BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION REPORT SERIES SRD Research Report Number: Census/SRD/RR-91/01

How Does Smoothing Estimated Monthly Control Totals Affect SIPP Estimation?

by

Lynn Weidman and Larry Bobbitt Statistical Research Division Bureau of the Census Washington, D.C. 20233

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Report completed: February 7, 1991

Report issued: February 7, 1991

1. Introduction

For each of the Census Bureau's household surveys, calculating final person weights involves several stages of adjustment to the initial sampling weights. The number of stages and details of the procedures differ somewhat by survey, but they all have two stages in common: adjustment for household nonresponse and adjustment to monthly age x race x sex (demographic) totals. When the latter adjustment is carried out for the Survey of Income and Program Participation (SIPP), it is done simultaneously with adjustment to monthly controls for six household types. These controls are estimated from the Current Population Survey, whereas the demographic totals are projected from the previous decennial census using birth, death and immigration data.

Each survey uses these same demographic totals and they follow smooth long term trends with little month-to-month variability. SIPP is the only survey to use household type controls which, being estimates, show quite a bit of month-to-month variation. It seems reasonable that since these controls are being treated as the "truth" for SIPP, it is desirable to fit to their "true" values rather than the "true" values plus monthly variability due to sampling. This study considers a smoothing of the household type controls by time series methods and compares properties of the original and smoothed controls, as well as properties of estimates derived from the two sets of controls. Section 2 summarizes the adjustment procedure being analyzed and the smoothing methodology used. The estimates are compared in section 3, and the final section discusses the results.

The investigation carried out is in the spirit of exploratory data analysis. No statistical tests have been performed or statistical claims made. We have compared the month-to-month variability for estimates using the original and smoothed weights, and tried to determine if there is a consistent pattern of variability reduction when the smoothed weights are applied. This analysis will help to determine the utility of smoothing household type controls before using them in the final adjustment procedure.

2. Final Adjustment and Smoothing Methodology

Figure 1 shows the two-way table used in the SIPP final stage adjustment of black males aged 15+. There is a similar table for each of eight age (0-14, 15+) x race (black, nonblack) x sex (male, female) combinations. The weighted cell counts in a table are alternately ratio adjusted to the row and column controls until each marginal weighted total is within a specified closeness to its control. The overall adjustment procedure is quite complicated, including adjustments for Hispanic totals and swapping of husband and wife weights between male and female tables, and will not be further described (See Waite (1988 a,b).) This study includes only persons age 15+ because of the additional work that would be required to write a separate adjustment program for the four age 0-14 tables, but any patterns in the results should still hold when these additional persons are included.

For a given combination of race and sex there are six household type control totals that we want to smooth, for a total of twenty-four different control totals. For example, in Figure 1 the control totals correspond to the column totals C1 through C6 of the six columns. Figure 2 demonstrates the much larger monthly variability over time of such a control total (in this case for black males age 30-34 in household type 1) as compared to demographic controls. Plots such as this reveal the need to investigate possible adjustment of the household control totals to reduce their variability.

There are several restrictions on the results of any smoothing adjustments which are employed to reduce the variability of the household type controls. First, the sum of the column totals for a given race/sex combination must add up to the sum of the row totals, so any smoothing performed on the column totals must preserve their sum. Second, some of the variability of the household type controls may be due to seasonality. Since seasonal variations may be important for analyses or other uses of the adjusted data, it is undesirable to remove these effects. There is ample reason to believe that the household control totals should be seasonal, since some of the factors (e.g. births, deaths, and marriages) that contribute to change in household type exhibit seasonal patterns of variation. In fact, seasonal variations in household type may explain some of the vast difference between the variability in the two series plotted in Figure 2.

Another restriction on the approach to the smoothing is that only 72 data points, monthly observations for June 1983 through May 1989, were available for each of the household type control totals when this study commenced. In our experience estimation of parameters for seasonal ARIMA models is typically not very good for short time series which exhibit this degree of variability, so we eliminated methods which use such models. For this reason we did not consider using either X-11-ARIMA (Dagum, 1980) or X-12 (Findley, et al, 1988) seasonal adjustment methodologies.

We used the Census Bureau's X-11 seasonal adjustment program (Shiskin, 1967) diagnostics, and spectrum plots generated using Splus, to determine which of the series were seasonal. Only two of the twenty-four control total series, household types 5 and 6 for black females, were found to not have a seasonal component. These last two series may also in reality be seasonal, but we were unable to reliably identify and estimate any seasonality for the series based on only six years of data. The two nonseasonal series were viewed as the sum of two components, (trend + variability), while the remaining seasonal series were viewed as the sum of three components, (trend + seasonality + variability). Our goal for all the control total series was to remove the variability without disturbing the remaining components.

