-( ) i        i

  P(( | M1Q) =  A  m    (1-m )         i    i

                    i=1

and                                                                                                      (2.2)

                     K    (        (1-( ) i        i

  P(( | U1Q) =  A  u    (1-u ) .         i    i

                    i=1

Probabilities  m   and  u , i = 1, 2, """, K, are constant for all representations  (  of pairs in  Q.  To i    i 

avoid trivialities, we assume that  0 < m , u  < 1, i = 1, 2, """, K.   i   i

   We begin the EM Algorithm with estimates of the unknown parameter

<m, u, p>.  For the E-step under (2.2), replace  g   with  <P(M1Q|( ),P(U1Q|( )>  where^ ^ ^
 j     j  j

                          K     (         (1-( ) j          j
 i         i

                       p  A  m     (1-m )        ^ ^ 
 i     i

^

                          i=1
P(M1Q|( ) / ---------------------------------------------------------------------- j

                      K     (         (1-( )          K     (         (1-( ) j          j                 j          j
 i         i                 i         i

                   p  A  m     (1-m )        + (1-p)  A  u      (1-u )        ^ ^ 
 i     i               i      i

^ ^ ^ ^

                     i=1                                 i=1

and                                                                                                      

                             K    (         (1-( ) j          j
 i         i

                      (1-p)  A  u     (1-u )        ^ ^ 
 i     i

^

                             i=1
P(U1Q|( ) / --------------------------------------------------------------------.j

                    K     (         (1-( )          K     (          (1-( ) j          j                 j           j
 i         i                 i          i

                 p  A  m     (1-m )        + (1-p)  A  u      (1-u )   ^ ^ 
 i     i               i      i

^ ^ ^ ^

                    i=1                                i=1

   For the  M  step, the complete data log-likelihood can be separated into three maximization
problems.  Setting the partial derivatives equal to zero and solving for m , ^ 

 i

i = 1, 2, """, K,  yields:
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           N
           E   P(M1Q | ( ) " (   j    j

 i

          j=1
  m  = -------------------------------.                                                                  ^ 

 i

           N
           E   P(M1Q | ( )  j

          j=1

                    
Estimates  u , i = 1, 2, """, K, are derived in a similar manner.  The matrix of second partial^ 

 i

derivatives can be shown to be negative-definite.  The estimate of the proportion of matched pairs
is given by

         N
         E   P(M1Q | ( )  j

        j=1
  p  = -----------------------.^

              N

   The m- and u-probabilities obtained from the EM Algorithm do not generally work well in the
decision rule of Fellegi-Sunter because the fitting procedures tend to force m-probabilities away
from 1 and u-probabilities away from 0.  
   To get parameters that yield better decision rules (i.e., both lower rates of false matches and
smaller regions of clerical pairs), we use the following procedure:

    1.  Compute probabilities of random agreement for those pairs agreeing on geocode and 
        on a characteristic such as first name.  If the random agreement probability is less 
        than the EM-derived u-probability, substitute.  If the resultant u-probability is less than
        0.005, replace it with 0.005.
    2.  Replace the m-probabilities for last and first names with 0.9997 and
        0.9999, respectively. 

  The resultant m- and u-probabilities are still obtained automatically.  The effect of 2. is negative
disagreement weights of greater absolute value.  That the substitution 0.9999 for the m-
probability of first name improves distinguishing power is intuitive.  As family members, in
particular, agree on last name, street name, house number, telephone number, and some
demographic characteristics, the more negative disagreement weight induced by the substitution
helps delineate different individuals in the same family.
2.4.  Frequency-Based Weighting
   In this section, we also closely follow the terminology of Fellegi and Sunter (1969, section
3.3.1).  Let the true frequencies of occurrence of a specified string in files  A  and   B,
respectively, be 
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                          m 
        f , f , """, f  ;  E  f  = N1  2   m     j  A

                         j=1

and
                           m 
        g , g , """, g  ;  E  g  = N .1  2   m     j  B

                          j=1

Let the corresponding true frequencies in  A1B  be

                           m 
        h , h , """, h  ;  E h  = N .1  2   m    j  AB

                          j=1

We note that  h  # min (f ,g ), j = 1, 2, """, m.  For the empirical examples of section 3.2, for j = 1,j   j j

2, """, m, we will generally use  

    h  = min (f ,g )     if  f >1  or  g >1j   j j        j     j

    h  = 2/3             otherwise.j

The latter part of the definition implicitly means that, if we observe only one pair agreeing on a
specific string, the pair has 2/3 chance of being a match and 1/3 chance of being a nonmatch. 
   The following additional notation is needed

  e   or  e       the respective probabilities of a name being misreported in                     A    B

                  A  or  B  (assumed independent of a particular name);

  e   or  e     the respective probabilities of a name not being reportedA0    B0

                  in  A  or  B  (name independent);

  e               the probability that a name is differently (but correctly)T

                  reported in the two files.

