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ABSTRACT 

Much empirical economic research today is executed in the framework of tightly 

specified time series models that derive from theoretical optimization problems. The results of 

fitting such models to published time series data are often interpreted as yielding evidence 

about the values of underlying theoretical parameters. Such conclusions may, however, be 

sensitive to imperfections in the data. This paper investigates one such imperfection: 

sampling error in data from the Census Bureau’s Retail Trade Survey (RTS). These data are 

an important ingredient in the construction of personal consumption expenditures in the 

national income accounts. We build seasonal time series models for the sampling error in 

(unb&chmarked) monthly survey estimates that take into account pertinent characteristics of 

the RTS. To model the signal component we use the “airline model” of Box and Jenkins 

(1976), augmented by regression terms to account for calendar variation and outliers. This 

model appears to fit the data well and can be given an economic motivation through a model 

related to that of Miron (1986), extended to allow for stochastic seasonal tastes. We assess the 

effects of sampling error by fitting our model to the observed data twice, once allowing for 

and once ignoring the sampling error component. We find that estimates of the innovation 

variance and seasonal moving average parameter can be sensitive to even moderate amounts of 

the type of sampling error present in the retail trade estimates. The nonseasonal moving 

average parameter estimates turn out to be little affected by the sampling error. We conclude 

that sampling error should be taken seriously in attempts to derive economic implications by 

modeling time series data from repeated surveys. 
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1. Introduction 

The rational expectations revolution has transformed the methodology of 

macroeconometric research. The first step in the typical research project carried out in the 

new style is the specification of a dynamic optimization problem. Uncertainty almost always 

is incorporated as an essential feature of the economic environment. The second step in the 

research program is the derivation of the implications of the optimization problem for the 

stochastic behavior of some observable economic variable(s). A trademark of research in this 

tradition is that the theoretical model generates a fully specified model for the variable(s) 

under study, and endows each of the parameters of that model with specific economic 

interpretations. The last step in the research program is the application of the model to actual 

economic data to see whether the model is in conformance with the data. The trend toward 

this zyle of research has been especially striking in the consumption literature. 

Most investigators -- especially those using aggregate data -- have paid scant attention to 

possible shortcomings of available data series as measurements of the theoretical variables 

appearing in their models. Such shortcomings can have many sources, as we discuss later in 

Section 2, and in detail for the particular case of retail sales data in Appendix A.2. In 

principle, data imperfections could influence the results of empirical investigations, and 

thereby change the economic interpretation of the findings. Partly in reaction to this 

possibility, Wilcox (1991) investigated the source data and estimation methods used to 

construct aggregate U.S. consumption data. Wilcox discussed a number of deficiencies in the 

data and provided, for some of them, a preliminary assessment of their significance for 

empirical research on consumption-related issues. 

This paper builds on that earlier effort. Here, we focus on data from the Retail Trade 

Survey conducted by the U.S. Bureau of the Census. Our interest in these data is motivated by 

two considerations: First, they are an important ingredient in the construction of personal 

consumption expenditures in the national income accounts; and second, sampling error in the 

retail sales estimates is one of the problems of potential significance identified in 
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Wilcox (1991). Furthermore, there is some information available concerning the sampling 

error properties of disaggregated retail sales series. 

Our objective is to assess the sensitivity of parameter estimates for time series models of 

retail sales data to the treatment of sampling error. We carry out our investigation using for 

illustration the “airline” model of Box and Jenkins (1976): 

(1 - B)(l - B12) St = (1 - e,)(l - e12B12) b, (1.1) 

where St is the level of spending on a durable good, B is the backshift operator, and b, is a 

white-noise innovation. We give in Appendix A.1 one set of economic assumptions consistent 

with the prediction that St follows the model (1.1). The key assumption turns out to be that 

tastes follow the stochastic process 

(1 - B)(l - B12)Tt = vt 

wher; vt is a white-noise shock to tastes. We show in Appendix A.1 that each of the 

parameters in (1.1) can be given a precise interpretation in terms of the underlying economic 

model we present there. hr particular, the innovation variance c? b measures the variance of 

“news,” where news in this model involves the shock to tastes as well as the shock to labor 

income. The nonseasonal MA parameter e1 equals one minus the depreciation rate of the 

durable good -- the same interpretation of this parameter as obtained in the model studied by 

Mankiw (1982). The seasonal MA parameter e12 is a function of the ratio of 2 v, the variance 

of the innovations in tastes, to c? E, the variance of the innovations in labor income. As this 

variance ratio goes to zero, e12 approaches unity, the seasonal MA polynomial cancels with 

the seasonal differencing operator (see Bell (1987)), and the model simplifies to: 

(1 - B)S, = seasonal dummies + (1 - elB) b,. (1.2) 

Therefore, in the context of the model set out in the Appendix A.l, we would interpret 

evidence derived from levels data that e12 is close to unity as suggesting that tastes follow a 

deterministic seasonal pattern. 

Model (1.2) is closely related to the model examined in Miron (1986), the chief 

difference being that Miron specified his equation in logs whereas our derivation in 
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Appendix A.1 addresses the level of spending. In deference to properties of the data discussed 

in sections 3 and 5, we, like Miron, carry out our empirical work after taking logs of the data; 

we ignore that our economic model, taken literally, applies to the data in levels, and proceed 

as if it applied directly to the logs.1 

In concrete terms, our goal is to investigate the robustness of estimates of 81, 812, and 

2 b in an airline model for log(St) to the presence of sampling error in the data. Our strategy 

for carrying out this investigation is simple: we apply model (1.1) to the (logarithms of the) 

retail sales data twice, once augmenting it with an explicit model for the sampling error in the 

retail sales data, and once not. We then examine the sensitivity of the point estimates of each 

of the above-mentioned parameters of the signal model to the presence or absence of the 

sampling error component in the overall model for the observed series. We focus on changes 

in phnt estimates because of the difficulties involved in making formal probability statements 

about parameters (particularly 012) that are subject to boundary constraints, and, more 

importantly, because of the difficulties in developing inferences that allow for uncertainty in 

the estimation of the sampling error model. 

We should stress that we are not wedded to the airline model either from a statistical or 

an economic point of view. From a statistical perspective, we believe that the model’s 

capability of allowing a changing pattern of seasonality is useful; however, there are other 

ways to approach the general problem of changing seasonality, and an alternative approach 

might ultimately prove more successful than the airline model. As far as the economics are 

concerned, we acknowledge that other models undoubtedly could be proposed that would 

endow the parameters of the airline model with different interpretations than the ones we give. 

IDeriving a logarithmic analogue to (1.2) via log-linearization of the capital accumulation 
equation is not difficult. However, derivation of a logarithmic version of (1.1) does not appear 
possible given that log-linearization of the capital accumulation equation appears infeasible 
whenever the taste-shift process contains more than one unit root. 
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Furthermore, other underlying economic structures could, and have been, proposed that imply 

that spending should take some form other than the airline model. In any such models, 

however, the issue we study here would be relevant: how robust are the point estimates of the 

parameters -- and hence the economic interpretation of the results -- to errors in the data? In 

our view, the paper should not be seen as hostile to the predominant research approach in 

macroeconometrics of the past two decades; on the contrary, we are suggesting that explicit 

modeling of the sampling error may be a step toward placing the inferences drawn from such 

an approach on a fiier empirical foundation. 

