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Making Tables Additive in Three Dimensions 
Under X-Measures 

James T. Fagan and Brian V. Greenberg 
Bureau of the Census, Washington, D.C. 20233 

Given a contingency table of non-negative numbers in which the internal 
entries do not sum to the corresponding marginals, there is often a need to 
adjust internal entries to achieve additivity. Tables that can be so adjusted 
while maintaining the zero structure are termed feasible. In earlier work, 
the authors showed how to determine whether a given two-dimensional table is 
feasible. They also provided algorithms to adjust feasible tables and showed 
that the algorithms converged to minimize measures of closeness corresponding 
to raking, maximum likelihood, and minimum Chi-Square. In this paper the 
authors extend those results to three dimensions and to the one parameter, 
power-divergence family of goodness-of-fit statistics, referred to 
as x-measures, which has been introduced by Cressie and Read. 

Key Words and Phrases: contingency tables, power-divergence statistic, 
goodness-of-fit, iterative proportional fitting, raking, marginal constraints. 

* 
1. FEASIBLE CONTINGENCY TABLES 

1.1 Introduction. Given a contingency table of non-negative reals in which 

the internal entries do not sum to the corresponding marginals, there is often 

the need to adjust internal entries to achieve additivity. In many 

applications, the objective is to have zero entries in the original table 

remain zero in the revised table and positive entries remain positive. Not 

all two-way contingency tables can be adjusted to achieve additivity subject 

to these constraints, and in Fagan and Greenberg (1987), the authors presented 

a procedure that will determine whether a given table can be so adjusted, and 

such adjustable tables were called feasible. In Section 4 of this report we 

present comparable procedures for three-dimensional tables. 

In general, given a feasible table, one seeks a derived table which is 

close. The notion of "close" is not unique, and for every criterion of 

closeness a different dervied table may be obtained. Four of the most cited 

criteria of closeness are: (a) Raking, (b) Maximum Likelihood, (c) I'rlinimum 

Chi-Square, and (d) Weighted Least Squares. In an earlier paper, Fagan and 

Greenberg (1988), the authors provide algorithms which, when applied to a 

feasible table, converge to a revised table optimizing the respective measure 

of closeness for (a)-(c). Since an optimum revised table for weighted least 
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squares can be solved exactly in closed form, that objective function was not 

treated in detail in the earlier paper. 

In that paper each measure of closeness was couched as a non-linear function 

to be minimized subject to linear marginal constraints. Starting with the 

primal (original) objective function we formed the dual which we maximized. 

Maximizing the dual function is an optimization problem amenable to iterative 

coordinate descent methods. These techniques yielded iterative algorithms 

converging to a solution of the dual problems and subsequently to the 

original. 

* In this paper we extend findings to encompass the goodness-of-fit measures 

defined by the power-divergence statistic. This one parameter family of 

statistics was introduced by Read and Cressie (1988) and for specific values 

of the parameter, one obtains each of the objective functions (a)-(d) above. 

We use techniques similar to those employed earlier to derive algorithms which 

converge to best fit tables for the power-divergence statistics. 

In Section 3 we introduce the power-divergence statistic, show how it relates 

to the earlier goodness-of-fit measures and formalize the objective functions 

to be minimized. In Section 3 we set up the dual function to be optimized, 

employ cyclic coordinate descent to derive algorithms, and provide a few 

examples and summary remarks. In section 4 we define feasibility for three- 

dimensional tables, provide examples, and derive a test for feasibility. 

Tables are adjusted to reconcile tabular data when marginals and internal 

entries arise from different sources. Internal entries are adjusted when 

marginals are considered more reliable -- for example, marginals may be 

derived from 100% census data whereas internal entries may arise from a 

sample. One application of raking at the Census Bureau is to weight responses 

to the census long-form which was mailed on a sample basis. Marginals were 

obtained from the full census count and internal cells are weighted to be 

comparable to marginal distributions. An excellent discussion of these 

procedures is contained in a series of four papers: Fan, Woltman, Miskura, 

and Thompson (1981); Thompson (1981); Kim, Thompson, Woltman and Vajs (1981) 

and Woltman, Miskura, Thompson, and Bounpane (1981). Five recent papers 
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relating to table adjustment for estimation and weighting are: Copeland, 

Peitzmeier, and Hoy (1987); Alexander (1987 and 1990); Lemaitre and Dufour 

(1987); and Oh and Scheuren (1987). Additional information and bibliography 

in table adjustment is contained in Fagan and Greenberg (1988). 