Then we have the following representations:

 P(string agrees & jth string| M) 

         = h  (1-e )(1-e )(1-e )(1-e )(1-e )/Nj A B T A0 B0 AB
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         . h  (1-e -e -e -e -e )/N ;j A B T A0 B0 AB

 P(string disagrees | M) 

    = [1-(1-e )(1-e )(1-e )](1-e )(1-e )   .   e  + e  + e ;A B T A0 B0       A  B  T

 P(string missing on either file | M) 

    = 1 - (1-e )(1-e )  .  e  + e ;A0 B0     A0  B0

 P(string agrees & jth string| U) 

      = (f "g  - h )(1-e )(1-e )(1-e )(1-e )(1-e )/(N "N  - N )j j  j A B T A0 B0 A B  AB

      . (f "g  - h )(1-e -e -e -e -e )/(N "N  - N );j j  j A B T A0 B0 A B  AB

  P(string disagrees | U) 
                                          m

   = [1-(1-e )(1-e )(1-e )  E  (f "g  -h )/(N "N  - N )](1-e )(1-e )A B T     j j j A B  AB A0 B0

                                          J=1

                               m

   . [1-(1-e -e -e ) E  (f "g  - h )/(N "N  - N )](1-e -e ); andA B T    j j  j A B  AB A0 B0

                               J=1

 P(string missing on either file | U) 

    = 1 - (1-e )(1-e )  .  e  + e .A0 B0     A0  B0

   We define the weight for agreement on the  jth  specific string,  j = 1, 2, """, m,  by

    wgt(j) =  h "(N "N -N ) / ((f "g -h )"N ),                              j A B AB   j j j AB

if either  f >1  or  g >1  and by j     j

    wgt(j) = 2"(N "N -N )/N                                               A B AB AB

              
if  f =1  and  g =1.  The weight represents the probability of agreement over the entire productj     j

space.  
   We observe that  e   and  e   can be estimated directly using file characteristics.  To estimate A0    B0

e ,  e   and  e , we need to know   A1B.  They cannot be estimated directly.  In practice, guessesT   A    B

based on past experience are often used.  
   Use of the EM-Algorithm, within the limitations of the previous section, allows direct
estimation of  P(string disagrees|M)  and, thus, approximate estimation of the sum  e +e +e .  A B T
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   To assure that frequency weights do not overwhelm simple agree/disagree weights given by the
EM procedure, we use for the agreement weights

  c  " ln( c  " P(jth string agrees | M) / P(jth string agrees | U) ).1   2

For last name  c   and  c   are 0.03125 and 0.5, respectively.  For first name c   and  c   are 0.06251    2           1    2

and 0.7, respectively.  
   General methods of directly computing  c   and  c   are given in Winkler (1989b) but do not1    2

work well for all types of files.  For the narrow classes of files we consider in the applications of
this paper, we can choose  c   and  c   a priori based on modeling files with similar characteristics.1    2

2.5.  String Comparator Metrics 
   When human beings review a pair, they often do not make simple yes/no decisions related to the
weight of agreement associated with a fixed string.  Typically, they will assign various degrees of
maybe to a pair of strings exhibiting typographical variation (Table2).  