The paper is organized as follows. Section 2 provides some background information on 

repeated economic surveys. Details of the Census Bureau’s monthly Retail Trade Survey are 

deferred to Appendix A.2. We use the information given there as a guide in the construction 

of seisonal time series models for the sampling errors in retail sales estimates in section 3. An 

analytical exercise in section 4 shows that the sampling errors can have important effects on 

the seasonal and nonseasonal autocorrelation properties of the observed time series in 

comparison to those of the true, unobserved (signal) series. In section 5 we analyze seven 

retail sales time series (monthly sales of grocery stores, eating places, household appliance 

stores, men’s and boys’ clothing stores, hardware stores, radio and TV stores, and drinking 

places). We first fit airline models (with appropriate regression terms for calendar variation 

and outliers) to the series ignoring the sampling errors, and then refit the models with a 

sampling error component included, performing this analysis both for nominal and real data. 

We find that estimates of 812 and 4 in some cases are profoundly affected even by seemingly 

moderate amounts of sampling error, but find little effect on estimates of 81 for any of the 

series. Section 6 provides a summary and conclusions. 

2. Back_Pround 

Many published economic time series are estimates derived from repeated surveys. 

Examples include, but are by no means limited to, time series of retail and wholesale sales and 



inventories; building permits issued and housing starts; manufacturers’ shipments, inventories, 

and new orders; unemployment statistics; price indexes; and statistics on imports and exports. 

Many other macroeconomic series are aggregates derived from such series as these. Such data 

are subject to two general types of errors: samnling errors, which result when the estimates are 

obtained from a sample survey, rather than a complete census, of the relevant universe (of 

firms, households, etc.), and nonsamnling errors, which are all other errors. The latter can 

often be thought of as biases, and include such things as definitional errors, reporting errors, 

nonresponse errors, sampling frame undercoverage, processing errors, etc. Government 

agencies conducting repeated economic surveys attempt to minimize nonsampling errors, and 

also perform special studies to try to assess their magnitude. However, nonsampling errors 

remain extremely difficult to handle statistically, particularly for those analyzing published 

data.* It is for this reason, and not because they are unimportant, that we will not deal with 

them in this paper. 

There are series (for example, import and export statistics, and retail sales of department 

stores) that are obtained from complete or essentially complete repeated censuses, and thus 

contain no sampling error, though they certainly are subject to nonsampling errors. Thus, the 

amount of sampling error in published time series ranges upward from zero, though 

government statistical agencies tend to avoid publishing series subject to very high levels of 

sampling error. Fortunately, sampling error is amenable to statistical treatment; in fact, 

government statistical agencies regularly publish estimates of sampling error variances. In 

regard to sampling error, therefore, analysis of published time series would seem to present a 

classical errors in variables problem, with the desirable situation of having known, or at least 

estimated, error variances. 

There is, unfortunately, a catch. The catch is that sampling errors from repeated surveys 

are often correlated over time. In general, sampling errors in repeated surveys can be 

autocorrelated if (1) time series for individual population units are autocorrelated, and 

(2) samples at different time points are not drawn independently, e.g. if they have specified 
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overlapping segments. Drawing samples independently each time period is generally 

infeasible operationally for many reasons, including the cost involved in doing this. Instead, 

repeated survey designs typically use samples that overlap for different time periods. If 

overlap persists only for some finite number, say q, of time periods, and the nonoverlapping 

samples are drawn independently, then the sampling errors will follow a moving average 

model of maximum order q. Hausman and Watson (1985) used this idea in developing a 

model for sampling errors in the Current Population Survey (CPS), though nonoverlapping 

samples in the CPS are not quite drawn independently. 

The amount of autocorrelation present in sampling errors depends on the amount of 

sample overlap and the autocorrelation inherent in the individual units in the population. It 

can also depend on the estimation scheme used if the estimates use both past and present data 

to esyimate current values, as in composite estimation in the Retail Trade Survey (Wolter 

1986). Unfortunately, available information on autocorrelation of sampling errors for 

particular economic surveys is spotty. Government agencies do not regularly produce 

estimates of lagged covariances of sampling errors, though this has been done on occasion as 

part of special studies. This includes work done previously by the Census Bureau that 

underlies the sampling error models developed in the next section for some retail sales time 

series. To cite a few other examples: Bell and Hillmer (1987, 1990) consider regional and 

national single and five or more unit housing starts time series, for which estimates produced 

by the Construction Statistics Divsion of the Census Bureau suggested the sampling errors 

exhibit at most very mild correlation at lag 1. They also consider a time series of teenage 

unemployment from the CPS, using an ARMA(l,l) model to approximate the autocorrelation 

structure of the sampling errors. Train, Cahoon, and Makens (1978) produced the original 

estimates of sampling error autocorrelations for this and some other series from the CPS. 

Tiller (1990) discusses some preliminary work of Dempster and Miller to estimate 

autocorrelations for state level CPS data. These are, unfortunately, isolated examples, in part 

because information on the autocorrelation structure of sampling errors in data from economic 



surveys is not regularly produced. This situation may improve in the near future, as in recent 

years there has been more interest in this within government statistical agencies. The interest 

has been stimulated mostly by research into use of time series signal extraction techniques to 

remove some of the sampling error from estimates in repeated surveys, an idea originally 

suggested by Scott and Smith (1974) and Scott, Smith, and Jones (1977), and pursued more 

recently by Binder and Dick (1988), Bell and Hillmer (1989, 1990), Eltinge and Fuller (1989), 

and Pfeffermann ( 1990). 

3. Modeling Samulinp Errors in the RTS 

Bell and Hillmer (1990a), hereafter BH, develop a time series model for the sampling 

errors in (unbenchmarked) estimates of sales of eating places and of drinking places from the 

RTSY We briefly review the model developed in BH, apply it to some additional store 

categories from the RTS, and then consider some limitations of the model. Appendix A.2 

should be consulted for the basics of the survey that are used here. (The references cited in 

Appendix A.2 give further details on the RTS.) Given some of the problems noted in 

Appendix A.2, and some additional problems mentioned in what follows, the models can only 

be regarded as crude approximations that are hoped to capture the most important aspects of 

the sampling error autocovariance structure. Despite their limitations, use of such models 

seems preferrable to ignoring the sampling error altogether. 

BH begin with a time series model for the sampling errors in the current and previous 

month Horvitz-Thompson (HT) estimates (see Appendix A.2) in the RTS. Let Y; = St + e; be 

the current month (t) HT estimate, and Y; 1 1 = St 1 + e; 1 1 be the previous month (t- 1) HT 

estimate, where St is the unobservable true (signal) series and e; and e; 1 l are the sampling 

errors in the HT estimates. BH use identical models for both e; and e; ’ l. Estimates of p c 

CoM+$~ 1> are extremely high -- typically exceeding .95. These values are probably 

inflated by businesses sometimes reporting the same figure for current and previous month 

sales, and perhaps also by the imputation procedures used (as noted in Appendix A.2); in any 
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case, given the current survey estimation procedures it is difficult to distinguish characteristics 

of e; from those of e; 1 1. BH use the model 

(1 - emBm)(l - CDB12)e; = vlt (3.1) 

where m is the number of panels in the sample -- currently 3 (4 prior to September 1977). The 

same model is assumed for e; ’ 1 with v2 t-l replacing vlt. 
, 

[vlt v2,t-I]T (where superscript T 

indicates transpose) is assumed to be bivariate white noise with common variance 2 v for Vlt 

and v2 t 1. This model assumes independence of estimates from different panels, since it 
9 - 

allows for autocorrelation in [e; e; I,] 
T 

only at lags that are multiples of m. The Q> 

parameter allows for additional correlation at seasonal lags. (3.1) has a convenient property 

we shall use shortly: if the sampling error in each panel would follow (3.1) with m = 1 if the 

panel were observed every month, then for any number m (that is a divisor of 12) of rotating 

inde;ndent panels reporting successively, e; follows (3.1). 