An abreviated version of this report was presented at the 1990 Annual Meetings 

of the American Statistical Association and will appear in the proceedings of 

that meeting (Fagan and Greenberg 1990). 

1.2 Feasible Tables. By a table we mean a triple A = {(aij),r,c] 

of arrays of non-negative reals where (aij) is an RxC matrix, 

r = (r 
1 
,...,rR), c = (cl,...,cc), and 

* R C 
1 ri = 1 cj . 

i=l j=l 

Ne say that A is additive if 

C 
1 aij 

j=l 
= ri 

iilaij = 'j 

i=l R ,... 

j=l ,a**, c . 

That table A is said to be feasible if there exists an RxC matrix (bij) such 

that bij = 0 if and only if aij = 0 and B = ((bij),r,C') is additive, and we 

say that B is derived from A. That is, A is feasible if and only if there 

exists an RxC matrix (Xij) such that (bij) = (~..a..), satisfying: 
1J 1J 
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C 
1 aij 

j=l 
= ri i=l ,... R 

That table A is said to be feasible if there exists an RxC matrix (bij) such 

that bij = 0 if and only if aij = 0 and B = {(bij),r,c,) is additive, and we 

say that B is derived from A. That is, A is feasible if and only if there 

exists an RxC matrix (Xij) such that (bij) = (Xijaij), satisfying: 
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c r. 
(i,j)Evxijaij = i 

1 x..a.. = cj 
(i,j)eV lJ lJ 

X . .>o 
‘J 

i=l ,***, R 

j=l ,***, C 

(i ,j W, 

where v = ((i,j)l(i,j)sRxC and aij# 0). 

* 2. DERIVING TABLES UPTIMIZING THE POWER-DIVERGENCE STATISTICS 

2.+ Criteria for Optimal Derived Tables. Given a feasible table A, one seeks 

a derived additive table B "close" to A. In Fagan and Greenberg (1988) we 

discussed four measures of closeness: 

(ml>: C 
(i,jkV 

bijan(bij/aij) 

(m2): 1 
(i ,j)EV 

-aijgn(bij/aij) 

hJ : ( .IJ, 
1; 8 

v(aij - bijJ2/bij 

(q): 7 (aij - bij)2/aij , 
(iij)eV 

which are the objective functions subject to constraints (l)-(3) for, 

respectively, raking, maximum likelihood, minimum Chi-Square, and weighted 

least squares. Background for these particular functions is discussed in 

Fagan and Greenberg (1988). Each of these functions can be used as a 

goodness-of-fit statistics to observe how closely an observed distribution 

resembles an assumed distribution. Our use of these goodness-of-fit measures 

is somewhat different. Given a non-additive table A, find the closest 

additive table based on each goodness-of-fit measure. In that paper, we 

presented algorithms which can be used on an arbitrary non-additive table, 

which may have zero cells, to obtain a derived table for each measure of 

goodness-of-fit. We replace bij by aijxij, and rewrite the expressions above 

as 
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(gl): 1 
(i ,J')EV 

aijxijen xij 

(g2): 1 -aij'ln xij 
(i ,j)d 

(!33): 1 (x.T1-1)2 
(i ,j jEvaijxij 1J 

(94): 1 
(i ,j)EV 

aij(xij-1)2 . 

In Read and Cressie (1984), the authors present a generalized, one-parameter 

family goodness-of-fit measure -- the power-divergence statistic -- which we 

write as: 

da(AsB) =CUa(a+l)l 1 aijC(aij/bij Jam11 
(i ,J’)EV 

for a&,-1. It is not hard to see that dI equals the measure m3 and de2 

equals m4 (assuming, without loss of generality, that 

C aij = 1 
(i ,j kV (i ,J’)EV 

bij)* 

Letting Xij = bij/a.. 
1J 

we write the power-divergence statistic as: 

f,(x) = CUa(a+l)l 1 
0 ,j>d 

aij(xiia-1) . 

