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MAKING DIFFICULT MODEL COMPARISONS 

. 

David F. Findley 
Statistical Research Division 

Bureau of the Census, Washington, D.C. 20233 

SUMMARY 

The process of statistical model selection often involves comparison of quite distinct 
competing models, none of which is correct in any strict sense In such situtations, the 
classical, nested-model comparison procedures are inapplicable. This paper describes an 
easily calculated and broadly applicable graphical diagnostic for model comparison and also 
s’ome robust generalizations to the time series situation of a test statistic of Vuong (1989) 
for non-nested model comparisons of incorrect models. After presenting some supporting 
theory, we illustrate the application of these new procedures by comparing ARIMA models 
with “structural” component models for forty seasonal economic time series, continuing a 
study by Bell and Pugh 1989) who used AIC for this purpose. When the comparison 
procedures are decisive, a RIMA models are usually favored. 

Keywords: ARIMA MODELS; GRAPHICAL DIAGNOSTICS; INCORRECT 
MODELS; MAXIMUM LIKELIHOOD; NON-NESTED COMPARISONS; 
ROBUST SPECTRUM ESTIMATION; STRUCTURAL MODELS; 
VUONG’S TEST. 

1. INTRODUCTION 

There are few situations where one could expect the properties and assumptions of a 

statistical model for observed data to perfectly describe the properties of the data, even if 

arbitrarily large sample sizes could be obtained with which to verify the convergence of the 

parameter estimates. Consequently, given the inherently approximate nature of statistical 

models, it is not surprising that modeling experts working independently of one another 
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usually obtain different models for the same data. Thus there is a basic need for broadly 

applicable model comparison procedures. The very large role played in the theoretical 

statistical literature and in textbooks by the assumption that at least one of the model 

classes considered is correct has obscured the fact that such an assumption is not necessary 

for model comparisons, even of non-nested models, as we demonstrate in this paper. Our 

methods are based on the fact that if two models do not provide equally good fits to the 

data in large samples, then their log-likelihood-ratio will usually diverge linearly to an 

infinite value. 

1.1. An Introductorv Examnle 

Consider the following simplistic example. Let yn be a covariance stationary time 

series with mean zero, and with autOCOvarianCeS rk = EynynDk and autocorrelations 

pk = @-fo, k=O, f I,... such that p2 # pf # 0 and 1 p2 1 <l. Suppose two autoregression 

models are considered for y,, regression on ynel and regression on ynD2. All of the usual 

estimates of the regression coefficients (least squares, m.l.e., etc.) converge to pl and p2 

respectively, with increasing sample size, yielding the competing asymptotic model 

equations 

(1-l) 

and 

(1.2) 

yn = plynml + eil) 

yn = p2ynw2 + e:“) - 

Set o(j)2 z Eec)2, j=1,2. The regression error processes en (1) and ei”) satisfy 



(l-3) Ee(.i> . = 0; &d2 
n yn-j = +Yo(l-pi) (j=1,2), 

and it can be shown that they are not white noise processes (uncorrelated series). Therefore 

(1.1) and (1.2) are incorrect models for y,. Clearly the models are non-nested: neither is 

a restricted version of the other. The quantities u (112 and Ok provide natural 

goodness-of-fit measures for these models. A first question to ask is whether one of these 

error variances is smaller than the other. This reduces, by (1.3), to a question about the 

magnitudes of pI and p2, so the well-known limiting joint distribution of the sample 

autocorrelation estimates of pl and p2 could be utilized to provide a classical test of 

hypothesis for choosing the asymptotically better fitting model if there is one, that is, if 

1 pl;+ 1 p2 I. However, finding analogous hypothesis tests for more complex model pairs . 

could be very difficult, so a different approach is needed in general. This paper describes 

two rather simple and very general procedures for detecting an asymptotically better 

fitting model according to a natural measure of fit. It will be apparent from the exposition 

that the range of applicability of these procedures is not limited to time series model 

comparisons. For reasons of space, only time series applications are presented. 