   Table 2.  Hypothetical Human Decisions Based on
              Typographical Errors
             Full Agreement = 10, Full Disagreement = -10
                                                                
    Pair      Jonathon    Bellieu    Ovid      Wilansk     Doret  
              Johathon    Baliew     Ouid      Wolansky    Doris  
 
    Weight     10          4          1        -3          -10
                                                               

   Jaro (see e.g., Winkler 1985, 1989c, 1990b) introduced a string comparator measure that gives
values of partial agreement between two strings.  The string comparator accounts for length of
strings and partially accounts for the types of errors typically made in alphanumeric strings by
human beings.  It is used in adjusting exact agreement weights when two strings do not agree on a
character-by-character basis.
   Specifically, if  c > 0, the Jaro string comparator is 

        M = W "c/d + W "c/r + W "(c-J)/c,1   2   t

where

           W  = weight associated with characters in the first of two files,1

           W  = weight associated with characters in the second of two files,2

           W  = weight associated with transpositions,t

            d = length of string in first file,
            r = length of string in second file,
            J = number of transpositions of characters, and
            c = number of characters in common in pair of strings.
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If  c = 0, then  M = 0.
   Two characters are considered in common only if they are no further apart than (m/2 - 1) where 
m = max(d,r).  Characters in common from two strings are assigned; remaining characters
unassigned.  Each string has the same number  of assigned characters.  
   The number of transpositions is computed as follows:  The first assigned character on one string
is compared to the first assigned character on the other string.  If the characters are not the same,
half of a transposition has occurred.  Then the second assigned character on one string is
compared to the second assigned character on the other string, etc.  The number of mismatched
characters is divided by two to yield the number of transpositions.  
   If two strings agree on a character-by-character basis, then the Jaro string comparator  M  is set
to  W +W +W , which is the maximum value that  M  can assume.  The minimum value that the  M 1 2 t

can assume is  0,  which occurs when the two strings have no characters in common (subject to
the above definition of common).
   For present matching applications,  W ,  W , and  W   are arbitrarily set to  1/3.  The new string1   2    t

comparator metric basically modifies the basic string comparator according to whether the first
few characters in the strings being compared agree.   Specifically, for i = 1, 2, 3, 4,

    M   =     M + i " 0.1 " (1 - M)    if the first  i  characters agree.n

   If  w   and  w   are the estimated agreement and disagreement weights for a specific field,a    d

respectively, then the Jaro adjusted matching weight  w   used in the total weight calculation isam

given by

   w  =      w                                       if  M = 1, andam       a

               max{w -(w -w )"(1-M)"(9/2), w }   if  0 # M < 1.a a d  d

   The constant  9/2  controls how quickly decreases in partial agreement values force the adjusted
weight to the disagreement weight.  
    Instead of assuming that the same adjustment procedure works for different fields such as first
name, last name, and house number, procedures for modeling the weight adjustment as a
piecewise linear function were developed.  The procedures necessitate having representative sets
of pairs for which the truth of matches is known.  The new adjusted weights  w   take the formna

               w                                           if  M  $ b  a                                            n  1

   w   =     max{w -(w -w )"(1-M )"(a ), w }      if  b  # M  < b .     na       a a d n 1  d         2  n  1

               max{w -(w -w )"(1-M )"(a ), w }      if  M  < b .a a d n 2  d         n  2

   The constants  a , a , b , and b   depend on the specific type of string (such as first name) to1  2  1   2

which the weight adjustment is applied.  Generally,  a  < a .   The specific constants used are1  2

given in Table 3.
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   Table 3.   Constants used in piecewise 
              linear weight adjustments 
                                        
      Field       a     a      b     b  1    2     1    2

                                        
      first      1.5   3.0    .92   .75

      last       3.0   4.5    .96   .88

      house #    4.5   7.5    .98   .83
                                               

   Table 4 provides examples of string comparator values for pairs of last names and for pairs of
first names.  The abroms-abrams example with string comparator value .9333 in contrast to the
lampley-campley with value .9048 shows that the string comparator gives a higher value to the 

    Table 4.   Examples of String Comparator
                 Values for Various Pairs 
                                           
      shackleford    shackelford      .9848
      cunningham     cunnigham        .9833
      campell        campbell         .9792
      nichleson      nichulson        .9630
      massey         massie           .9444
      abroms         abrams           .9333
      galloway       calloway         .9167 
      lampley        campley          .9048
      dixon          dickson          .8533

      frederick      fredrick         .9815
      michele        michelle         .9792
      jesse          jessie           .9722
      marhta         martha           .9667
      jonathon       jonathan         .9583
      julies         juluis           .9333
      jeraldine      geraldine        .9246
      yvette         yevett           .9111
      tanya          tonya            .8933
      dwayne         duane            .8578        
                                              