We define 

Q)(X) = lim fa(E) 
a+0 

= lir; C2/a(a+l)l 1 
(i ,J')EV 

aij(xiia-1) 

=lim [2C 
a+0 (i,j)sV 

ai j (-!UlXi j )Xi3al/(2a+l) 

= -2 c 
(i,j)eV lJ aiPx* * 
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using a'H;pital's Rule at step 3. The last expression on the right is twice 

the maximum likelihood measure m2. We also define 

f-1 (5) = lim f,(E) 
a+-1 

= lim [2/a(a+l 
a-t-1 

)I 1 
U ,jW 

aij xiia-1) 

= 2 1 x..Rnx.. , 
(i ,jjEVaij 1J 1J 

which is twice the rak ing measure ml. Note use of the assumpt ion that 

= lim [2/a(a+l)l 1 
a+-1 (i ,J’)cV 

[aijXij(Xij -(a+l)-l)taij(xij-l)] 

in the th ird equal 

Greenberg (19W, 

c aij =(. {) vbij 
(i,j)eV I, E: 

ity above. Measures f. and fml are treated in Fagan and 

so we assume a#O,-1 in this report. 

Let S denote the region defined by the constraints (l)-(3). The Hessian 

of f,(L) 

vz fa(xJ = diag (2aijxij 
-( a+2) 

> 
- 

is positve definite so fa is a strictly convex function over S. The set S is 

a convex set so every local minimum of fa over S is a global minimum and there 

is at most one. 

Let T be the set of vectors satisfying (l), (2) and 

X . .>o 
lJ- 

(1 ,J’)eV 

and let L be the boundry points of T, that is, L consists of vectors 

satisfying (l), (2) and 

xij = 0 for some (i,j)cV. 
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Every point of L is a limit point for S and f is continuous over S, so 
a 

for LCL, we can define 

f,(f) = lim 
x +z 

fa(xk) 

-k - 

where bk >Fzl is a sequence in S converging to z. - Hence, fa is defined and 

continuous over all of T if we define 

f,(L): T+RU(m) . 

Note that 
- 

co if a>0 

* f,(r) = 

Ll/a(a+l)l 1 aij(ziJa-1) if a<0 . 
(i ,j)EV 

The set T is closed and bounded and fa is continuous, so fa has a minimum over 

T. 

Note that for all (i,j)sV 

[vEfa(X)l(i ,j) 
= [(-2)/(a+l)]a. .x.. 

-(a+l) 
1J 1J ’ 

AS Xij+O, 

Coxfa(l)l~i,j~ -+ -OD 

for a>-1. If zeL and {xk)T z for ~~6, then for some (i,j)eV , 
k=l- 

lim [Vxfa(lk)](i j) = -00 . 
x+z - , 
-k - 

For each z&L, there exists a sequence {x,) in S converging to 2 Since 

zeL, there exists an (iO,jo)eV such that z 

neighborhood of f, 

-(i8,jo) = 0: Thus in each 

fa is decreasing in at le st one direction; hence fa cannot 

achieve a minimum over T at zeL. Thus, for a>-1, f has its minimum over T 
a 
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in S. Since S is an open convex set and f is a convex function, there is a 
a 

unique global minimum for fa over S. 

To find the global minimum of f over S, it suffices to use standard a 

optimization techniques for a convex function with linear constraints. In the 

next section we form the Lagranyian, set up the dual function which we proceed 

to maximize, and finally interpret the results in the primal problem. 

2.2 Forming the Dual Function 

To solve the primal problem 

(Pa): Minimize fa(X_) 
* 

we form the Lagrangian by incorporating condit 

to obtain 

over S, 

ions (1) and (2) into the prima 1 

R 
L,(x,g,g = fa(x) + ,IIPi ( 1 

-= 
(i ,jW 

aijXi j' ri > 

t 5 A.( 1 
j=l J (i,j)eV 

aijxij- cj) . 