To estimate (3.1) we require estimates of lag correlations for e; and e; ’ 1. While 

estimates of lag covariances and correlations are not regularly produced for the RTS, this was 

done as part of a special study using data from January 1973 through March 1975, a time 

when the survey had four rotating list panels. Estimates of such lag correlations can be 

averaged over time assuming correlation stationarity. Table 1 shows averaged correlations at 

lags4,8, 12, 16,20,and24fore; a.nde;Il (the averaging was done after applying Fisher’s 

transformation .5 log((l+r)/(l-r)), and then the inverse transformation was applied to the 

results) for seven series from the RTS. Table 1 shows that the sampling errors exhibit strong 

positive autocorrelation, and evidence of seasonality from the increase in the correlations at 

lags 12 and 24, justifying the (1 - (oB12) term in (3.1). We estimated @ and 0 by minimizing 

the weighted sum of squared deviations of the correlations from (3.1) with m = 4, from those 

of Table 1. (Lags 20 and 24 were ignored, and lag 16 given a weight of .5, due to the small 

number of correlation estimates that were averaged together at these higher lags.) This 

procedure actually estimates e4, but assuming @ > 0 estimates of $I and g3 can be computed 

directly for use with the 3-panel samples. The results for $3 and 6 are given in Table 2. The 
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correlations resulting from (3.1) with @ and Q, are also shown in Table 1, as an indication of 

the goodness of fit of the model. On the whole, the averaged correlations at the lags shown 

are reasonably well matched by those from the model, though the empirical correlations at lags 

20 and 24 appear to die out somewhat less rapidly than the model predicts. 

BH then derive a model for the sampling errors of the linear composite estimator 

(Wolter 1979), which is given by 

<Y;” = (l-BY; + p(y;I; + Y; - Y;Il) (preliminary estimator) 
(3.2) 

Y t-l = (1-CC)Y;Il + CXY;Ii (final estimator) 

In the RTS values of a = .8, p = .75 have been used with the 3-panel samples, and values of 
. 

a= .82, /3 = .8 were used with the previous 4-panel sample. Note that (3.2) also holds for the 

sampling errors, i.e. with Y related by e. BH then use (3.1) and (3.2) to derive the following 

expression for et, the sampling error in the final composite estimates Yt: 

(1 - pB)(l - emBm)(l - 0B12)et = (1-a)v2t - pv2 t 1 + avlt . 
9- (3.3) 

The right hand side above is a first order moving average process whose variance and lag 1 

autocovariance can be determined for given values of a, p, c$, and Corr(vlt,v2 t-l). From 
, 

these the corresponding moving average parameter and innovation variance can be obtained. 

We can use (3.1) to get c$~ for given values of @, 0, and Var(e;) = Var(e; I,), and we assume 

that co~(v~ t, v2 t- 1 ) = p, at least approximately, which is justified in BH. 

Contrary tk the above model, however, estimates of sampling variance, Vk(e;) and 

Vf;r(e; Ilk f or retail sales series are highly dependent on the level of the series. Since 

V&(e;) /Y; and V&(e;ll) / Y;ll, the estimates of x&r& variance, are much more stable 

over time, BH turn to a multiplicative decomposition, Yt = Stut, where ut = 1 + et/St is the 

multiplicative sampling error in Yt, and Var(log(t+)) approximately equals Var(et/S,), the 

relative sampling variance of Y,, for small et& They then assume that a model of the form 

derived for et actually holds for logtut) in log(Yt) = log(St) + log(t+). For 3-panel samples, 

the model resulting for log(ut) is 
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(1 - .75B)( 1 - G3B3)( 1 - 0B12) log(ut) = (1 - ?jB) ct (3.4) 

where ct is white noise. We use our estimates of @, 0, p, and of the relative sampling 

variances of Y; and Y; 1 1 to develop estimates of the variance and lag 1 autocovariance of the 

analog of the right hand side of (3.3) for log(u& and hence obtain estimates of 77 and $. 

Estimates 6, Y;, Y;I1, V&(e;), andV&(e;ll) are regularly produced in the RTS. We used 

estimates of these quantities for the 12 months of 1989 for all the series except eating places, 

drinking places, and hardware stores, for which we already had estimates for 1982 through 

1986. We averaged the estimates of relative variance and p over time (the latter after applying 

Fisher’s transformation), producing the results shown in Table 2 under the column headings 

“HT” and “p”, respectively. (Instead of the relative variance of the HT estimates, we show 

their square root, the coefficient of variation or CV.) Using these results, we solved for the 
a 

estimates ?j and $ given in Table 2. We then solved for Var(log(t+)) in (3.4), which is an 

estimate of the relative variance of the final composite estimator. The square roots of these 

quantities, the CV’s of the final composite estimates, are also shown in Table 2, and are in 

some cases somewhat lower than, but overall are reasonably close to, published estimates that 

are obtained more directly. 

We now mention some shortcomings of the sampling error model. First, the model (3.1) 

assumes zero correlation between sampling errors in the HT estimates from different panels, 

which means the only correlations expected to be nonzero are at lags that are multiples of the 

number of panels m. We had available estimates of HT sampling error correlations for all 

pairs of months from January 1973 through March 1975 from the 4-panel survey, and so could 

examine whether correlations at lags not multiples of 4 appeared to be zero. The results were 

not uniformly encouraging. Figure 1 shows plots of the correlation estimates, chronologically 

by lag for lags 1 through 12, for hardware stores, one of the discouraging examples. The solid 

line in each plot shows estimates of Corr(e;,ej), and the dotted line in the plots at lags 4, 8, 

and 12 shows the correlations implied by the fitted models given in Table 1. (We also 

examined estimates of Corr(e’ ’ t _ l,ej 1 1). On a plot these were almost indistinguishable from 
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the estimates of Corr(e’,e:), and so are not shown here.) The correlations in Figure 1 exhibit 
t J 

some substantial deviations from zero at several lags other than 4, 8, and 12. A possible 

explanation for this is the effect of monthly noncertainty cases discussed in Appendix A.2. 

Also, many of the lag correlation estimates in Figure 1 exhibit periodic behavior with period 4, 

often with substantially larger periodic oscillations than the deviation of the average of the 

correlations from zero. This suggests either that correlation estimates for different panel pairs 

may not be estimating the same quantity, or that there is a very high correlation between 

correlation estimates for the same panel pairs, a hypothesis we are unable to assess. Other 

than this, we presently have no explanation for this phenomenon 

Another slight problem with the model is that the composite estimates are not used at 

the beginning of a new sample -- Wolter (1979) mentions that the (approximate) minimum 

variance linear unbiased estimates are used for the first 3 months of a new sample. This 

introduces a transient effect into the autocorrelations that we shall ignore. 