ARIMA models for the two nonseasonal series were identified. In contrast to seasonal ARIMA models, we believe six years is adequate for estimation of nonseasonal ARIMA models for these series. The series were extended by one year of forecasts and one year of backcasts based on the ARIMA model. The extended series were then smoothed using a locally weighted regression procedure, LOESS, (Cleveland and Devlin, 1988, Cleveland, 1979). The ARIMA modeling and series extension was performed prior to the LOESS smoothing in order to improve the quality of the smoothing at the endpoints of the series. The remaining series were adjusted by removing the variability component estimated by X-11 from the seasonal series. To avoid later confusion, we will refer to the 24 resultant series as "presmoothed".

.•

The presmoothed series were obtained without the requirement that the monthly values of the six series for each race/sex combination sum to the monthly table totals. Fortunately, these two totals were nearly equal. This was probably because when the six estimates were calculated from CPS the two totals were required to be equal, and so the total of the variability components of the series as estimated by X-11 is very close to zero. Because the monthly presmoothed totals are so close to the table totals, a last simple monthly adjustment was made by multiplying each of the six presmoothed controls in a month by the ratio of the original table total to the presmoothed total. (This does not change the component proportions.) We call the resulting series the smoothed series.

Table 1 lists the proportions of the table total contributed by each household type control each month in the black male series. Pairs of columns labeled OI and PI compare the proportions for the original and presmoothed controls for household type I. An examination of this table shows that the proportions do not differ much between the two sets. In fact, the mean absolute % changes in proportions between the original and presmoothed controls range from .6% to 5.7%, as shown in the first row of Table 2. There are two means larger than 2.3% and they are for series that combined make up only about .04 to .05 of the total. Even smaller changes in proportions occur for the other three race x sex groups. The ratios by which each of the six presmoothed controls in a month are multiplied are given in the OT/PT column of Table 2. Note these ratios range only between .987 and 1.012. For the other three race x sex groups these ratios constitute even smaller intervals about 1.0.

Table 3 summarizes the effect of smoothing on the relative month-to-month changes in the controls, $(c_{i+1} - c_i)/c_i$, where c_i is a control for month i, by comparing their mean absolute values for the original and smoothed series. An examination of these statistics shows that the smoothing has satisfied our objective of reducing month-to-month variability in the series. The minimum reduction for a series smoothed by X-11 is 20.2%, and the two series smoothed using LOESS have reductions of 58.8% and 80.8%. The time series plots in Figure 3 compare the original and smoothed controls for black females in household type 1. This is typical of the results of the X-11 smoothing, with the largest monthly % changes being generally reduced. Figure 4 demonstrates the extreme effect of the LOESS smoothing which does not include monthly seasonality. For black females in household type 6 the range of variability has been reduced from about (-22%,30%) to about (-3%,5%).

3. Comparison of Estimates

A

So far we have smoothed the household type controls used in the final stage of adjusting person weights. Because of the iterative procedure used in the final stage, we cannot predict the effect this smoothing will have on final weights or on estimates made using them. What we expect is that the month-to-month variation in many estimates will be reduced, especially for variables closely related to household type. For each variable in our analysis we compute 1988 monthly estimates using the 1987 SIPP panel. The eleven month-to-month differences are then summarized by their mean absolute value. In Tables 4 to 7 this mean absolute deviation (MAD) statistic is compared for final weights calculated using the original and smoothed controls. Recall

that these are informal comparisons of the patterns of increase/decrease in computed change estimates, not statistical significance tests.

There are three types of estimates included in this study: demographic characteristics (household type and marital status), income-related (number of persons in poverty and mean income), and program benefits recipiency (social security, unemployment compensation, AFDC, food stamps and child support). They are calculated for various demographic combinations as given in the Appendix.

For all household types, Table 4 compares the estimates of numbers of households calculated from columns 1, 2 and 5 of the appropriate final stage adjustment tables. For each of the demographic breakdowns within household type, except Hispanic, there is a substantial reduction in the MAD. We expect the observed pattern of variability reduction for blacks and nonblacks because their household type totals have been directly smoothed. The differing Hispanic behavior apparently occurs because in the final stage adjustment Hispanics are removed after several iterations and are separately adjusted to Hispanic controls. The results for Hispanics follow this same lack of pattern for other estimates, so they will not be discussed further. Figure 5 for nonblack married couple family household shows a typical comparison of original and smoothed monthly differences for household type estimates within non-Hispanic racial groupings. In this case the reduction in monthly differences is especially noticeable from February through July. In contrast, Figure 6 demonstrates how much less effect the smoothing has on monthly differences for Hispanic household types.