We minimize La(x,p,x) as a function of x, p, and 1 and solve for critical 5 - - - - 
values in terms of lo and x which we replace in L,;(~,P,x) resulting in the dual - - 
function: 

Ha&:) = Min U-,(~,g,# . 
x>o 

Note that H,(~,x) is a function of p and x which we maximize, thus solving the 

dual problem. The maximum of Ha(r,;) equals the minimum of the corresponding 

fa(x_) constrained by (1) and (2). Adding the condition that x>O in terms 

of p and x when maximizing H,(~,x) yields the value of xthat minimizes 

fa over S. 
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To find the minimum of La(x,v,") subject to x>O, for each (i,j)eV we form -- 

aLa 
= [-2/(a+l)]a..x.. 

-(a+l) 

‘J 1J 
+aij(pi+Aj) l 

ax. . 
1J 

Setting this expression to zero yields 

'ij 
-(a+1) = [(a+l)/2](pitAj) . 

Since Xij>O we have 

C(a+l)/2l(Pj +A * )>O 3 
J 

* 

and 

‘ij = lIC(~+l)/2l(~j+~~)l -l/(atl) 
J 

. 

Replacing these values in La(r,~,~) for Xij and simplifying yields: - - 

H,(p,$) = (2/a) 1 (i j) Vai jC( (a+1)/2) (Vi +Xj )l”‘(*+l) 
, E 

- CUa(a+l)l 1 
(i,j)eVaij ' 

Our objective is to solve the Dual Problem 

(Da) : Maximize Ha(y,t) subject to C(a+1)/2I(ui+Xj)>O l 

Note that the function H,(E,x) is concave since Pa is a convex problem and the 

set 

w= {(~,_x): [(a+l)/2](qtXj)>0 for all 0 ,jWl 
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is a convex set. Thus, any local maximum of H is a global maximum and a 

local maximum of Ha does exist whenever f hay a minimum. 

the minimum of fa over S, then there exisr (i*,_X*) 

In fact, if x* is 

in W such that (F*,_x*) 

maximizes cla(r,x) , where for all (i,j)eV 

X* 
-l/(a+l) 

lj 
= CC(a+1)/2l(v~+A*)l 

J 
>o . 

That is, 

. 
(p*,X*) solves Da if and only if x* solves Pa . - - 

Our objective in the next section is to find points (p*,x*) to solve D - - a * 
* 

3. DEVELOPING ITERATIVE PROCEDURES 

3.1 Cyclic Coordinate Descent. Given an function F(x) to optimize, one can 

sometimes employ an iterative descent procedure. Descent with respect to the 

coordinate xi means that one minimizes F as a function of Xi leaving all other 

coordinates fixed. The cyclic coordinate descent algorithm minimizes F 

cyclically with respect to each coordinate variable Luenberger (1984). The 

function F is minimized with respect to x1 first and then with respect to x2 

and so forth through x,. We derive an iterative procedure based on cyclic 

coordinate descent to maximize H,(~,x) over W . 

We begin by taking partial derivitives: 

aHa -= 

F alli (i,j SV 
aij[((CXc1)/2)(~it~j)l-1'(at1)-ri for i=l,...,R 

J&.= 
ax. 

J 

(i j, V~ijC((“+1)/2)~~i+~j)l~1”at”-~j for j=l,...,C. 
, E: 

Setting each equal to zero, the objective is to find the unique ~~ and xj that 

are zeros of the respective functions 
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* (vi) and * (xj) . 
a!+ ax. 

J 

Our iterative procedure to find (~,I*,x*) to maximize H (u,x) over W is (in 
- m principle) as follows. Initialize pi 

of X!k) (k-+1) 
and A!") fi:d-piktl) as a function 

, and find X. 
(Itlj 

(k+d 
as a function of l.+ 

be the unique :ero of 

. In particular, we let 

'i 

+ (Pi 1 = 1 
i (i Jkv 

aij[[(atl)/2)](pit~~k))]m1’(at1)vri 

such that [(a+1)/2][pi (ktl)thj(k)]>U and let hiktl) be the unique zero of 

* gqhj)= 1 (i j) VaijC((atl)/2)(~~kt1't~j)I-1'(a+1)-Cj , 

j , E 

such that [[(atl)/2][~i(kt1’t~.(kt1)]>0. 