1.2. General Introduction 

Suppose one wishes to decide between two model families, not necessarily nested and 

not necessarily correct, for observed data yl,“‘,yN’ Conceptually, there are two possible 

situations, illustrated by the example above: either the theoretically best-fitting models 

from the competing classes fit (i) equally well, or (ii) one model class is capable of 

providing a better fit than the other. In case (i), variability arising from parameter 

estimation can still cause one of the two classes to be preferred, and this is the playing field 

of the null hypothesis in classical statistical tests. However, general statistical procedures 

for identifying the preferred class in this case seem to require rather strong assumptions 
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about the approximate correctness of the models. By contrast, as the results of this paper 

show, there are theoretically founded procedures with relatively weak requirements for 

making the more fundamental decisions, does (i) hold, or (ii)? - and, if (ii), which model 

class provides the better fit? 

As section 2 explains, these two questions are answered by deciding if the 

* ( 192) log-likelihood difference LN of the maximum likelihood values from the two families 

diverge to an infinite value as N + 00 and, if so, whether to + oo of - 00. The obvious 

diagnostic for such divergence is a graph of the log-likelihood differences from an 

* appropriately selected increasing sequence of subsets of the observed data set. However, 

the calculation of the sequence of m.l.e.‘s and the likelihood values required for such a 
II 

graph can be quite demanding computationally and therefore poorly suited to interactive 

modeling. In section 3, we will describe a related graphical diagnostic which is suited to 

interactive modeling and is especially convenient because it requires only quantities which 

are usually available from the full-data-set likelihood maximizations. Also, a condition, 

(3.5), is given which guarantees that this diagnostic describes the relevant behavior of 

LN1r2) for large enoug h sample sizes N. The proposition of section 4 shows that (3.5) can 

be verified under rather weak assumptions: for example, it is not required that the 

maximum likelihood parameter estimates converge uniquely. 

The rest of the paper is devoted to time series models in preparation for the 

comparison study, in section 10, of ARIMA and structural component models for 40 

economic time series. Sections 5 and 6 provide verifications of (3.5) for two classes of 

ARMA time series models. Section 7, which discusses the connection between 

log-likelihood differences for ARIMA models and those for the corresponding ARMA 

models, may be of independent interest. 

The first general hvr>othesis testing procedure for detecting divergence to infinite 

values of the log-likelihood difference for non-nested, incorrect models seems to be that of 

the very insightful paper of Vuong (1989), which examines the case of independent and 



identically distributed data. A natural generalization of Vuong’s statistics to the case of 

ARMA and ARIMA models is presented in section 9, based on the asymptotic distribution 

obtained for N -VQJ) * p o m r position 8.4 of section 8. In section 10, two robustified 

versions of this statistic are applied to model comparisons for 40 economic time series and 

are shown to lead to the same model selection as the graphical diagnostic of section 3 in all 

situations in which both procedures have a preferred model . This is reassuring, also 

because our theoretical derivation of the asymptotic distribution of the test statistics in 

section 9 is incomplete. 

2. WHEN AND HOW DO LOG-LIKELIHOOD-RATIOS DIVERGE TO f w? 

Let LN[&l)], 6(l) E 63(l) and LN[h2)], h2) E Q(2) be two parametric families of 

log-likelihoods defined by competing models for observed random variates yl,‘..,yN. We 

do not assume that the competing log-likelihood functions have a similar form or are 

related in any way. A notation that more strongly emphasized possible differences of form 

would be L (3 j [s( I], j=1,2, but we will avoid the duplicated superscript to reduce notational 

complexity, anticipating that this will not cause confusion for the reader. Usually each 

family of log-likelihood functions has an associated family of non-random “entropy” 

functions Eco[ &)I, 0 E 0(j) which are the limits (existing with probability one) of the 

sample-size-normalized log-likelihood functions, 

(24 &,[e”‘] = limN ----) w N-‘LN[e(j)] (j = 1,2) (w.p.1). 