 pair that differs by a single character further from the first position.  The martha-marhta example
with value .9667 in contrast to the jonathon-jonathan example with value .9583 shows that
transposition of two characters causes less of a downweighting than differing by one 
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2.6.  Linear Sum Assignment Algorithm
   A linear sum assignment procedure similar to the one introduced by Jaro (1989) is used to force
one-to-one assignments.  The actual algorithm, due to Errol Rowe (1987), requires less storage
than the one of Burkard and Derig (see e.g., Jaro 1989, page 418).  Basically, the Rowe algorithm
works with rectangular arrays while the Burkard-Derig algorithm only works with square arrays. 
The algorithm also makes use of some of the characteristics of the arrays of weights.  For the
arrays of weights occurring when the set of PES records remaining from within-block matching
are matched against Census files covering extended areas, the new algorithm is more than 100
times as fast as the previously used algorithm.

3.                               RESULTS
   The section presents a comparison of matching results.  The basic strategies are the 1988
strategy used during the Dress Rehearsal Census and the 1990 computer matching strategy.  The
differences and similarities between the two strategies are presented in Table 5.

   Table 5.  Comparison of 1988 and 1990 Matching Strategies
                                                      
                         1988               1990
                                                      
    logical              cluster+           cluster+
    blocking             soundex            first char
                         surname            surname

    pairs for            cluster+           cluster+
    parameter            soundex            soundex
    estimation           surname            surname

    multi string         no                 yes 
    comparison
    adjust

    frequency-           no                 yes
    based  
                                                      

.  This section also presents comparisons with several other strategies which will be described. 
   A comparison of matching results is given in Tables 6, 7, and 8 for St Louis, Columbia, and
Washington, respectively.  To understand the tables, we need describe the types of matching
procedures.  The simplest procedure, crude, merely uses an ad hoc guess for matching parameters
and does not use string comparators.  The ad hoc guess consists of assigning matching weights of 
±2  to agreement/disagreement on fields such as first name, house number, and age and assigning
matching weights of  ±1  to less important fields such as marital status and sex.
   The next, param, does not use string comparators but does estimate the probabilities  m(() and 
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u(().  Such probabilities are often estimated through an iterative procedure that involves manual
review of matching results and successive reuse of the reestimated parameters.  The third type,
param2, uses the same probabilities as param and the basic string comparators.
   The fourth type, em, uses an EM-Algorithm for estimating matching parameters (see e.g.,
Winkler 1988, Thibaudeau 1990) and uses the basic Jaro string comparator.  The fourth type is
the 1988 matching strategy.  The fifth type, em2, uses the EM-derived weights and the new string
comparator and new weight adjustments.  The final type, freq, replaces simple agree/disagree
weights for first name and last name with frequency-based weights (see e.g., Winkler 1989) and
also makes adjustments for joint dependencies of agreements on first name, sex, and age.   The
final type is the 1990 matching strategy.
   In each table, the number of matches is determined by a false match rate of 0.002.  The crude
and param types are allowed to rise slightly above the 0.002 level because they generally have
higher error levels.

Table 6.  True Matches in Computer Categories
             Various Procedures, St Louis  
             10291 True Matches, 12072 Records
             Pairs Agreeing on Cluster and First
              Character Surname 1/
                                              
                     --computer designation--
                       match       clerical 
                                             
      truth->        match|non-   match|non- 
                          |match       |match
                                                 
      crude            310/  1     9344/794  
      param           7899/ 16     1863/198  
      param2          9276/ 23      545/191  
      em (1988)       9587/ 23      271/192  
      em2             9639/ 24      215/189  
      freq (1990)     9801/ 24       52/ 94  
                                             
   1/  Approximately 400 true matches disagree 
       on first character of surname and are not
       eligible for inclusion in the table.  Of
       the 400, approximately 200 reside in house-
       holds where some is correctly matched.

   By examining the tables we observe that a dramatic improvement in matches can occur when
string comparators are first used (from param to param2).  The basic reason is that disagreements
(on a character-by-character basis) are replaced by partial agreements.  The improvements due to
the new string comparators and weighting adjustments (from em to em2) are quite minor. 
    The main matching results are given in Tables 6, 7, and 8 for St Louis, Columbia, and
Washington files, respectively.  For St Louis files, with the 1990 strategy, 9801 of 10291 true
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nonmover matches are designated as matches by the computer with an error rate of 0.2 percent. 
An additional 55 true matches are in the set of designated clerical pairs and also quickly obtained. 
Thus, the computer matcher allows 96 percent (= 9856/10291) of the true nonmover matches to
be obtained quickly.  For Columbia and Washington, the corresponding percentages are 97 (=
6798/6984) and 97 (= 1899/1950), respectively.