In the following sections we shall use the model (3.4) with parameters given in Table 2 

for the composite estimate sampling errors in the 3-panel samples. Also, as discussed in 

Appendix A.2, because new 3-panel samples were drawn independently in September 1977, 

January 1982, and January 1987, we assume independence of sampling errors from these 

different samples. While it would be preferrable in some respects to use time series data from 

the 4-panel survey, for which the sampling error correlation estimates were directly obtained, 

efforts we made to model the seven years of data from the 4-panel survey (September 1970 

through August 1977) yielded rather unstable results, suggesting to us that this was not a long 

enough stretch of data to support the type of models we were fitting. We would prefer instead 

to use,direct estimates of sampling error lagged covariances in the 3-panel survey in 

developing the sampling error models. Unfortunately, as noted earlier, such estimates are not 

currently available. We hope we can eventually obtain lagged covariance estimates for the 

3-panel survey. If so, we can better assess the suitability of the model (3.4), and also try to 

modify the model (3.4) as seems necessary. 
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4. Effects of Sampling Errors on Autocorrelation Prouerties of Observed Series 

Consider the additive decomposition Y, = St + et, where St follows the airline model 

(l-B)(l-B12)St = (1-81B)(1-012B12)bt, and the sampling errors follow the model (3.4) but 

with log(uJ replaced by et. (We consider the additive decomposition here merely for 

simplicity of notation, we could similarly use logarithms of a multiplicative decomposition.) 

In this section we investigate analytically the possible effect of the sampling errors on how the 

autocorrelation properties of the observed series Y, differ from those of St. We use this 

exercise as a guide to what might be expected from the empirical results later. Since Y, 

- requires the same differencing operator, VV12 = (l-B)(l-B12), as St, we let W, = VV12Yt = 

vt + $, where vt = VV12St = (1-~,B)(1-~,2B’2)bt, and 4, = VV12et follows the model 

I (1-.75B)(1-.7B3)(1-.75B12){t = (l+.lB)(1-B)(1-B’2)ct. (4.1) 

The values of i3, 6, and fi in Table 2 do not vary greatly over series; in (4.1) we have picked 

roughly the average parameter values from Table 2. The model (4.1) reflects overdifferencing 

(the (1-B) and (l-B12) moving average operators) since et following (3.4) does not require 

differencing. 

Let y,(k) and p,(k) denote the autocovariance and autocorrelation of Wt at lag k, with 

analogous notation for the other series involved. Then one can easily see that 

p,(k) = a p,(k) + (1-a) q(k) a = ?p) 1 by3 + rp)) * 

Thus, the autocorrelation function of the differenced observed series will be a weighted 

average of those of the differenced signal series and the differenced sampling error. The 

averaging parameter, A, depends on the variance in the signal series relative to that in the 

observed series; it can also be expressed as a function of the signal-to-noise ratio, 
44 

/ , and 

the parameters 81 and 812. Table 3.a gives the autocorrelations of 5, arising from (4.1). This 

shows positive correlations damping out at lags 3, 6, and 9, a correlation at lag 12 of near 0, 

and small negative correlations at lags 1,2, 4, 5, 7, 8, 10, 11, 13, and 14 that tend to decrease 

in magnitude with increasing lag. Autocorrelations beyond lag 14 are mostly close to 0; those 
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at lags 24 and 36 are the largest of these in magnitude. The autocorrelations of W, are the 

result of averaging these together with those of vt, which will be negative at lags 1 and 12 (for 

positive values of el and B12), the product of p,(l) and ~~(12) (and so smaller and positive) 

at lags 11 and 13, and zero at all other lags. 

Autocorrelations of W, were computed for the above models for e1 = (0, .3, .9) and 

e12 = (.7, 1.0). This was done for a case of low sampling error (a moderately high 

signal-to-noise ratio of c$$ = 10) and for a case of high sampling error (a low 

signal-to-noise ratio of ~$4 = 3). The results are shown as solid lines in Figures 2.a and 2.b, 

which also show bar graphs of the autocorrelations of vt. The presence of sampling error 

. shrinks the spikes in ~~(12) towards zero and decreases the values of ~~(11) and ~~(13). The 

effects on p,(l) depend on the value of el: for e1 = .9 the strong negative p,(l) is pulled 

towa& zero; for el = 0 we have p,(l) = 0 but a fraction (1-L) of the negative correlation in 

5, at lag 1 filters through to W,; and e1 = .3 is approximately a stationary point, with p,(l) 

very close to p,(l). At other lags p,(k) = (l-a@ 
5 

(k). Still, even in the high sampling error 

case, values of p,(k) for k # 1, 11, 12, 13 are less than .2 in magnitude, and someone 

identifying a time series model from p,(k) could easily pick an airline model for Y,. The 

most likely alternative choice would be to augment this model with additional low order MA 

or AR lags, e.g. an (0,1,3)~(0,1,1)~~ model instead of the airline model. 

To get an idea of what might happen if one were to fit an airline model directly to Y, in 

this situation, we picked values of @I and e12 to approximate p,(k) for k = 1, 11, 12, 13, in 

the sense of minimizing the sum of squares of the deviations of the airline model correlations 

from the p,(k). The results are given in Table 3.b. As might be expected from Figures 2.a 

and 2.b, the presence of sampling error as modeled here biases up the estimate of e1 when the 

true @I equals 0, biases it down when the true value is large, and has virtually no effect for 

intermediate values (i.e. e1 near .3). The impact of the sampling error on the estimate of e1 is 

much greater when the true @I is large. The effects of sampling error on estimates of e12 are 

a dramatic shrinking of the value towards zero in virtually all cases considered. Of course, the 
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innovation variance (not shown in the table) is smaller when the model allows for sampling 

error and so attributes some of the variability to this component. In the next section we shall 

see to what extent these effects show up empirically in fitting models with and without 

sampling error components to observed retail sales series. 

5. EstimatinP Time Series Models for Retail Sales 

We now estimate models with and without sampling error components for our seven 

retail sales time series. Plots of the (unbenchmarked) final composite estimates Yt for these 

series are given in Figure 3. (These are nominal series; we shall later also analyze constant 

dollar series.) Our data begins with the start of the 3-panel survey, in September 1977, and 

ends in October 1989, yielding 146 observations. There were two redrawings of the RTS 

sample during our observation period: in January 1982 and January 1987. 

As Figure 3 makes clear, all seven of our series show strong seasonality, nonstationarity 

in level, and variability increasing with increasing level, suggesting a need for nonseasonal 

and/or seasonal differencing, and the transformation log(Yt). Taking logarithms of the 

multiplicative decomposition Y, = St( 1 + et/St) = Scut to get log(Yt) = log(St) + log(ut) is 

also convenient in terms of the properties of the sampling error, as noted in section 3. BH 

note that because the Y, are “design unbiased” estimates (unbiased over repeated realizations 

of the sample), the time series log($) and log(t+) are approximately uncorrelated. All the time 

series here are known to be affected by trading-day variation, and two of them (grocery stores, 

and men’s and boys’ clothing stores) by Easter holiday variation. We handle these effects with 

regression variables as discussed in Bell and Hillmer (1983), with a g-day Easter effect for 

grocery stores and a 7-day Easter effect for men’s and boys’ clothing stores. We also include 

indicator variables in the models for a few outliers found in the series, using essentially the 

scheme of Bell (1983); the basic outlier detection methodology is discussed in more detail in 

Chang, Tiao, and Chen (1988). We did not find many outliers, and those found were not 

inordinately large in magnitude. For the sake of brevity, we shall omit estimates of regression 
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parameters in what follows. In general, the estimates of the regression parameters in our 

models are little affected by the presence or absence of a sampling error component in the 

model. 

