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1. Introduction 

In a recent‘ paper [5], we described a generalization to univariate time series mod- 

els of the hypothesis testing procedure of Vuong [l2] f or comparing incorrect statistical 

models for independent data. The focus of [5] was on model selection criteria related 

to one-step-ahead forecasting performance. We suggested there that when p-step- 

ahead prediction is the goal, with p > 1, then different test statistics should be used 

for each choice of p. To identify appropriate test statistics and determine their asymp- 

totic distribution, information is needed about the rate at which predictors based on n 

observations converge as n -+ 00. This note provides some of the needed convergence 

and distributional results, also for the case of r-dimensional vector time series. Our 

approach rests on generalizations of the finite-section inequality and related conver- 
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gence results of Baxter [ 11,121 f or one-step-ahead predictors of scalar time series. To 

make our results accessible to a larger circle of readers, we will not formulate them in 

the Banach algebra framework utilized by Hirschman [8], but it will be clear to the 

mathematical reader that this level of generality is attainable and natural. 

2. Baxter’s Inequality (Matrix Form) 

For any complex-valued matrix C, let CT denote its transpose and C’ E Cr its 

complex conjugate, or Hermitian, transpose. If C* = C, then C is said to be Hermitian 

symmetric. Let f(0) d enote a continuous, positive definite Hermitian symmetric, r x r 

*matrix function on [-r, z] satisfying f(4) = f(0)‘. It is well known, see [6,p.160] or 

[7], that such an f(e) has factorizations of the form 

f(e) = A(e (2.1) 

and 

f(e) = B*(eie)B(eie), (2.2) 

where A(z) and B(z) are non-singular-matrix-valued analytic functions on {]z] < l}, 

A(Z) = 2 aid 
j=O 

B(2) = 2 6jZj 

j=O 

whose coefficient matrices, aj, bj, have real entrices. We shall impose magnitude restric- 

tions on these coefficients with the aid of an increasing sequence of weights v(i) 2 1, 

j=O,l,. . ., such that v(j) 5 ~(k)~(]j - Ic]) f or any j,k > 0. This last conditon insures 

that the norm defined for matrix functions C(0) = C,“,-, cje’je by means of 
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IlC(@lI = C v(l~l)lcil~ 

with ]cj] equal to the square root of the largest eigenvalue of cJcj, see [lO,pp.265-6], has 

the property that ]]C(e)D(e)]] L ]]C(e)]] ]]D(e)]]. Let C, d enote the set of all continuous 

r x r-matrix-valued functions C(0) for which ]/C(e)]] < 00, and let C,+ (respectively 

C;) denote the subset whose j-th Fourier coefficient cj is 0 for all j < 0 (respectively, 

j > 0). It follows from the preceding norm inequality that f(e) E C, if A(e”) in (2.1) 

belongs to C,+ (which implies that A*(e”) E C;). S ince A(z) is nonsingular for all 

]z] 5 1, it follows from an argument like that given in [3,p.78] that A-‘(e”) belongs to 

Cz if A(e”) does, and then A*(e”)-’ E C;. For us, the important choices of v(j) are 

r(j) G 1, v(j) E 2a +ja (cu > 0) and v(j) G p-j (0 < p < 1). 

We present now our matrix-function version of the inequality of [2]. Our proof 

is an adaptation of Baxter’s, see also [8]. For the reader’s convenience, the complete 

proof will be given. 

Proposition 2.1. Assume that the factors A(e”) and B(e”) of f(e) in (2.1) and (2.2) 

belong to C,+. Then there exist a positive integer no and a constant M, depending only 

on these functions, with the following property: if n 2 no, then for any given r x r 

matrices gjj 0 5 j < n - 1, the matriz polynominal h(8) = CF!,’ hkeike which satisfies 

I 

* 
e -‘j”h(e)f(e)de = gj 

--* 

for j = 0,‘..,n - 1 will also satisfy the u-norm inequality 

where g(0) = Cygigjeije. 

(2.3) 

Proof: Some additional notation will be helpful. If C E C, is such that C(0) is nonsin- 

gular for all 8, we will sometimes use 6 to denote the function C(e)-‘. Also, for any 
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positive integer m, we define two useful additive components of C: 

00 --m 

C(,) G C Cjeije, C(-,) E C cjeije. 
j=m j=-00 

Observe that IIC~*,)l) 5 IlCll. 