   Table 7.  True Matches in Computer Categories
             Various Procedures, Columbia
             6984 True Matches, 7649 Records
             Pairs Agreeing on Cluster and First
              Character Surname 1/
                                             
                     --computer designation--
                       match        clerical 
                                             
      truth->        match|non-   match|non- 
                          |match       |match
                                             
      crude           2429/  7     4327/119  
      param           6449/ 22      327/ 92  
      param2          6655/ 13      135/ 35  
      em (1988)       6719/ 13       78/ 22  
      em2             6762/ 13       37/ 20  
      freq (1990)     6792/ 11        6/  9  
                                             
   1/  Approximately 180 true matches disagree 
       on first character of surname and are not
       eligible for inclusion in the table.  Of
       the 180, approximately 80 reside in house-
       holds where some is correctly matched.

   Because printouts for clerical review and by PES household and some of the individuals not
designated as matches or clerical pairs reside in households having individuals containing
matching individuals, the additional individuals are also found during clerical review.  The
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   Table 8.  True Matches in Computer Categories
             Various Procedures, Washington
             950 True Matches, 2214 Records
             Pairs Agreeing on Cluster and First
              Character Surname 1/
                                             
                    --computer designation--
                      match       clerical 
                                             
      truth->        match|non-   match|non- 
                          |match       |match
                                             
      crude           1307/  3      564/ 98  
      param           1250/  5      614/ 88  
      param2          1765/  4      134/ 41  
      em (1988)       1749/  4      149/ 29  
      em2             1795/  3      107/ 29  
      freq (1990)     1892/  4        7/  9  
                                             
   1/  Approximately 40 true matches disagree 
       on first character of surname and are not
       eligible for inclusion in the table.  Of
       the 40, approximately 20 reside in house-
       holds where some is correctly matched.

 percentages of these individuals are 2, 1-2, and 1-2 percent in St Louis, Columbia, and
Washington, respectively.  Thus, individuals quickly found via computer match/printout
procedures are 98, 98-99, and 98-99 percent in St Louis, Columbia, and Washington,
respectively.

4.                             DISCUSSION
4.1.  How the Quality of Files Effects Matching Results
   The overall success of the procedures introduced in this paper is highly dependent on the facts
that individual fields contain relatively few typographical variations and that there are redundant
fields.  Comparing strings having relatively severe typographical variations yields disagreement
weights rather than the agreement weights that would occur without the typographical variation.   
 If fields were without typographical variation, then having three crucial fields such as last name,
first name, and house number might be sufficient to identify uniquely an individual.  Having
additional matching fields such as street name, age, and telephone number would be redundant. 
For those records having typographical variation or missing fields, the redundancy provides the
extra information needed so that the computerized procedures can delineate many more pairs as
matches.
   Winkler (1989b, section 3.5) provides an example of matching techniques that are quite similar
to the techniques of this paper for files of administrative records.  On an absolute basis, overall
matching results are much worse than the results of this paper.  The reasons are that there is



18

relatively less information for matching and available information is often missing or inaccurate. 
For these files, matching procedures that use EM-derived parameters, frequency-based
techniques, and string comparator metrics also yield better results than those procedures that do
not.
   The data of this paper are suitable for evaluating matching procedures becauses essentially all
matches were found and correctly identified.  The identification is with codes specifying to which
record a record is matched.  All basic identifying information was carefully checked and
rechecked.  In particular, virtually no matches were found among the set of code-identified
nonmatches using a variety of procedures.
4.2.  String Comparison and Weight Adjustment in the Fellegi-Sunter Model
   For matching applications of files having significantly different characteristics (i.e., matching
fields) from those of the files of this paper, string comparator weighting adjustments may have to
be remodeled.  
   In all matching situations, it seems likely that modeling partial agreement should improve
matching efficacy because the proportions of exact agreement on key matching fields can be quite
low.  For the files of this paper, the proportions of true matches agreeing on a character-by-
character basis (M =1.0) are approximately 76 percent for first name and approximately 86n

percent for last name (Table 9).