As discussed earlier, we use the airline model for the signal series with regression effects 

removed, i.e. 

VV,,[log(SJ - regression terms] = (1-~,B)(1-f312B’2)bt , 

or we ignore the sampling error and apply this model directly to log(Y& This choice of 

model can be justified empirically as follows. Sample autocorrelations of log(Yt), Vlog(y$, 

v1210g(Yt), and VV1210g(yt) suggest taking VV,,log(Yt) for all seven series. Examining 

. sample autocorrelations of the residuals from a regression of VV1210g(Yt) on differenced 

trading-day and (when required) Easter holiday variables then suggests the airline model for 

most*of our series, and for none of the series does the airline model appear to be an 

unreasonable choice. Also, BH suggest selecting a model for log(Y,) via such usual 

techniques ignoring sampling error, and using this as a starting point in modeling log(St), 

modifying the model if diagnostic checking suggests inadequacies in the model. We note later 

that diagnostic checking does not suggest inadequacies with the model in most cases. Notice 

that if 81 or 812 is estimated to be approximately 1, indicating overdifferencing, we can cancel 

the V or VI2 and add a trend constant or fixed seasonal regression terms to the model. 

When the sampling error, log(t+), is included in the model for log(Yt), it is assumed to 

follow the model (3.4) within samples, with parameter values as given in Table 2. The breaks 

in covariance structure of log(uJ when a new sample is introduced are handled in estimation 

by the Kalman filter as discussed in Bell and Hillmer (1990b). We carried out the estimation 

using software recently developed by the time series staff of the Statistical Research Division, 

U. S. Bureau of the Census, for Gaussian maximum likelihood estimation of ARIMA 

component time series models with regression terms. The sampling error models are held 

fixed in the time series estimation; i.e. the likelihood is maximized over only 81, 812, c$, and 

the regression parameters. Table 4.a gives estimation results for current dollar data with and 
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without the sampling error component included in the model. 

Focusing first on estimates of crb (a one-step-ahead prediction coefficient of variation) 

we see, as must occur, reductions in hb when some of the variation in the series is attributed to 

sampling error. There are substantial reductions in 6b for eating places, hardware stores, and 

chinking places, so for these series economic interpretations of &b would be importantly 

affected by the presence of sampling error. The reductions in kb are smaller for the other 

series. The amount of reduction in &b depends not so much on the absolute amount of 

sampling error present in the series, which is measured by the composite estimate W’s in 

Table 2, but on the magnitude of the sampling error relative to the signal, as inversely 

. measured by the signal-to-noise ratios * c?c? b/^c given in Table 4.a. The distinction between 

absolute and relative magnitudes of the sampling error is important for our series. For 

exan$le, eating places has the second lowest composite estimate CV in Table 2, but also has 

the second lowest signal-to-noise ratio in Table 4.a. This occurs because several other series 

with higher composite estimate CV’s also appear to have signals that are inherently much less 

predictable, as reflected in their higher estimates of &b. Thus, the impact of sampling error on 

&b depends not just on the magnitude of the sampling error, but on its magnitude in relation to 

the variability in the signal series. 

Turning to the estimates of the seasonal moving average parameter 012, we see that 

including sampling error in the model brings large increases in a,, for eating places, hardware 

stores, and drinking places. Again, for these series the economic interpretation that could be 
. 

placed on 012 would be sensitive to the treatment of sampling error. There is little change in 

a,, for the other series. For the most part, the behavior of a,, for the series here is consistent 

with the predictions of the previous section (see Table 3). The exceptions are radio and TV 

stores, and grocery stores. For radio and TV stores we would expect to see more change in 
1 
e12 when the sampling error model is included, given its signal-to-noise ratio Ab/Ac, which is A? 

comparable to that for hardware stores. For grocery store sales the increase in 8,, is larger 

than expected, given the very small amount of sampling error evident from Tables 2 and 3. 
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We have no explanation for these exceptions. In general, the results for 81, here would seem 

to have important implications for seasonal adjustment, since the sampling error is capable of 

making what is essentially fixed seasonality (al, near 1) appear stochastic. 

The estimates of 81 in Table 4.a change very little when sampling error is included in 

the model, suggesting that economic interpretations of this aprameter should be relatively 

robust. This is not surprising since none of the 4,‘s approach the value of .9 for which 

important effects of sampling error were noted in section 4. (We hope eventually to 

investigate the possibility that effects might be seen with improved sampling error models 

developed from micro-data for the three-panel survey.) In terms of the simple theory outlined 

in the introduction and Appendix A.1 the 8,‘s do not make much sense; even when sampling 

error is included in the model taking l-81 as an estimated depreciation rate we find implied 

depr&iation rates of at least 50 percent per month for all the store categories considered. 

Moreover, viewed from this perspective the ordering of the l-al values is not appealing. For 

example, the point estimates suggest that items sold at men’s and boys’ clothing stores, 

hardware stores, and radio and TV stores depreciate more rapidly than grocery store goods. 

Finally, Table 4.a includes Ljung-Box (1978) statistics (Q12) using 12 lags, as a rough 

check of aggregate model adequacy. These cannot sort out whether the signal and sampling 

error models are separately adequate, only whether the resulting model for log(Yt) may be 

inadequate for explaining the covariance structure of the observed series. The Q12 statistics 

were computed using standardized residuals produced by the Kalman filter using the maximum 

likelihood estimates of the model parameters. Given the nature of our model, it is not clear 

that the usual asymptotic theory would apply to these statistics. Nevertheless, we provide 

them as a rough indication of model fit. If one follows the usual practice of comparing these 

against chi-squared critical values for 10 degrees of freedom (which are 18.3 for five percent 

and 23.2 for one percent) there would be mild concerns about some of the model fits, which 

could probably be alleviated by including additional nonseasonal moving average or 

autoregressive terms in the model at low lags. The largest Q12 values are exhibited by 
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grocery stores, though this is of the least concern for our purposes here since grocery stores 

has the least sampling error of any of the series. Including sampling error in the model lowers 

Q12 in some cases, raises it in others. 

Because consumption theory applies more naturally to real quantities than to current 

dollar values, we also fit our models to constant dollar series. The price deflators we used 

were components of the consumer price index (CPI) that we selected in order to obtain the 

best match between sales series and price series; for all of the sales categories except hardware 

stores (for which we used a price series for housing maintenance and repair commodities) it 

was not difficult to find a price series that appeared to provide a good match. These price 

. indices are available in not-seasonally-adjusted form. (Details of our selections are available 

on request.) If p, denotes the price index, then notice that we have 

I 
log(YdPt) = WSt/Pt) + logo+) 9 (5.1) 

so that by deflating the composite estimates Y, we can model the deflated signal series, St/pt, 

subject to the same sampling error ut. Actually, the CPI components are themselves estimates 

from a sample survey, and thus our price deflators are also subject to sampling error. Since 

we are ignoring this, we have really omitted another (independent, additive, logarithmic) 

sampling error component in (5.1). We have not investigated whether information is available 

on the autocovariance structure of these sampling errors. 