We expect that the effect on other types of estimates will be less noticeable, since they haven't been directly smoothed. Table 5 has estimates of number of persons in marital statuses. Single and married, spouse present show a pattern very similar to those for household type. Excluding Hispanics, there are no cases for which the MAD is increased by using the smoothed weights. The changes for married, spouse absent and widowed are not as marked, and in a few cases the MAD increases. Divorced males have increased MADs in all cases, while divorced females have changes in both directions. These different patterns evident in marital status reflect our general expectations, with reduction in variation dependent on how close the categories are to household types. For example, married, spouse present persons are mostly from the married couple family type, and we expect the effect on MAD to be similar for the two. Divorced persons fall into both other family and nonfamily households, so the estimates are a combination of estimates from the two types, and do not closely follow the pattern of either.

The poverty and program recipiency estimates in Tables 6 and 7 show no pattern of reduction in monthly variability. The MADs for numbers of persons in poverty show little change in either direction, even for household types in the bottom half of Table 6. One factor probably contributing to this is that there is a lot of movement of households into and out of poverty each month, which is in no way affected by the smoothing. We have computed similar tables for marital status and household type cross-classified by age groups. The results are closer to what we see in Table 6 and 7 than in Table 4. For household type the MADs are usually marginally smaller for the smoothed estimates, but not noticeably so, while for marital status there are small changes in both directions. The sum over age groups was smoothed, not the individual groups themselves, which is the likely reason for this result.

We also compared the quarter-to-quarter MADs and the annual totals for the original and smoothed weights, in order to determine the effects of the smoothing on longer-term estimates. Before doing the study, we thought that the differences between the two weightings would decrease as the time period of an estimate increased. This turned out to be the case for annual estimates, as there is rarely as much as a .1% difference between the original and smoothed. This is due to the trend component of the original series being changed little in the smoothing process. However, no overall pattern emerged for the quarterly estimates. This is because quarterly trends are not fit by the smoothed procedures, and the calendar definition of quarters has no inherent relationship with the monthly seasonality of the series.

4. Discussion

This study was initiated with the idea that smoothing the monthly household type controls would reduce month-to-month variation in person weights, which would lead to a reduction in month-to-month change estimates for many variables. This could be the case for SIPP because of the relative constancy of sample persons constituting a SIPP panel, but not for other Census Bureau household surveys because of their rotating samples.

The results were as expected for household type estimates and some marital statuses that are closely related to individual household types. For the other variables examined there was no general reduction in monthly variability. After rethinking the study, two possible reasons for the latter result were proposed. First, monthly variability for a characteristic will most noticeably be reduced only if the group of people having the characteristic remains largely unchanged from month to month. If the individuals in the group are changing, so are the weights of those who make up the group, and the estimates will also change. Second, the smoothed household type controls still have too much variation to give a general reduction in the month-to-month variability of person weights. The validity of this reasoning could be examined in further studies by, respectively, finding estimates that are derived from an almost unchanging cohort and making the household type series much smoother. The latter could be accomplished by, for example, eliminating all seasonality.

We are left with the question, "Is it worth the effort to incorporate this smoothing procedure into SIPP processing if it reduces the monthly variability of only household type and closely related marital status estimates?" We suggest that the answer is no. Any changes in the estimation process are warranted only if there is a "general benefit" for a wide or very important class of estimates. This study did not show such a benefit. It could be argued that there are estimates related to household type, such as numbers of marriages, births and deaths, which have some problems that might be improved by the smoothing. A separate study would be necessary to determine if this is the case. However, these problems are related to the levels of these estimates, not month-to-month changes.

If the opinion of the SIPP Research and Evaluation Steering Committee was that this work should be pursued further, a necessary next step is the comparison of estimates such as marriages, births and deaths to benchmarks. If these comparisons show that the smoothed estimates are significantly closer to the benchmarks than the original estimates, then the inclusion of the smoothing procedure would be recommended.