 Table 9. Proportional Agreement by 
            String Comparator Values
           Key Fields by Geography
                                    
              StL      Col      Wash
                                    
 First  
  M =1.0      0.75     0.82     0.75n

  M $0.6      0.93     0.94     0.93n

 Last 
  M =1.0      0.85     0.88     0.86n

  M $0.6      0.95     0.96     0.96n

                                    

   Most of the reason that the crude and param methods (Tables 6, 7, and 8) perform relatively
poorly is that they only assign the full agreement weight for first name and surname to the 86 and
76 percent, respectively, of the pairs that are truly matches and agree on a character-by-character
basis.  The remaining 24 and 14 percent, respectively, of the true matches get the full
disagreement even though a number of them differ by only one or two characters.
4.3.  Weights Produced by the EM Algorithm
   The obvious reason that probabilities and associated agreement and disagreement weights
produced by the EM Algorithm do not work that well is the failure of the independence
assumption.  Decision rules that incorporate interaction effects into the weighting on either an ad
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hoc or formal basis may yield improved matching efficacy and/or automation.
4.3.1.  Weights From General Statistical Fitting Procedures
   Work by Winkler (1989a) and Thibaudeau (1989) using the formal model of three-way
interactions (Bishop, Fienberg, and Holland 1975) and six matching variables have yielded
normalized chi-square fits that are generally 200 times as accurate as fits under the independence
model.  Matching software, however, that uses three-way weights generally has not performed
any better than the software of section 3 that utilizes simple agree/disagree weights.
   Only with highly expert adjustments, does the 3-way matching software make slight
improvements over the em results of section 3.  The computation of 3-way probabilities, using
theoretical and computational results generalizing results of Haberman (1977, 1976), are
excessively slow to converge.  There are two chief difficulties.  The first is that the maximization
step of the EM Algorithm for 3-way interactions is via an iterative fitting procedure whereas for
independent situations the maximization step is closed form.  The second is that different starting
points typically yields different limiting solutions in the 3-way model whereas the limiting
solutions are typically unique in the independent case.
   Recently, Thibaudeau (1990) developed a scoring algorithm approach for fitting 3-way
interaction models that converges much more rapidly than the previous fitting methods.  In terms
of chi-square statistics, the fits are only 20 times as good as the independent fits and would be
rejected by any reasonable hypothesis test.  They do, however, yield decision rules that are better
than those using parameters produced by the independent EM Algorithm.  While the resultant
parameters do not yield decision rules that work as well as the best of this paper, they do yield
improvements without the expert, file-specific adjustments that are used for the results of section
3.  The reason for the improved decision rules is that the fitting procedures are better are finding
local maxima of the likelihood and at rejecting unacceptable starting points. 
4.3.2.  Comparison With Existing Weighting Methods
   All other existing computer matching systems of which we are aware use time-consuming, trial-
and-error procedures for estimating matching parameters.  Generally, initial guesses of matching
parameters are used, matched pairs are reviewed, new matching parameters guessed at and the
matching is repeated until satisfactory matching results obtained.  In the hands of experts, such
procedures are generally quite robust.
   As the Generalized Iterative Record Linkage System of Statistics Canada (1983) is the only
system to systematize the iterative review process and, thus, make it relatively usable by
nonexperts, we use it as a point of comparison.  Because we know truth and falsehood of
matches, we merely assume that the known marginals  P(agree specific field | Match)  are the
result of the iterative procedure.  The Statistics Canada iterative procedures assume that
convergence is generally to  P(agree specific field | Match).  Statistics Canada uses random
agreement weights for  P(agree specific field | Nonmatch) just as we do.
   The matching results (Tables 6, 7, and 8) for the param procedure correspond roughly to a
Statistics Canada procedure that does not use frequency-based weights and the param2 procedure
adds the string comparator metrics.  The comparisons between the em procedure and the param2
show that the EM-produced weights perform better.  The reason is that, while both set of
parameters are associated with independent distributions, the EM-produced weights are not
constrained to satisfy additional marginal constraints  P(agree specific field | Match).
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4.4.  Frequency-Based Weights
   For the matching applications of this paper frequency-based weights make a noticeable
improvement (e.g., section 3) over simple agree/disagree weights.  The improvement is basically
due to pairs having relatively rare first names and surnames that are designated as possible