(~(~),h(~)) will 

The sequence of vector pairs 

converge to aJvector pair (&*,A*) such that H (u*,*) 

is maximum (subject to [(a+1)/2](pTtAJ)>O) and hence such thaf if 

X* = CC(a+l)/2l(pp + A*)] 
-l/(a+l) 

ij J 
, 

then E* minimizes f,(x) over S. That is, the solution of the dual 

problem, D 
a' 

is used to obtain the solution of the primal problem, P 
a l 

Details of cyclic coordinate descent are discussed in Luenberger (1984, 

p. 228) and as applied to table adjustment problems in Fagan and Greenberg 

(1985). To find the unique zeros of 

aHa (vi) and aHcc (xj) 
alli ax. 

J 

we use Newton's method within each iteration of cyclic coordinate descent and 

the composite algorithm is below. We will not present the details of the 

derivation here, but they follow closely along the lines presented in Fagan 

and Greenberg (1985). 
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3.2 Iterative Procedure to Maximize H (P,x) for a#O,-1 
u 

(0) 1) Initialize pi = p 
j 

= l/(a+l) and set k=O 

2) (k+l) = ui(k)t2( 1 
9 

(i ,j W 
ai jCC(a+l)/2l(Pi (k)t,sk))l-l/(a+l)_,i) 

1 
Ii d&V 

ai j[[(a+1)/2lV- +A (k) ~k)]-(a+2)/(a+l) 

1 

2') Let h = Max f-C(a+l)/2Ixj (k)] . 
UJkV . 

(k-+1) * If C(a+l)/2lPi -x50, set uik’ = [pik) t 2X/(a+1)]/2 and go to 2). 

3) Repeat steps 2) and 2') for i=l,...,R. 

4) A!k+l), &k) 
_I 
J 

j +2( 1 
(i j) vtlij[[(Cl+l)/2](~~kt')+A~k))]~1'(at1)~Cj) 

, E 

4') Letu= Max {-C(a+l)/2Ipi (WI . 
U J )EV 

If [(a+1 )/2]i~k+1)-~<0 set hik) = [Aik - J J 

5) Repeat steps 4) and 4') for j=l,...,C. 

(i i, Vai jCC(a+1)/21(ui 

, E 

(ktl)-~Sh)),-(at2)/(atI) 

)+2u/(a+1)]/2 and go to 4). 

6) Increment k and return to step 2) else terminate if: 

(a.) the sequence of values pi(k) and Aj(k) converges for all i and j 

(b.) the sequence of values pi(k) or xj(k) gets too large or too close 

to zero 
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(c.) the program begins to oscilate between steps 2) and 2') or 4) and 

4’) 

(d.) the number of iterations becomes excessively large. 

When terminating for criterion (a) above, the values vi(k) and xj(k) will 

converge to 1-1; and AJ , and 

x?t. = 
-l/(a+l) 

1J 
CC(a+l)/2)($ + X*)1 

J 

for (i,j)EV will minimize fa over S. There will not be an optimal over S if 

one must terminate for conditions (b), (c) or (d). Under these conditions one 
* 

typically has an optimal on the bound y, L, and this does not tell us very 

much. The algorithm will converge for all a>-1. 
II 

3.3 Examples 

In Fagan and Greenberg (1988) the authors introduced Table 1 (below) and found 

the adjusted tables under raking, maximum likelihood, and minimal Chi-Square, 

(corresponding to fa for a = -l,O,l, respectively). We now discuss the 

adjusted tables based on Table 1 for various other a . 

01234'4 
14567 5 
00012 2 

6789 5 
;789 I.0 5 

3 4 4 5 5 121 

Table 1 

(a) For a = -4 the solution appears to be on the boundary of S and we cannot 

find it using the algorithm above. We terminate the algorithm for this 

example when a = -4 for reason (c) above. The algorithm oscilated 

between 4) and 4'). 