References

- Cleveland, W.S. (1979), "Robust Locally Weighted Regression and Smoothing Scatterplots", JASA, 74, 829-836.
- Cleveland, W.S., and Devlin, S.J. (1988), "Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting", JASA, 83, 596-610.
 - Dagum, E. B. (1983), "The X-11 ARIMA Seasonal Adjustment Method", Statistics Canada.
 - Findley, D. F., Monsell, B. C., Otto, M. C., and Pugh, M.G. (1988), "Toward X-12 ARIMA", Fourth Annual Research Conference Proceedings, Bureau of the Census, 591-622.
 - Shiskin, J., Young, A.H., and Musgrave, J.C. (1967), "The X-11 Variant of the Census Method II Seasonal Adjustment Program", Bureau of the Census Technical Paper No. 15.
 - Waite, P.J. (1988a), "SIPP 85+: Cross-Sectional Weighting Specifications for the Second and Subsequent Waves -- Revision", Internal Census Bureau memorandum from Waite to Walsh, August 4, 1988.
 - Waite, P.J. (1986), "SIPP 85+ : Cross-Sectional Weighting Specifications for Wave 1", Internal Census Bureau memorandum from Waite to Walsh, July 6, 1988.

Appendix

Estimates Compared

Demographic Characteristics

٩

2

Household types 1, 2, and 5 Total, Race of householder Hispanic origin of householder Age of householder

Marital status by sex Total, Race, Hispanic origin, Age

Poverty and Income

Number of persons in poverty Total, Household type, Hispanic origin Race x sex, Race x age

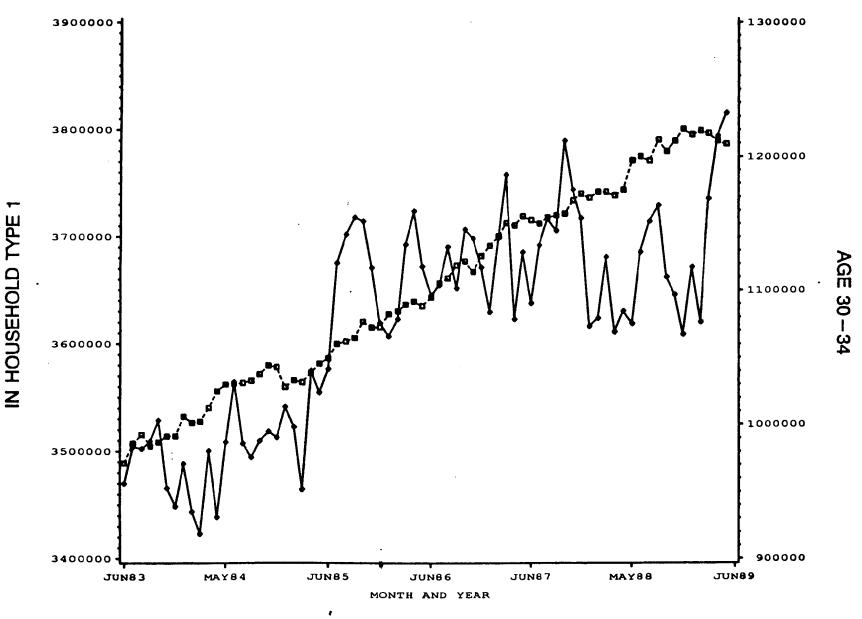
Median income Household type, Hispanic origin, Race x sex

Program Recipiency

۰.

Number of persons receiving benefits: social security, unemployment compensation, AFDC, food stamps, child support Hispanic origin, Race x sex

Figure 1


Second Stage Cells for Black Males (15+ years of age)

	Persons primary	in Households family or a s	Persons not in Households containing a primary family or a subfamily				
	Husband	Male Householder	Other household m	· · · · · · · · · · · · · · · · · · ·	Householder	Not Householder or Persons	
	Primary family	No Spouse Present	Husband of Subfamily	Not a Husband		in Group Quarters	
Age 15 16-17 18-19 20-21 22-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70+	column 1	column 2	column 3	column 4	column 5	column 6	
	C1	C2	C3	C4	C5	C6	