In any case, Table 4.b gives estimation results for the deflated data that convey the same 

message as those of Table 4.a, so that it matters little whether we use current or constant dollar 

data. Indeed, corresponding entries of Tables 4.a and 4.b (other than some Q,, values) are 

quite close for every store category except grocery stores, where the estimate of 812 is a bit 

higher, in the constant dollar data both when the sampling error model is suppressed and when 

it is included. 
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6. Summary and Conclusions 

In this paper we have examined the sensitivity of modeling results for time series from 

the Census Bureau’s Monthly Retail Trade Survey (RTS) to the presence of sampling error. 

Our interest in these series stems from their relevance to the consumption literature, which in 

recent years has emphasized the economic interpretation of parameters in time series models 

for consumption spending. Using available information on sampling error autocorrelations and 

(relative) variances, we constructed time series models for sampling errors in the RTS. Then, 

using the “airline model” for the true, unobserved series as a baseline specification, we 

estimated models for seven time series from the RTS with and without models for the 

. sampling error components. While there are some identifiable shortcomings in our sampling 

error models, the results of this effort, and those of the analytical exercise of section 4, suggest 

that c’ertain modeling results can be sensitive to the presence of even moderate amounts of the 

type of sampling error present in the RTS. Explicit treatment of sampling error in the model 

can result in considerably lower estimates of the innovation variance of the true (signal) series 

and considerably higher estimates of the seasonal moving average parameter, relative to results 

obtained when sampling error is ignored. In regard to the latter, ignoring (seasonally 

correlated) sampling error can make seasonality appear much more variable than it appears 

when the sampling error is accomoclated in the model. Estimates of the nonseasonal moving 

average parameter were not much affected by including sampling error in the model for the 

series considered here, though the parameter estimates turned out to be in a range where little 

effect would be expected. Given that estimates of the nonseasonal moving average parameter 

typically lie in the range 0 to .5, economic interpretations of this parameter would appear to be 

robust to the presence of sampling error from the monthly RTS. 

The message from this analysis is that sampling error should be taken seriously in 

attempts to derive economic implications from modeling of time series data from repeated 

surveys. The presence of a “small amount” of sampling error should not affect the analysis 

much; unfortunately, what constitutes a “small amount” depends on the magnitude of the 
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sampling error relative to the variability of the true (signal) series, i.e. on the signal-to-noise 

ratio. Thus, effort beyond looking up a sampling coefficient of variation in a publication is 

required to determine if sampling error may matter in a particular situation. Further work is 

needed to obtain better information on the autocovariance structure of sampling errors, and to 

bring them into an integrated inferential framework for time series analysis. 
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Auuendix A. 1: Deriving the Airline Model from an Economic Model for Durable Goods 

Exuenditures 

This appendix gives one set of assumptions consistent with the level of spending on a 

durable good following an airline model. 

The representative consumer chooses a path for expenditure on the durable good by 

solving the following maximization problem: 

max Et{ i $ 
j=O 

(’ - Kt+j + Tt+jj2 1, 

- 
where p is the subjective discount factor, K is the bliss point, K t+j 

is the accumulated stock of 

the durable good at time t+j, and T t+j 
is a stochastic taste shifter. The constraints are the 

. 

usual ones, namely, the accumulation equation for the durable good, 

I Kt = (1 - s> Ktvl + St 
where St measures spending on the durable good in time period t; and the budget constraint, 

tl+r)JQ + (1 - s> Ktwl + F (l+r)-J Y 
t+j 

= Z (l+r)-j ~~ Kt+j (Al.l) 
j=O j=O 

where W, is the level of non-human wealth held in some asset other than the durable good. 

(See Mankiw (1987).) There are two sources of uncertainty: shocks to the taste-shift process 

and shocks to labor income. 

Assuming that the real interest rate is fixed and equal to the rate of time preference, the 

first-order necessary conditions for optimality are given by: 

Et (Kt+j - Tt+j) = Kt - Tt forallj2 1, 

or, with slight rearrangement, 

EK 
t t+j 

= K, + :: Et (1 - B)Tt+i 
i=l 

We note that (Al.l) must hold in expected value as well as in the realized values; therefore, 

we can combine (Al.l) and (A1.2) to obtain: 
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. 

(l+Wt-l + (1 - &Ktml + IG (l+r)-j Et(Yt+j) (A1.3) 
j=O 

= $(+Kt + i (l+r)-j (*) E [(l-B)T 
r t t+j 

1) 
j=l 

We postulate that the time series model for the taste shifter takes the following form: 

(1 - B)(l - B12) T, = vt ; (A1.4) 

the innovation vt is assumed to be uncorrelated at all leads and lags with the shocks to labor 

income. Tedious but straightforward algebraic manipulation of (A1.3) and (A1.4) then yields: 

K, = t&l Kl+r>Wt-l + (l-@K,-l + jfo tl+d EtVt+j)l (A1.5) 

-t&[B l1 + (l+r) -1 B 10 + ... + (l+r)-ll ](l-B)Tt. 

where 

* a = (l+r)12 / [ (1+r)12 - 1 ] . 

Using (A1.5) and the fact that WtVl = (l+r) Wtm2 + Ytml - Stml , a considerably simpler 

expression describes the evolution of (1 - B)Kt: 

(1 - W K, = C&l Et - [a/ (l+r)12](1 - B) T, + a(1 - B) T,-l2 , (A1.6) 

where ct is the innovation to lifetime labor income, and is given by: 

5 = i (l+r)-j [ Et(Yt+j) 
j=O 

- Et-l(Yt+j) I’ 

Note that in the absence of taste shocks, the stock of the durable good follows a martingale 

process. 

The univariate representation for K, can be derived from (A1.6) by passing the seasonal 

differencing operator through both sides of the equation: 

(1 - B)(l - B12) K, = (r&)(l - B12) &t - [a/ (1+r)12] vt + a vts12. 

(A1.7) 

Given that et and vt are not separately observable, the right-hand side of (A1.7) is 

observationally indistinguishable from a seasonal MA(12), and we can write: 

(1 - B)(l - B12) Kt = (1 - e12 B12) 5, (A1.8) 
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where 4, is white noise. Finally, using the accumulation equation for K,, we can derive the 

univariate representation for spending on the durable good St: 

(1 - B)(l - B12)St = [l - (1 - S)BlU - f-J12 B 
12 

> 5, (A1.9) 

Note from (A1.7) that as c? v goes to zero 012 goes to 1, and the seasonal MA polynomial in 

(A1.8) cancels with the seasonal differencing operator, leaving deterministic seasonal means 

plus white noise for (1 - B) Kt . Then (A1.9) reduces to the model (1.2) with 81 = 1 - S, the 

levels analog of the model studied by Mix-on (1986). Of course, models for T, other than 

(A1.4) could be used to yield, through analogous steps to those above, different models for St. 

- ADDendiX A.2: The Retail Trade Survey (RTS) 

The Census Bureau’s Retail Trade Survey (RTS) produces monthly estimates of sales for 

de&&d kinds of retail businesses (defined by SIC codes) at the U. S. and regional level, and 

for less detailed kinds of retail businesses for some states and metropolitan areas. In this paper 

we shall deal only with data at the U. S. level. We note that the estimates for states and 

metropolitan areas typically are subject to much higher levels of sampling error than are 

corresponding estimates at the U. S. level, and hence empirical work based on subnational 

sales estimates would be even more prone to the effects of sampling error investigated in this 

paper. 