If maximum likelihood estimates i) Ii 
j) exist and if we consider the entropy supremum 



then, ordinarily (with p-lim denoting convergence in probability) 

(2.3) timN + w N-lLN[sN 

- (3 

1 = 

will hold for j = 1’2: see White (1990) and the proof of Theorem 7.4.10 of Hannan and 

Deistler (1988) where (2.3) is established without the assumption that the model classes 

under consideration contain the true model. Recently Pijtscher (1990) has established (2.3) 

- ( j> for incorrect noninvertible ARMA models. We will use the abbreviations LN z LN[Q)], 

- j= l,2, and, for the log-likelihood difference ( = log likelihood-ratio), 

Then, from (2.3)’ we obtain 

(2.4) 

Consequently, 

(2.5) Ir EL’) # &A2), w 

NmNdw ik172) = f 00, 

where the sia tithe limit and itg asvmptotic $10~~ are the sign a & 510~ d 

(E ( ‘) - Ei2))N. Thus L ( 1,2) = 0 00 -9 N 
(N) 

P . 
This result has a particularly straightforward interpretation when Gaussian likelihood 

functions are used to model the mean and covariance structure (without assuming the data 

are Gaussian), because then, usually, 



(2.6) Q) = - f log2ma ( 00 jJ2, 

where gLj)2 ’ is the variance of the asymptotic “residuals” process associated with the best 

fitting model(s) in the class being considered: for example, we shall show in sections 5 and 

( j12 7 that for competing Gaussian ARMA (or ARIMA) time series models, go0 is the 

variance of the one-step-ahead forecast error process of a model determined by a limiting 

value fl(Joj) of tip), ( ‘1 - & ( 2, is that of g ( 2)2 - j=1,2. Under (2.6), the sign of E, o. 00 

z This means that the model class with better one-stepahead forecasting 

properties for the observed time series is the model class whose log-likelihood function will 

don&ate the log-likelihood difference as N-+w. 

3. GRAPHICAL DIAGNOSTICS FOR MODEL COMPARISON: DETECTING 

DIVERGENCE PROPERTIES OF THE LOG-LIKELIHOOD RATIO. 

The result (2.5) immediately suggests a graphical method for detecting whether or not 

one of two log-likelihoods will, in large samples, strongly dominate the other and thereby 

identify itself as the model which is to be preferred. The method is: reestimate the model 

over an increasing sequence of subsets of the available observations and plot the resulting 

sequence of likelihood ratios as a function of sample size, looking for a persistently sloping 

trend movement in the later part of the graph. In a situation where the data index has a 

natural ordering, as with time series, this procedure would suggest calculating OM ‘(‘)& 

i$‘) from yl ,...,yM for, say, N/2 < M 5 N, and plotting the log-likelihood differences 

(34 i, ( 172) , N/2 < M < N 
M 



as a function of increasing M. 

However, the calculation of the quantities in (3.1) could be time consuming and also 

quite inconvenient with some software packages. We shall argue in this and the next 

sections that plotting 

(3-2) LM[BN ] - LM[8N2)] N/2 < M 5 N -(l) 7 

versus M is much less burdensome computationally, yet also, when N is large enough, 

* - ( 14 equally informative about the divergence properties of LN . Calculating (3.2) rather 

than (3.1) has the clear advantage that only a single likelihood maximization is necessary 

for e&h model class to obtain 3 I& ‘) and hi2). Less obvious is the fact that the quantities 

- (3 in (3.2) are often immediately available as a byproduct of the calculation of ON , j = 1,2. 

This is easy to see when the data are modeled as though they were independent and 

identically distributed: in this case the log-likelihoods have the form 

L&j)] = .‘, log GiB(j)l(y,) ) 
= 

and, for any M 5 N, 

(3.3) L 
M [&j)] = F log g[&j)](y ) 

n=l n, 

for j = 1’2. 

In the case of dependent time series data modeled as a Gaussian ARMA or ARIMA 

model, there is an analogue of (3.3) which arises from the conditional decomposition 
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LN[ 0(j)] = log g[ e(j)](Y,) + nE210g g[B(j)l(Yn I Yn_17”‘7Y1) 
= 

and which has the form 

n=l 

In this expression, y, I n-l [ 8] denotes the linear function of ynDl ,. . . ,y1 which would 

* provide the best predictor of y, if the data were Gaussian with the mean and covariance 

struc.ure specified by 0 (when n=l, y n l n-1[4 is the mean specified for yI by 8); 0: I n-l[q 

is the function of 0 equal to the mean square of y, - y, I n-l[ 8] calculated with respect to 

the joint density exp(LN[q). All of these quantities can be calculated from one pass over 

the data with the Kalman filter algorithm, given a state space representation of the time 

series model and a suitable initialization, see Jones (1980) or Bell and Hillmer (1990), for 

example. If the Kalman filter has been used to evaluate the likelihood function in the 

maximization routine, all of the quantities required for (3.4) and (3.2) will be available 

after the last maximization step. 