Using this notation, set G = (hf)(-1) and H = (hf)(,). Then from (2.3), 

hf =G+g+H. (2.5) 

From (2.5), (2.1) and (2.2) we obtain 

I 

and 

hA = Gii* + gk + H/i* (2.6) 

hB*=G&+gir+H& 

The essence of the proof of (2.4) is the verification of 

IIG~*ll 5 Const.llsll 

and 

P-7) 

(2.8) 

with constants independent of g, because, from (2.5), 

llhll 5 llw’ll + lld-‘ll + IIHf-‘ll 

5 IIG~‘II INI + ll!Jl IIf-‘II + IIH~II II~“lI. 

We start with (2.8): Since hA E C,+, it follows from (2.5) and (GR*)(-,) = GA* that 

GA* = -(,a*,,-1, - lHa*)(-I, 

= +2*),-q - (Ha;-,-,))(-I). 
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Hence 

IIG~*ll 5 llg,*ll + llH&-,111 

5 llsll II0 + IIHBII IIBII II+n-I,ll. 

So, for n sufficiently large, we will have 

IlG~‘ll I lla*ll llsll + ;llHm (2.10) 

With a similar calculation based on the fact that the j-th Fourier coefficient of hB* 
A 

w (respectively, HB) is 0 if j > n (respectively, j < n), one sees that when n is large 

enough that llA*llll.f3~,,+~~11 I f, then 
* 

IlHfill 5 ll~ll llsll + fllG~*ll. (2.11) 

From the inequality obtained by adding (2.10) and (2.11), one obtains (2.8) and (2.9) 

with the constant equal to 2(]]a*]] + I]&]]). Th’ is completes the derivation of (2.4). 

Remark 2.1. In the univariate case (r=l), the assumption that A(e”) belongs to CL 

is equivalent to the assumption that f(e) E C,, see the proof of Theorem 3.8.4 of [3]. 

No multivariate generalization of this result appears to be known. A partial result for 

the special case in which f(0) = F(e”), with F(z) analytic in {p < 1.~1 < p-l} for some 

0 < p < 1, can be obtained from Theorems 3.1 and 3.2 of [ll], which imply that for 

such an f(e), the functions A(z) and B(z) are analytic in {]z] < p-‘i2}. 

Remark 2.2. In Hannan and Deistler’s monograph [7, p.2701, a vector generalization 

of Baxter’s result is stated with only the assumption that A(eie) E Cz and with no 

mention of the factorization (2.2). E.J. Hannan (personal communication) agrees that 

the condition B(e”) E Cz is also needed. It is possible that this property follows from 

the assumed property of A(eiX), but this seems difficult to estiablish. 
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Remark 2.3. The derivation of (2.4) d oes not require our assumption that j(e) = 

j(O)‘. This was used for convenience of reference in later sections where we wish to 

maintain the familiar context wherein the Fourier coefficients of j(O) are real matrices. 

3. Convergence of Predictor Coefficients 

Suppose that zt is a mean zero, weakly stationary, r-dimensional vector time series 

w with spectral density matrix j(6), 

with j(O) satisfying the assumptions of section 2. (E denotes expectation). For any 

integers p, n > 1 or n=oo, the optimal linear predictor of zt+P from zt,. . . , zt-(,,-I) is 

given by 

where the coefficient matrices are determined by the property that the error process 

ei:),i, 3 zt+p - ~~~~p 
. 

is uncorrelated with z:, . * a, z+(+i), 

/ 

r n-l 

emije(ewipe - C r~)[p]eike) j(6)dlJ = 0, (j = 0,. . . , n - 1). 
--* k=O 

(34 

It follows that the difference between .z!$~ and the p-step-ahead predictor based on 

the infinite past, ZEplt Z Cgozk ‘“‘lP]zt ok, that is, 

(4 
z:+plt 

(ml _ (=I (4 
- Z:+Plt - %+plt - %+plt, 

. 
is uncorrelated with z:, . . . , zt-(,,-11. Therefore, 



I_: e+‘<e{ap)[p] - ?rlm)[p]}eiks) j(@&l = fJj P-2) 
k=O 

with 

= 2’7r 2 riw'[p] fj-k 
(3.3) 

k=n 

for j=O, . . . ,n-1. We are assuming that j(8) and its factors A(e”), B(e”) belong to 