ł

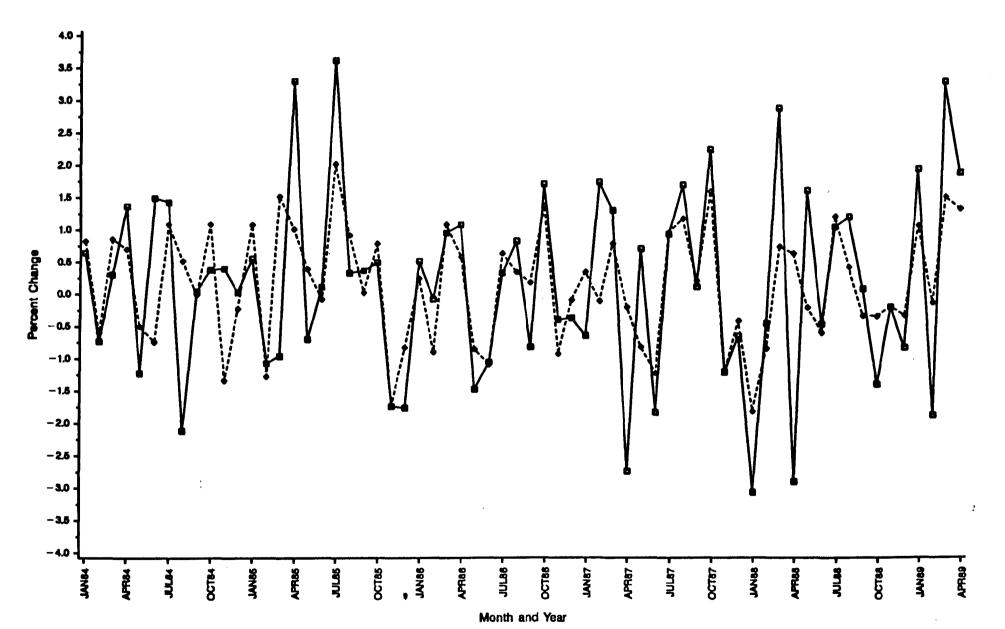

2

Figure 2

Comparison of Monthly Variability of Controls for Black Males in Household Type 1 and Age 30-34

SOUC LINE DENOTES ORIGINAL HOUSEHOLD TYPE 1 CONTROL DATA FOR BLACK MALES BROKEN LINE DENOTES ORIGINAL AGE (30-34, BLACK MALES) DATA

ł

Month-to-Month % Change for Black Females in Household Type 1: Original and Smoothed Controls

SOLID LINE DENOTES ORIGINAL DATA BROKEN LINE DENOTES SMOOTHED DATA

ς.

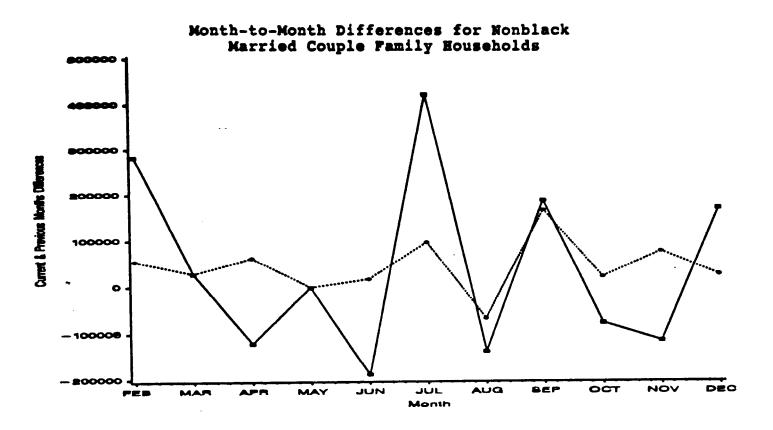
32 -28 24 20 18 12 Percent Change 4 -0 -4 -8 -12 -16 - 20 -24 TANG APRes OCT86 **10068** APR88 2010 OCT86 **JAN69** APR89 1910 OCT84 APRes OCT85 **JAN86** APR86 JUL66 INN86 101.66 **JAN87** APR87 70105 OCT87 .

Month-to-Month & Change for Black Females in Household Type 6: Original and Smoothed Controls

Month and Year

ŧ

2


SOLID LINE DENOTES ORIGINAL DATA BROKEN LINE DENOTES SMOOTHED DATA

•

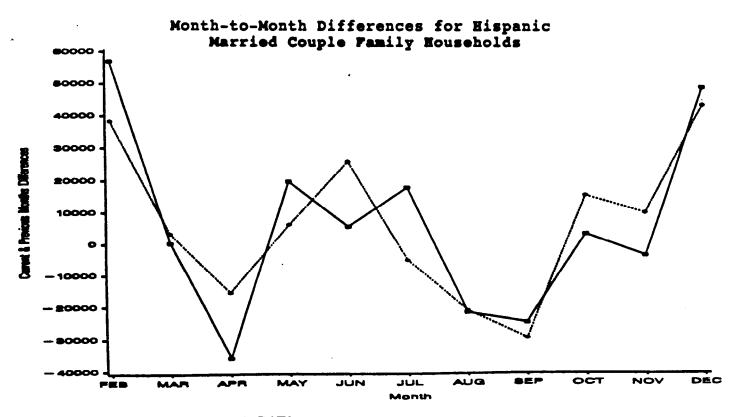

•

Figure 4

Figure 5

Household Type Proportions of Monthly Totals for the Black Male Population: Original and Presmoothed Series

.

- · ---

ъ.