matches using simple agree/disagree weights but are designated as matches using frequency-based
matches.
   For applications to files having relatively poor distinguishing information (e.g., Winkler 1989b,
section 3.5) relative improvements can be even greater.  In such applications, only first and last
name are generally available and they have relatively greater typographical variation.  With simple
agree/disagree weights very few pairs can be reliably designated as matches or clerical pairs.  With
frequency-based weighting a moderate percentage of pairs change from nonmatch to clerical
pairs.
4.5.  Linear Sum Assignment Procedure
   The reason the assignment works well for the particular applications considered in this paper is
the nature of the data for individuals in households that are brought together.  Generally, all the
individuals will have good information or they will all have substantial missing or erroneous data
(e.g., as a result of proxy information).  In both cases clerical review sets are necessarily much
larger.  
   In the first case, say, the assignment procedure eliminates all pairs (such as brother-sister or
husband-wife) that might have moderately high weights.  The UPPER cutoff would have to be
raised to force them into the set of clerical pairs.  If such pairs were retained, additional pairs
based having only moderately good identifying information (e.g., with some typographical
differences) would no longer be in the set of computer-designated matches. 
   We observe that if one reasonable assumption is made, then the decision rules that incorporates
the linear sum assignment procedure are still optimal.  The assumption is that the basic weighting
procedure (prior to the linear sum assignment) always makes the best assignment (either to the
true match or the more closely agreeing nonmatch).  Then the decision rule modified with the
linear sum assignment procedure is still optimal.  Indeed, under the assumption, the second
through nth best assignments will always be associated with true nonmatches and the likelihood
ratio associated with them should be forced to  0.
4.6.  Determination of Cutoff Weights
   Fellegi and Sunter (1969, section 3.3.2 and 3.7; see also Jaro 1989, section 3.4) provide
methods for calculating the cutoff weights (or threshold values) UPPER and LOWER provided
the probabilities  m( )  and  u( )  can be given a strict probabilistic interpretation.  In such a
situation, if we are given an upper bound on the false match rate, we should be able to use  
m( )  and  u( )  directly to computer UPPER and LOWER.
   Our experience has been that the probabilities  m( )  and  u( )  for each of the methods of
section 3 (e.g., param, em, etc.) are never suitable for direct estimation of the cutoffs because the
estimated  m( )  and  u( )  deviate much too severely from the true underlying probabilities.  Part
of the deviation is due to the failure of the independence assumption that is typically used.  Other
deviations can be caused by having a small subpopulation that has characteristics significantly
different the the population as a whole.
   In practice, we determine UPPER and LOWER by reviewing a set of pairs that are printed by
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decreasing matching weight.  Based on experience, it is quite rapid to determine the cutoffs with a
rough a priori bound on the error rates.
   Belin and Rubin (1990) have introduced a method for directly determining the cutoffs at desired
error levels for any weighting curve.  Their method necessitates having a training set of weights
associated with matches and nonmatches.  Under the assumption that the weighting curve is a
mixture of normals that can be transformed to normality via Box-Cox techniques, they provide an
EM-type Algorithm to estimate the curves for new data sets.  The a priori information is used
primarily to get the shapes of the curves.  Their method yields estimates of the error rate and
estimates of the corresponding confidence intervals.

5.                        SUMMARY AND CONCLUSIONS
5.1.  Summary
   This paper provides a methodology for computer matching that generally falls under the formal
decision-theoretic procedures given by Fellegi and Sunter.  The two crucial ideas for improving
matching efficacy are having parameters estimated automatically via a modified version of the
Expectation-Maximization Algorithm and using string comparator metrics for assigning adjusted
weights to pairs of strings that agree almost exactly rather than using full disagreement weights. 
5.2.  Conclusion
   At present, the very high quality of the matching results appears very dependent on having files
similar to those that will be available during 1990 Post Enumeration Survey processing.  
5.3.  Future Work   
   New research on more general, theoretically valid string comparator metrics and associated
weighting adjustments is just beginning.  Research into decision rules that allow for general
interactions rather than independent iteractions continues and shows promise.
   Applications to general administrative lists and to lists of businesses is just beginning.  Matching
of business lists is highly dependent on the quality of name and address parsing software.  
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