(b) For a=-3, the adjusted table is in Table 2: 
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0 .431 ,817 1.201 1.551 4 
.408 1.034 1.097 1.221 1.241 5 
0 0 0 .672 1.328 2 
1.122 1.209 1.036 .985 .649 5 
1.471 1.327 1.550 .922 .231 5 

3 4 4 5 5 121 

Table 2 

(c) For a= 2/3, the adjusted table is below 

0 1.275 .998 .822 .906 

1.318 .816 .924 .936 1.006 

0 0 0 1.136 .864 

.857 .949 1.037 1.048 1.108 

.824 .960 1.041 1.559 1.116 

3 4 4 5 5 

Table 3 

3.4 Discussion 

(a.) This algorithm will converge to a solution of Da and hence of Pa for 

arbitrary a and arbitrary table A if the function fa(x) has a minimum at 

a positive x* . 

(b.) Algorithm steps 2') and 4') ensure that the solution remains positive, 

that is, 

* 
[(a+1)/21Cp +X*lN. - 

(c.) For a>-1, for every table A, the function fa(x) has a minimum at a 

positive x* , so this algorithm will find it. 

(d.) For an arbitrary a and arbitrary table A, if f,(z) has a positive minimum 

at x* , then f,(z) will have a positive minimum at some y* for 
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all u in a neigborhood of a . In fact, y* will be a continuously 

differentiable function of a . 

(e.) Read and Cressie (1988) remark that they favor a= 2/3 as a desirable 

measure of goodness-of-fit. Note that for a= 2/3, all feasible tables 

have a solution. 

4. THREE-DIMENSIONAL TABLES 

The preceeding sections of this report were couched in terms of two- 

dimensional tables as were our earlier reports on this topic Fagan and 

Greenberg (1984,1985 and 1988). Virtually all procedures and algorithms that 
T 

can be applied to two-dimensional tables also can be applied to tables of 

higher dimension after minor modifications. In particular, the problem set-up 

and algorithms in Sections 2 and 3 have virtual identical counterparts in 

three-dimensions for feasible tables. 

The definition for table feasibility also goes over to three-dimensions (and 

higher) and procedures to determine if a three-dimensional table is feasible 

are similar to those for two-dimensions; see Fagan and Greenberg (1985). The 

only exception to this rule is that in the earlier work one sets up a linear 

programming problem which has the structure of a transportation problem, see 

Luenberger (1984). In three-dimensions, one does not have the corresponding 

transportation problem, so one must stick with the more general linear 

programming problem throughout. With that understanding, if the linear 

programming problem has a solution, Lemmas 1, 2 and 3 and Theorem 1 in Fagan 

and Greenberg (1987) hold completely in three-dimensional tables. 

Accordingly, one can apply the corresponding iterative procedures to determine 

whether an arbitrary three-dimensional table is feasible. 

To be a little more specific, we define a three-dimensional contingency table 

as a four-tuple: A = f.taijk)s-s- _ r c,a) of arrays of non-negative reals where: 

(4 (aijk) is an MxNxP matrix 

(b) cis an MxN matrix 
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(c) cis an NxP matrix 

(4 a is an MxP matrix, and 

kilRik 

rr !'jk 

i=l ij =kzl 

! 'ik .j2,'jk 

i=l 

We say A is additive if 
* 

M 

iilaijk = 'jk 

Y 
j=l aijk = 'ik 

(i=l ,..A, 

(j=l ,-JO, 

(k=l ,...,P) . 

i=l ,-•*, M 
j=l ,***, N 

Table A is feasible if there exists an additive table B such that 

bijk = aijkXijk 

for x.. 
'Jk 

#O whenever a 
ijk 

#O , for all (i=l,...,M; j=l,...,N; k=l,...,P). 

For simplicity we represent a 2x2x2 three-dimensional table by 



Level 1 Level 2 Level 0 

where Level 1 plus Level 2 add to the total level, Level 0. 