Month	01	P1	02	P 2	03	P 3	04	P4	05	₽5	06	P6	OT/PT	Month	01	P1	02	P2	03	P3	04	P4	05	₽5	06	P6	OT/PT
JUN83	. 395	. 392	.041	.042	.008	.008	. 409	. 404	.119	.124	.028	.029	0.993	JUN86	.390	. 390	.050	.050	.010	.009	. 373	.375	.138	.138	.040	.038	1.000
JUL83													1.000	JUL86	. 389	. 393	,051	.050	.011	.010	.376	.375	.135	.134	.039	.038	1.004
AUG83	. 397	. 398	.043	.044	.009	.009	.387	. 387	.133	.131	.030	.031	1.001	AUG86	. 392	. 391	.050	.050	.010	.010	.378	.377	.133	.135	.037	.036	1.000
SEP83	. 398	. 395	.046	.044	.009	.008	. 380	.386	.130	.130	.037	.037	0.994	SEP86	.387	. 388	.051	.051	.008	.008	.386	.385	.132	.131	.035	.037	0.996
OCT83	. 399	. 394	.044	.042	.008	.008	. 384	.384	.133	.132	.031	.040	0.991	OCT86	. 393	. 393	.049	.049	.008	.008	.381	. 381	.131	.133	.038	.036	1.001
NOV83													1.001	NOV86	. 393	. 391	.048	.048	.008	.008	.382	. 382	.137	.136	.033	.035	0.999
DEC83	.388	. 388	.041	.042	.009	.009	.387	.386	.136	.136	.040	.040	0.998	DEC86	.391	.391	.049	.048	.007	.008	.382	. 383	.138	.137	.033	.032	1.002
JANB4	. 389	. 391	.042	.042	.010	.010	.378	.385	.140	.135	.042	.037	1.011	JAN87	.386	. 392	.046	.048	.000	.008	.390	. 385	.141	.137	.030	.030	0.999
FEB84	.384	. 382	.044	.043	.011	.009	. 392	. 392	.130	.135	.039	.039	0.995	FEB87													0.996
MAR84													1.000	MAR87													1.005
APR84													1.001	APR87	.381	.307	.056	.055	.009	.008	.384	. 383	.135	.135	.035	.032	0.992
MAY84													0.997	MAY87	.388	.385	.058	.057	.009	.009	.371	.376	.136	.136	.039	.037	0.998
JUN84									•				1.004	JUN87	.381	.385	.059	.058	.009	.010	.376	.3/2	.139	.137	.035	.037	1.004
JUL84													1.003	JUL87	.379	.379	.053	.054	.010	.010	. 390	. 387	.133	.133	.035	.037	0.998
AUG84													0.999	AUG87	.390	.390	.053	.053	.011	.010	. 368	. 107	130	1 3 7	.039	.038	1.000
SEP84													1.007	SEP87	.388	. 390	.050	.051	.007	.007	. 3/1	. 373	127	130	.044	.041	1.000 0.998
OCT84													1.005	OCT87	. 397	. 393	.047	.048	.007	.007	. 300	. 372	142	142	.011	.042	0.996
NOV84													1.005	NOV87													1.001
DEC84													1.002	DEC87	. 388	.386	.047	.049	.007	.007	300	378	143	144	.030	.037	1.003
JAN85													0.999	JAN88													0.995
FEB85 Mar85													0.996 0.987	FEB88 Mar80	302	301	051	051	007	007	. 377	.379	.144	.145	.038	.035	1.005
APR85													1.008	APR88	375	300	051	051	008	007	385	. 383	.144	.144	.036	.035	1.000
NAY85													1.001	MAY88	376	374	058	.054	.010	.007	.370	.373	.155	.155	.030	.037	0.993
JUN05													0.997	JUNGO	374	373	058	057	.009	.008	.384	.385	.142	.142	.033	.035	0.995
JUL85													1.002	JUL88	.380	.379	.057	.056	.008	.009	.377	. 380	.142	.141	.036	.035	1.000
AUG85													0.991	AUG88	. 383	. 380	.052	.056	.009	.009	.378	.377	.144	.143	.035	.035	1.001
SEP85													1.001	SEP 88	. 383	. 382	.051	.057	.007	.007	.390	.385	.127	.129	.042	.040	1.012
OCT85													0.996	OCT88	. 376	.376	.054	.055	.007	.008	.387	. 380	.135	.139	.041	.042	0.994
NOV85													1.001	NOV88	.374	.375	.058	.056	.008	.008	.377	.374	.142	.144	.042	.044	1.002
DEC85													1.005	DEC88	.370	.373	.055	.056	.010	.009	.373	.376	.149	.144	.043	.042	0.999
JAN86													1.002	JAN89	.377	.378	.058	.057	.011	.010	.367	. 369	.144	.145	.042	.041	1.003
PEB86													0.999	FEB89	.371	.375	.059	.057	.010	.009	.366	.367	.151	.148	.044	.044	0.995
HAR86													0.999	MAR89	.383	.383	.056	.056	.009	.009	.365	. 366	.147	.146	.040	.040	1.000
APR86	. 402	. 396	.050	.045	.006	.007	. 369	.379	.142	.141	.031	.033	0.994	APR89	. 389	.387	.053	.054	.008	.008	.378	. 377	.135	.134	.038	.039	0.999
HAY86													0.998	MAY89	. 389	. 385	.052	.054	.007	.008	.368	. 367	.143	.145	.040	.041	1.000