In the RTS, estimates ate obtained from reports of sales from a monthly sample survey 

of businesses, and from benchmark adjustments to reports of annual sales from an annual 

sample survey and from the quinquennial economic censuses. The published estimates differ 

from the exact, actual values of retail sales because of sampling error and various nonsampling 

errors.q In this Appendix we briefly review some basic features of the survey design and 

estimation, some of which are used in section 3 in developing time series models for the 

sampling errors. Several other aspects discussed have to do with nonsampling errors, the 

magnitudes of which are largely unknown, and which, therefore, cannot be accounted for in 

the modeling. Still, it is useful to be aware of these limitations in the data. The discussion 
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here is necessarily brief; for more detailed discussion of the RTS see Wolter et. al. (1976), 

Wolter (1979), and Garrett, Detlefsen, and Veum (1987). Woodruff (1963) is another useful 

reference, though important changes in the RTS have been made since the time of his writing. 

Useful summaries of the operation of the RTS, and notices of major changes, are provided in 

appendices to the data publications, the Census Bureau’s Monthly Retail Trade Reports. Waite 

(1974) investigated nonsampling errors in the RTS. 

Since 1971 the RTS has primarily relied on a list sample drawn from the Standard 

Statistical Establishment List (SSEL), with information relating to firm births and deaths 

obtained from the Social Security Administration and the Internal Revenue Service. A 

separate geographic area sample is used to cover businesses not within the list frame, mainly 

new businesses not yet entered into the SSEL and businesses without payroll (e.g. some family 

busilesses). In recent Retail Trade Reports the area sample is reported as contributing only 

about six percent to overall retail sales, though this amount varies by kind of business. 

Because of its generally small contribution, we shall not consider the area sample in detail 

here. 

The RTS consists of a panel of larger businesses selected into the sample with certainty, 

rotating panels of list sample businesses selected by stratified simple random sampling without 

replacement, and the rotating panel area sample cases selected in a multistage procedure. New 

samples are independently redrawn and introduced about every 5 years; since the move to the 

list sample, this has occurred in September 1977, January 1982, and January 1987. When a 

new sample is instituted, certainty status is assigned to those businesses whose sales in the 

most recent economic census exceeded cutoff points specific by kind of business. Certainty 

cases report monthly on sales for the current reporting month. Presently three list sample 

rotating panels report current and previous month sales every three months (3-panel design); 

prior to September 1977 an analogous 4-panel design was used. This basic design has 

important implications for the time series properties of the sampling errors. Since the rotating 

panels are drawn independently (or approximately so, to the extent that the sampling fraction 
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of the noncertainty cases is small), the sampling errors in estimates arising from different 

panels should be independent. Also, since the redrawing of the samples about every 5 years is 

done independently, sampling errors from these different samples will be independent. 

Each month, unbiased Horvitz-Thompson (HT) estimates (Co&ran 1977, pp. 259-261) 

of current and previous month sales are constructed. These estimates are weighted totals of 

the sample observations, where the weights are the inverses of the probabilities of selection -- 

one for the certainty cases. The HT estimates are then used in producing “composite” 

estimates, as discussed in section 3. Sampling variances are estimated using the random group 

method (Wolter 1985) for the list sample (with 16 random groups), and the collapsed stratum 

w method for the area sample. In principle, by linking random group totals for pairs of months, 

covariances of the corresponding sampling errors can be estimated by the random group 
* 

method in the same way that sampling variances are estimated. This is how the lag 

covariances were estimated in the special study mentioned in section 3 that produced the 

sampling error autocorrelations used in this paper. Unfortunately, random group totals are not 

saved when the monthly survey estimation processing is done, so that current estimates of 

sampling error autocovariances are not readily available. 

Large observation procedures (see Woodruff (1963) and Wolter et al. (1976)) are used to 

reduce the variances of the HT estimates while still retaining unbiasedness. Basically, reported 

sales of noncertainty sample units are compared against cutoff values and, if the cutoff values 

are exceeded, the units are designated as monthly noncertainty cases, either temporary (cutoff 

exceeded in one month) or permanent (cutoffs exceeded for a sequence of 6 months). These 

units are then canvassed and tabulated one additional month (temporary case) or each month 

thereafter (permanent case) but with sample weights reduced to maintain unbiasedness. The 

important consequence of these procedures is that some of the businesses selected in one 

rotating panel will, over time, start contributing to the estimates of the other rotating panels, 

thus inducing correlation in the sampling errors of the estimates from different panels. When a 

new sample is implemented there are no monthly noncertainty cases. Ruth Detlefsen of the 
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Business Division at Census reports that the monthly noncertainty cases typically build up 

fairly quickly and stabilize at some level that is significant for many kinds of business. 

Calendarization and imputation procedures are needed to address two important response 

problems. The former deals with the fact that some businesses do not keep their books on a 

calendar month basis. In such cases the preferred procedure is for the business to provide an 

estimate of calendar month sales. However, some such businesses file RTS reports for periods 

other than calendar months (e.g. four or five week periods); the Census Bureau then applies 

calendarization procedures to convert these data to a calendar month basis. Such procedures 

obviously are necessary to produce calendar month sales figures; however, either possibility 

- leads to nonsampling error of an essentially unknown magnitude in the published estimates. 

Imputation procedures are needed to deal with missing data arising from nonresponse, late 

response, and edit failures (detected bad data). Imputations are based on past values for the 

same business and other businesses of the same kind in the same panel. While this procedure 

will not induce correlation across panels, it can inflate correlation within a panel. The extent 

of this effect is difficult to know, though it certainly depends on the level of nonresponse in 

the RTS, which varies over time and by kind of business. Garrett, Detlefsen, and Veum 

(1987) report that as of August 1987 roughly 25 percent of total retail sales by value was being 

imputed, though since 1989 the imputation rate has dropped to about 17 percent. Imputation 

rates are higher at the start of a new sample due to difficulties in getting some new sample 

units to respond initially, and difficulties in determining that some units selected for the new 

sample are no longer in business. In any case, there has been a significant deterioration from 

previous years; Wolter et al. (1976) report a nonresponse rate of only 9 percent. 

,As mentioned earlier, monthly survey estimates are benchmarked to annual totals from 

the annual RTS and the quinquennial economic censuses. The data from these sources are 

believed to be more reliable than those from the monthly RTS because the response rates are 

higher (possibly due to mandatory reporting requirements), and because businesses generally 

have book figures (rather than just estimates) available on an annual basis (for calendar or 
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fiscal years). Benchmarking can remove significant amounts of nonsampling error, at least in 

regard to annual totals, but month-to-month movements are still determined by the monthly 

survey2. As benchmarking involves a filtering of the time series of estimates, it will affect 

their autocorrelation properties. To avoid such problems in this paper, we use data that are not 

benchmarked. For this reason, the data used here do not agree with published estimates. 