C, for some weighting sequence v(j) of the sort considered. Since v(j) 5 v(k)v(k - j) 

when 0 < j 5 n - 1 and k 2 n, it is a consequence of (3.3) that 

* 
n-l 

c ddI%I 5 (2r 2 y(m)lf-,I) 2 u(k)lriwJ[p]l. 
j=O m=O k=n 

(3.4 

The first factor on the right is finite because j E C,. Theorem 7.3 of [13] shows that the 

prediction error transfer function e(oo)[p](t3) EZ ebiP8 - CEO riw)[p]eike has the formula 

p-1 

e(“O)[p](t?) = (C $Jie”j-“‘)$J-l(e), 
j=O 

P-5) 

where $(0) = A(e”) f rom which it follows that e(w)[p](t3) E C,. Thus the second 

factor on the right in (3.4) is also finite and, applying (2.4), we arrive at the following 

generalization of the filter coefficient inequality (11) of [l], 

n-l 

c W@‘[p] - $‘$I I MO 2 +)l$‘)[p]l < 00. (3.6) 
k=O k=n 

Remark. The inequality given in [l] for the case r=l is for weighted versions of the 

coefficients zp’ [l] and TL~’ [l], and is not as convenient for our application as (3.6). 

Next, we observe that since 1 < Y(O) 5 v(1) 2 . . ., we have 

2 IT!~)[P]I 5 +)-’ 2 v(k)l~~m)[p]l = 0(1/Y(n)). 
k=n k=n 

(3.7) 
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The result we are after follows from (3.7) and the version of (3.6) associated with 

v(k) = 1, 0 5 k 5 00. 

Proposition 9.1. The p-step ahead predictor coefficient matrices associated via (8.1) 

with a spectral density matriz j(9) which satisfies th e conditions of section 2 will have 

the property that 

n-l 

C IdTPl - d~‘bI + 2 ld%l = 0(1/v(n)), 
k=O k=n 

for anypll. 

(3.8) 

4. Convergence of Finite Predictors from Incorrect Models 

Let yr,..., yn denote the observed values of a mean zero, r-dimensional time series 

yt. Suppose that a forecast of yn+p is desired and that a time series model specifying 

a spectral density matrix j(e) has b een fit to the observations for the purpose of 

determining a predictor, 

dyn-k, 

whose coefficients satisfy (3.1). If the model is incorrect, as is ordinarily the case, then 

the prediction error y,+, - y!$Jpln[p] will not be uncorrelated with yn, .. . ,yl and the 

forecast error process associated with prediction from the infinite past, 

e:;;,, - Y: - 2 “f=)[p]yt-k, 
k=O 

will not be a process whose autocorrelations at lags greater than p - 1 are zero. The 

inequality (3.8) makes it possible to determine a rate of convergence for the finite 

predictor in this situation. For a measure of discrepancy, we will use the mean square 
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norm, which is defined for a random vector x by ]]x])E = (Exrx)‘j2. This has the 

property that if b is a constant matrix, then I ]bx]]z 2 lb] ]]x]]z for the matrix norm I . ] 

specified in section 2. The quantity ]Je~~pln]] E is a natural measure of forecast standard 

error. From (3.6), we obtain 

I Ilef,?$nllE - IIe$!plnIIE I 5 IIe!$,n - e!t?plnlIE 

= IIY!$in - YzpInIIE I I$: /rim’ [PI - AP)IPII IIYn-kllE + 2 I~~w’[~]I ([Yn-ilIE* 
k=n 

The convergence result needed for the testing procedure described in the next section 

now follows from (3.8): 
* 

Proposition 4.1. Suppose j(X) satisfies the assumptions of section 2 and the time 

series yf has bounded second moments, SUP-,<~<~ (]yt(JE < 00. Then IIeL$lnIIE - 
IIezplnIIEv IIe!$ln - e!$!p[nIIE and IIY!aTL[n - y~~plnll~ are all of order 0(1/v(n)). 

Remark 4.1. In the univariate case (r=l), if yt is stationary and j(X) is the correct 

spectral density for yt, then the proofs of Theorems 2.3 and 3.1 of [l] for the case p=l 

can be adapted to show that the order of ](e!$p,n]]E - ]]I?$$,]]E is o(v(n)-2), for each 

P 2 1. 