O1 = Original HH type 1 P1 = Presmoothed HH type 1

t

• OT = Original Total • PT = Presmoothed Total

Mean Absolute % Change in Component Proportions of Total between Original and Presmoothed Household Type Control Series

	Household Type						
	1	2	3	4	5	6	
Black Males	0.6	2.3	5.7	0.8	1.1	4.8	
Black Females	0.6	0.7	5.3	0.6	1.4	1.6	
Nonblack Male	0.2	1.4	1.4	0.4	0.5	1.6	
Nonblack Females	0.1	0.4	2.0	0.3	0.3	1.4	

٠

J

~

.

٠.

Table 2

**

~

HH Type	- Black	Black	Nonblack	Nonblack
Control	Males	Females	Males	Females
1 Original	1.15%	1.12%	0.25%	0.25%
1 Smoothed	0.74%	0.77%	0.19%	0.16%
Reduction	35.7%	31.3%	24.0%	36.0%
2 Original	4.23%	1.54%	2.43%	0.99%
2 Smoothed	2.58%	0.98%	1.25%	0.79%
Reduction	39.0%	36.4%	48.6%	20.2%
3 Original	11.32%	11.46%	3.55%	3.54%
3 Smoothed	7.87%	8.03%	2.64%	1.58%
Reduction	30.5%	29.9%	25.6%	55.4%
4 Original	2.02%	1.25%	0.97%	0.64%
4 Smoothed	1.27%	0.86%	0.63%	0.45%
Reduction	37.1%	31.2%	35.1%	29.7%
5 Original	2.81%	1.82%	0.98%	0.59%
5 Smoothed	2.20%	0.75%	0.75%	0.39%
Reduction	21.7%	58.8%	23.5%	33.9%
6 Original	9.12%	8.53%	3.49%	2.82%
6 Smoothed	6.25%	1.64%	2.46%	2.17%
Reduction	31.5%	80.8%	29.5%	23.0%

• •

Comparison of Mean Absolute Month-to-Month % Change for Original and Smoothed Household Type Control Series

Household Type

Mean Absolute Deviation % Change in MAD Original Smoothed Married Couple Family HH (Type 1) -69.4 186659 56655 Total 19109 -10.8 21413 Householder Hispanic -64.0 11 61495 171180 Non-Hispanic 41 -45.4 48247 26322 Black ŧ 54801 -65.0 156789 Nonblack Other Family HHs with Male Householder (Type 2) -35.0 33149 Total 51002 17332 18217 5.1 Hispanic Householder -35.8 H. 49875 32031 Non-Hispanic 11 16445 -21.2 20870 Black " 53530 29690 -44.5 Nonblack Other Family HHs with Female Householder (Type 2) -27.3 104048 75633 Total 16860 13.8 19184 Hispanic Householder -25.2 ... 101568 75955 Non-Hispanic 11 -23.4 54109 41452 Black = 56192 73647 -23.7 Nonblack Nonfamily HHs with Male Householder (Type 5) -31.5 134591 Total 92154 28314 30909 9.1 Hispanic Householder ** -27.1 158516 115530 Non-Hispanic ... -14.459019 50505 Black n -49.7 Nonblack 105901 53272 Nonfamily HHs with Female Householder (Type 5) 47951 -41.6 Total 82161 -15.6 Householder 15109 12753 Hispanic 50718 -36.6 79642 Non-Hispanic .. -39.3 17596 10687 Black .. -47.3 81238 42805 Nonblack