Below, we see that Table 1 is feasible, with an additive counterpart in 

Table 1': 

Level 1 Level 2 Level 0 

Table 1 

Level 1 Level 2 

Table 1' 

Below we display Table 2 which is not feasible: 

ll 2 

---I- 11 1 

21 3' 

Level 1 

11 1 

--I-- 11 2 

12 3 

Level 2 

Level 0 

, 
12 3 

21 3 

33 6 

Level 0 

Table 2. 
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For if Table 2' were additive then b 122<1 (being a summand of bIo2 = 1) so 

bI2I>l (because b122 + b121 = b120 = 2), but b121 is a summand of bo21 = 1: 

a contradiction. 

Level 1 Level 2 

12 3 .-I- 21 3 

33 6 

Level 0 

Table 2' 

This example exhibits a sharp distinction between two and three dimensions. 
* 

In two dimensions, every table having all positive entries is feasible; 

whereas Table 2 is a non-feasible table in three dimensions with all entries 

po;tive. It is also interesting to observe that there is no non-negative 

additive table with marginals as shown in Table 3. This is in contrast to the 

fact that in two dimensions every table with positive marginals has at least 

one non-negative solution. 

Table 3 

For the sake of completeness, we provide the algorithm to determine whether an 

arbitrary three-dimensional table A is feasible. The definitions, Lemmas, 

Theorem, and algorithm are taken from Fagan and Greenberg (1987) and proofs 

for all assertions can be found there. 

From table A we form a new table M = {(m.. ),r,c,g) where 
ljk --- 

if a.. 
'Jk 

= 0 

if a 
ijk 

#O. 

A is feasible if and only if M is feasible. 
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Given the table H, consider the following sequence of linear programming 

problems indexed by positive integers, q: minimize 

(4-J 

subject to 

(7:) 

W-1 

where 

; Xijk = Rik 
j=l 

i=l ,***, M 
k=l P ,"', 

'i jklP 
(i=l M; ,***, j=l ,***, N; k=l 9*-J% 

c:jk = T 

c 

if "ijk= ' and 
0 otherwise , 

M N N P M P 
T= 1 Crij 

= ,il kzlcjk= c c 'ik is1 j=l * _ i=l k=l 

and for q>l, 

Cq ijk 

=l or q-1 
'ijk f 0 and m.. # 0 'Jk 

if m.. 
'Jk 

=o 

(0 otherwise, 



2 0 

where (x4 ijk) minimizes (4) subject to (5)-(8). Let us denote by U the set of 

X ijk such that conditions (5)-(8) are satisfied. If U is empty, then M is not 

feasible. 

Lemma 1: If U@ , there exists a positive integer k such that Ck > T . Let - 

N = min {kcZtI Ck~T} . 

Lemma 2: If UzJ?J and if C1+O, then C1>T and M is not feasible. 

Lemma 3: If U#fl and if C1 = 0, then CN = T and Ck is a non-decreasing 

function of k for k=l,...,N. 

Theorem 1: If U#fl , suppose C1 = 0 and N is as above. Then M is feasible if 

and only if c.. N-1 > 0 for all (i=l,...,M; j=l,...,N; 
'Jk 

k=l ,...,P). 

Iterative Procedure to Determine Feasibility. Given a contingency table A, to - 
determine whether or not A is feasible proceed as follows. Form M as in the 

paragraphs above. If U=@, then A is not feasible. Otherwise, obtain Cl: 

If C1$O, then A is not feasible by Lemma 2. If cl = 0, form C2, C3, etc., 

until CN 
Ntl 

= T, and examine the cost matrix (cijk) . If cs";; = 0 for any 

(s,t,v) then A is not feasible, otherwise A is feasible by Theorem 1. Given 

the marginal values in Table 3, the contraints (5)-(8) cannot be satisfied, 

and the set U is empty. 

v. SUMMARY REMARKS 

In this report we extend earlier work and show how to adjust arbitrary non- 

additive feasible tables into additive tables minimizing the power-divergence 

statistic introduced by Creesie and Read (1984). We provide examples and 

theoretical background for the procedures introduced. These methods can be 

easily extended to tables of dimension greater than two. In additions, we 

present procedures for determining when three-dimensional tables are 

feasible. The algorithms presented for this purpose extend directly to tables 



21 

of dimension greater than three. Background issues for table adjustment and a 

bibliography are presented in the authors' earlier papers, see Fagan and 

Greenberg (1985, 1987, and 1988). 
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