Remark 4.2. The approach of Devinatz [4] f or obtaining results like those above 

for one-step-ahead predictors from correct models, and its multivariate generalization 

by Pourahmadi [ 111, d o not seem to lend themselves to obtaining results for incorrect 

models except under restrictive assumptions, such as ] jy(6)] 5 A&] j(6)] for some con- 

stant Ml, where jy(6) designates the true spectral density of the series y:, now assumed 

covariance stationary. 
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5. A Prototype Test Statistic for Comparing Models for Prediction 

In this section, we assume that yt is a mean zero, stationary vector process whose 

m-th order cumulants exist and are absolutely summable, for each m=2,3, ... (As- 

sumption 2.6.1 of [3]). Suppose that p-step-ahead forecasts are desired for some p 2 1 

and that two competing incorrect models for yt are available, specifying spectral den- 

sity matrices j(e) and j(6), both of which satisfy the assumptions of section 2 for the 

weighting sequence v(j) z 2’j2 + j1i2. Let e!$,, and $$lt denote the error process of 

these models arising from predicting yt+p linearly from yt-j, j > 0. These are stationary 

processes satisfying the same cumulant assumptions as yt, and the same is true of the 

*difference-of-squared-error process 

St+, G e(w)Te(w) -(WIT -(WI 
t+pp t+plt - ef+,lt et+Plts (5.1) 

We define ap = ]]e,($,]]z and Cp E ]]Z~$tJ(z. These quantities measure prediction 

performance: if ap < Cp, the model specifying j(X) can be regarded as better for p- 

step prediction than the model specifying j(X). W e would like to have a statistical test 

for deciding from observed prediction errors whether one of ap or Cp is smaller than the 

other. 

Let j&(6) denote the spectral density function of the process S,,, - J?S(&+~), ob- 

serving that E(Jt+p) = C$ - 5;. Theorem 4.4.1 of [3] shows that N’j2 times the sample 

mean from N observations of this process has a limiting normal distribution with mean 

0 and variance 2n jb(6). This fact can be expressed as 

N 

N-‘j2 c S,,,, - N”2(6; - 6;) -+dist. h/(0,2+0)). (5.2) 
n=l 

This result cannot be used directly to obtain a test of the hypothesis op = zip, 

because the quantities S,,+, cannot be calculated when only finitely many observa- 
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tions of yt are available. This is where Proposition 4.1 plays a useful role. It en- 

ables us to show that N-‘i2 Cf=, S,,+, can be approximated with sufficient accuracy by 

Nell2 Cf=, 6n+pln, where 

6 n+pln 
(n)T (4 -(nP 44 

SE en+plnen+pln - en+plnen+Pln’ 

the filters, quantities easily from available 

when models ARMA 

. 

S 5.1. the density f and (6) the 

of 2 v(j) 2 ‘I2 and if~up-,<~<~ ll~tll~ < 00, then 

&nw N-‘/2E( 5 &+p - $J &+plnl = 0. 

n=l n=l 
(5.3) 

Proof : The quantity whose limit is under investigation is bounded above by 

N-“2 CL, E1L+p - h+pln I. This latter quantity is bounded above by N-‘/2 times the 

sum of 

A n F E(etwJT e(O”) (nP’ (4 n+pln n+pln - en+plnen+pln ’ 1 l<n<N - 

and the analogous quantities associated with f(6), t o which the argument given below 

also applies. Toeplitz’s Lemma [lO,p.250] shows that if 

A n = o(nw112) (5.4 

holds, then N-‘i2 Cr=, A, + 0. Thus it remains to verify (5.4). By the Cauchy- 

Schwarz inequality, 

An I I Iei$l,, - eF:pln I IE I le(OQ) n+pln + eZp,n I IE. (5.5) 
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The first factor on the right is o(n -V2 by Proposition 4.1. For the second, we have, ) 

since up E ]]e~$lnllz, 

The quantities 

on the right in 

IIe~~~ln - e?jplnIIE 5 Op + IIezplnII~* 

Ile~plnll E converge to up, by Proposition 4.1 again, so the second factor 

(5.5) is bounded, and (5.4) f o 11 ows. This completes the proof of (5.3). 

Mean absolute convergence as in (5.3) implies convergence in probability. There- 

fore, from (5.2) and (5.3) we obtain 

. 
N-‘12 5 b+pln - N1i2(u; - 5;) -+dist. u(wd6(0)). 

n=l 

asd the following corollary. 

(5.6) 

Corollary 5.1. If wN is COnSiSted estimator of (27r j,5(0))1/2 and if j6(0) # 0, then 

N 

is a test statistic which behaves like a U(O,l) variate for large enough N when ap = cp, 

and otherwise behaves like N’f2(ul - Sl), thereby revealing the sign of ap - cp, and with 

it the preferred model. 

We plan to apply such a statistic, for several choices of p, also taking into ac- 

count the uncertainties in j(0) and f”(6) due to parameter estimation, to compare the 

pairs of competing models for the 40 times series considered in [5]. In [5], a statistic 

which is asympotically equivalent to ZN[l] was presented and used, as a time series 

generalization of the test statistic of [12]. 
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