~

٠

(

~

Marital Status

Mean Absolute Deviation

		Devia		
				% Change
		Original	Smoothed	in MAD
Single Males		100500	7007	41 0
Total		122533	72237	-41.0
Hispanic	Householder	34961	30941	-11.5
Non-Hispanic	93	101812	62992	-38.1
Black		42238	27129	-35.8
Nonblack	"	114322	81489	-28.7
Single Females	5	71067	27227	-47.6
Total	1.1.1	71067	37227	-47.8
Hispanic	Householder	23682	23908	
Non-Hispanic	11	72881	45658	-37.4
Black		28751	19537	-32.0
Nonblack		57514	36214	-37.0
Manual and Consul	. Drocont, Ma	10		
Married, Spous	se present: Ma	139203	50466	-63.7
Total	Heusehelder	27218	22561	-17.1
Hispanic	Householder	124580	52586	-57.8
Non-Hispanic	*1	42546	23196	-45.5
Black	11	115456	44422	-61.5
Nonblack		115450	44422	-01.5
Married, Spous	re Precent: Fe	malo		
Total	be flesent. re	139203	50466	-63.7
	Househodler	13235	14235	7.6
Hispanic Non Hispania	nousenourer "	133262	48225	-63.8
Non-Hispanic Black	11	41040	18328	-55.3
Nonblack	11	118957	43447	-63.5
NONDIACK		110957		-05.5
Married, Spous	so Absont. Mal	<u>م</u>		
Total	se Absent. Mai	46395	43922	- 5.3
Hispanic	Householder	32412	31488	- 2.9
Non-Hispanic	"	35955	32094	-10.7
Black	11	11582	13107	13.2
Nonblack	11	46901	44572	- 5.0
NUIDIACK		40701	110/2	
Married, Spous	se Absent: Fem	nale		
Total		54009	41384	-23.4
Hispanic	Householder	10358	10991	6.1
Non-Hispanic	"	54778	43960	-19.7
Black	н	19895	23323	17.2
Nonblack	н	49566	42762	-13.7

••

٩

•

(continued)

Mean Absolute Deviation

		Devia	% Change	
		Original	Smoothed	in MAD
Widowed Males Total Hispanic Non-Hispanic Black Nonblack	Householder " "	28742 4752 30752 6586 28233	22781 4444 24382 8738 19203	-20.7 - 6.5 -20.7 32.5 -32.0
Widowed Femal Total Hispanic Non-Hispanic Black Nonblack	es Householder " "	53642 9285 48405 11290 47372	39383 9027 38716 8204 33637	-26.6 - 2.8 -22.0 -27.3 -29.0
Divorced Male Total Hispanic Non-Hispanic Black Nonblack	s Householder " "	43145 14426 44075 23739 33370	52959 15318 50755 24424 48069	22.7 6.2 15.2 2.9 44.0
Divorced Fema Total Hispanic Non-Hispanic Black Nonblack	lles Householder " "	38117 11398 39467 22342 30275	15603	0.0 - 0.5 -11.6 -30.0 31.3

• -

٠

~

Program Recipiency

Mean Absolute Deviation

1

--- ,

	Original	Smoothed	<pre>% Change in MAD</pre>
Social Secruity Total Hispanic Non-Hispanic Black Male Black Female Nonblack Male Nonblack Female	86424 17492 79651 17548 21125 31396 61735	90888 17432 80594 17257 22756 33876 61075	5.2 0.0 1.2 - 1.7 7.7 7.9 - 1.0
Unemployment Comp Total Hispanic Non-Hispanic Black Male Black Female Nonblack Male Nonblack Female	Densation 173128 38115 149021 21912 26558 106887 58934	17313138284149285215452626410697559015	0.0 0.4 0.2 - 1.7 - 1.0 0.1 0.1
AFDC Total Hispanic Non Hispanic Black Male Black Female Nonblack Male Nonblack Female	40813 17394 33902 5057 14990 9768 30925	33672 16714 31622 5043 14169 9787 28432	-17.5 - 3.9 - 6.7 - 0.3 - 5.5 0.2 - 8.9
Food Stamps Total Hispanic Non-Hispanic Black Male Black Female Nonblack Male Nonblack Female	58602 17011 65415 19157 27576 25330 35508	66839 15302 73951 19626 30985 25510 40594	$ \begin{array}{r} -14.1 \\ 10.0 \\ 13.0 \\ 2.4 \\ 12.4 \\ 0.7 \\ 14.3 \\ \end{array} $
Child Support Total Non-Hispanic Black Male* Black Female Nonblack Male Nonblack Female * = No Case	45033 7812 45763 0 19990 7009 38645	$36704 \\ 7932 \\ 36523 \\ 0 \\ 19160 \\ 6655 \\ 32533$	-18.5 1.5 -20.2 0 -4.2 -5.1 -15.8

••