Another adjustment of importance to the monthly estimates is made to avoid sudden 

shifts in level whenever a new sample is introduced. Data in the old sample are multiplied by 

the geometric mean of the ratios of new sample to old sample estimates obtained for two 

months for which the old and new samples overlap. Since the models we shall use involve 

w taking logarithms and (regular and seasonal) differencing, the effect of this adjustment will be 

limited to the first month of the new sample and the same month a year later. 
I: 

2Monsour and Trager (1979) describe benchmarking in the RTS, and Trabelsi and Hillmer 
(1990) relate the benchmarking procedure to a general statistical approach using time series 
models. 
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Table 1 

Sampling Error Correlations for Horvitz-Thompson Estimates 

4 8 

Grocery Stores (SIC 541) 
Averaged .86 .85 
From (3.1) .87 $85 

Eating Places (SIC 5812) 
Averaged .72 .71 
From (3.1) .75 .69 

Household Appliance Stores (SIC 5722) 
Averaged .85 .81 
From (3.1) .85 .82 

* Men’s and Boys’ C1othin~gStore.s (SIC7g61) 
Averaged 
Frop (3.1) .80 .74 

Radio and TV Stores (SIC 5732) 
Averaged .74 .71 
From (3.1) .75 .71 

Drinking Places (SIC 5813) 
Averaged .70 .67 
From (3.1) .72 .66 

Hardware Stores (SIC 525) 
Averaged .76 .73 
From (3.1) .78 .74 

Lag 
12 ti 

.92 .82 

.93 .80 

.79 .63 

.81 .60 

.86 .78 

.88 .74 

.77 .72 

.81 .63 

.86 .66 

.87 .64 

.78 .60 

.80 .56 

.85 .74 

.87 .67 

Number of Correlations of both Y; and Y; ‘ 1 

- Averaged 23 19 

Weights Used in 

Determining I$, & 1 1 

Notes: 

15 11 

1 .5 

2Q 24 

.81 .88 

.76 .83 

.65 .77 

.53 .61 

.74 .75 

.68 .72 

.63 .76 

.56 .60 

.65 .81 

.59 .72 

.60 .61 

.50 .59 

.73 .76 

.62 .72 

1. Raw estimates of Corr(e;, eJ) and Corr(e’ ‘ t-l’ejIl ) available for all pairs of months from 

January 1973 through March 1975 were averaged by lag for the lags shown after applying 
Fisher’s transformation, and the results were then transformed back. 

2. Correlations are shown from model (3.1) for m=4 with parameter values q4 and 6 (given 
in Table 2) determined to minimize the weighted sum of squared deviations of the correlations 
from the model and the averaged correlations using the weights shown. 
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Grocery Stores 

Eating Places 

Household Appl. 
stores 

Men’s and Boys’ 
. Clothing Stores 

Hardware Stores 

Radi”o and TV 
Stores 

Drinking Places .66 .71 

2 Table 

Parameter Estimates for (3.2) and Related Quantities 

. d3 
.77 

.69 

.77 

.73 .69 ’ 

.70 

.67 

5.b 

.86 

.72 

.77 

.80 

.81 

-.19 1.34 .994 

-.13 19.48 .985 

-.lO ,40.41 .979 

-.02 41.65 .953 

-.04 54.64 .962 

-.lO 87.60 .979 

-.13 93.01 .986 

Coefficients of 
Variation (%) 

HT Composite 

2.2 1.3 

4.2 2.5 

7.8 5.1 

5.1 3.6 

7.0 4.8 

9.8 6.1 

8.8 5.1 

Notes: 

1. Values for a4 and 6 were obtained as discussed in the text and in Table 1. Then 4 and i3 

were obtained assuming $I > 0. The fi and ^c 02 values were obtained as described in the text. 

We calculated the coefficients of variation of the composite estimators using the fitted models 
(3.4); these differ some from published estimates (see text). 

2. Values for fi were obtained by averaging transformed values of Corr(e; ,e; 1 l) and then 

transforming back, and values of the relative variance of the HT estimates were obtained by 

averaging values of Var(e ;)/(Y ;,2 and Var(e ’ ’ t _ ,)/(Y; 1 l)2. For all but eating places, drinking 

places, and hardware stores, data for 1989 were used in the averaging of the lag-l correlations 
and the relative variances. For these other three series, data for 1982 through 1986 were used. 
Also, for these series the logarithms of the relative variance estimates were averaged, added to 
one half of the sample variance of these, and this was then exponentiated to get the relative 
variances of the HT estimates. This produced only slightly different results than simply 
averaging the relative variances. 
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Table 3.a 

Lag 
Pp) 

Lag 
P{(k) 

Lag 
Pg’k’ 

Autocorrelations from (4.1) with e3 = .7, Q, = .75, q = -.l 

1 2 3 4 5 8 12 
-.24 -.26 .60 -.21 -.21 .3; -.A -.15 .1; -.:i -.ti .03 

13 14 15 16 17 18 19 20 21 22 23 24 
-.06 -.05 .Ol -.02 -.02 -.Ol .OO .OO -.05 .02 .02 -.lO 

27 28 29 30 31 32 33 34 35 36 
.03 -.07 .04 .04 -.08 .04 .04 -.lO 

Table 

Airline Model Parameters (el,el,> Producing the Best Approximation to 
I 

Autocorrelations of the Differenced Data, W,, in the Presence of 

(Differenced) Sampling Error Following (4.1) 

0 

e1 .3 

.9 

Low SamDling Error HiPh SamolinP Error 

92 e12 

Lz 19 22 LQ 

(.02,.52) (.01,.63) 0 (.05,.35) (.04,&I) 

(.29,.53) (.29,&l) e1 .3 (.28,.36) (.28,.45) 

(.76,.59) (.78,.72) .9 (.62,.45) (.66,.55) 



4.a, Table 

Estimated Parameter Values For Models With and W 

Grocery Stores 

Eating Places 

Household Appl. 
Stores 

. ,. 

Ql 812 

.48 .59 

.25 .73 

.45 .52 

Men’s and Boys’ 
Clothing Stores 

* Hardware Stores 

.40 .21 

Radio and TV 
store: 

.18 .68 

.Ol .65 

Drinking Places .29 .56 

thout Samuling Error 
(Current Dollar Data) 

Model Ignoring Sampling Error 

mb Q12 

1.04 35.1 

1.52 9.5 

4.10 11.1 

3.32 21.0 

3.56 16.4 

4.10 22.9 

2.59 15.8 

Table 4.b, 

. 

Ql 

.46 

.19 

.49 

.39 

.19 

.02 

.23 

Model With Sampling Error 
m e ,. 

Ql2 

.70 

.94 

.49 

.21 

.99 

.70 

.88 

.98 30.4 71.7 

1.29 10.4 8.5 

3.98 10.5 39.2 

3.11 23.9 23.2 

2.91 23.8 15.5 

3.81 23.6 16.6 

2.04 10.4 4.5 

Estimated Parameter Values For Models With and Without Sampling Error 
(Constant Dollar Data) 

Grocery Stores 

Eating Places 

Household Appl. 
Stores 

. . 

Ql 812 

.40 .76 

.24 .71 

.40 .49 

Men’s and Boys’ 
Clothing Stores 

Hardware Stores 

.34 .24 

Radio and TV 
stores 

.20 

.oo 

Drinking Places .28 

Model Ignoring Sampling Error Model With Sampling Error 

.73 

54 

.54 

mb Ql2 

1.12 35.0 

1.52 5.6 

4.15 11.6 

3.37 18.9 

3.57 9.0 

4.14 19.9 

2.58 13.3 

1 . 

Ql Ql2 

.35 .90 

.19 .98 

.44 .45 

.32 .25 

.19 .98 

.02 .68 

.25 .86 

1.02 30.3 77.8 

1.24 6.6 7.9 

4.01 10.8 39.9 

3.17 21.7 24.2 

2.91 11.8 15.5 

3.83 20.6 16.8 

2.06 10.3 4.6 
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