Graphs of (3.1) and (3.2) for competing models (described in section 10) for eight 

economic time series are presented in Figs. l-8. The subfigures (a) are graphs of (3.1), and 

the subfigures (b) are graphs of (3.2). There is further discussion of these Figures in 

section 10. 

In subsequent sections, we shall demonstrate the large-sample equivalence of the sets 

of statistics (3.1) and (3.2) for model comparison by verifying the condition 

(3.5) lim~_,~ sup~>M I M-lLM[ a,] - E, ] = 0 (W.p.1) 
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for the classes of models under consideration. This condition shows that either set of 

statistics can be used to determine the sign of Eoo ( ‘) - Ei2) if this quantity is non-zero. 

Remark 3.1. When (3.5) holds, then, in theory, the lower bound, N/2, of M in (3.1) and 

(3.2) could be replaced by N/r for any fixed r > 1. In practice, if too large a value of r is 

used, early values of LM * ( 1,2) can have a graph quite different from LM[ ail)] - [LM[ d2)]. 

4. VERIFICATION OF (3.5): A GENERAL RESULT 

Ole attractive feature of the result of this section is that it accommodates the 

situation (observed by Kabaila (1983) to occur sometimes with an incorrect first order 

moving average time series model) wherein the m.l.e.,s $N do not converge to a unique 

value, because &,[B] has a set of maximizing values, 

(4.1) Q. z {e: E&q = Eoo). 

For a set F containing Oo, we shall write 

(4.2) 8, - 80 (in F, w.p.1) 

if, excluding realizations {y,(~))l<~<~ of {yn}l<n<oo which form an event of 

probability 0, every subsequence 0; { $N(w)} - l<Nxoo contains a subsequence which is in F 

and which converges to a point in Qo. This is equivalent to saying that, given any 

neighborhood V of O. in F, the probability is 1 that only finitely many of the events 

8, j? v, N = 1,2 ,..., occur. The result we are after is the following. 
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Proposition 4.1. SuoDose there is a set F containing the Em[B]-maximizing set EIo defined 

& (4.1) above such that (i) with probabilitv one, the log-likelihood functions LN[q, N>NO 
. 

are continuous on F; (ii) NBLLN[q converges uniformlv Q Eoc[Bj on F (w.p.1); anJ (iii) the 

condition (4.2) b satisfied. Then (3.5) holds. 

Proof. It follows from (i) and (ii) that &,[Oj is continuous on F. Given 6 > 0, the set V = 

{ 0 E F: IEoo[B] - Eool < 6/2} is thus an open set in F containing Oo. Therefore, by (4.2), 

the probability is one that only finitely many of the events $N j? V occur and also, by (ii), 

z that only finitely many of the events 

I 
SUP,~VIM-~LM[~ -E,[fll 1 b/2 (M = 1,2,...) 

occur. Since 

I”-lLM[fl -Ewl 5 l”-lLM[q -&,[ql + I&[4 -&I , 

it follows that, with probability one, at most finitely many of the events 

SUPN>MJ M-lLM[ZI,] -E, I 1 6 (M = 1,2,.*.) 

occur. This establishes the condition (3.5). 

In many situations, the condition (ii) of the Proposition is a uniform law of large 

numbers, see Pijtscher and Prucha (1989) and their references. 
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5. VERIFICATION OF (3.5): ARMA MODELS WITH POLES AND ROOTS 

BOUNDED OUTSIDE THE UNIT CIRCLE 

We will now verify the conditions of Proposition 4.1 for some important classes of time 

series models. For each pair of non-negative integers p, q and each pair of non-negative 

real numbers cu,p define K tj to be the set of rational functions k(z) of the form b(z)/a(z), 

where a(z) and b(z) are polynomials of degrees at most p, respectively q, satisfying a(0) = 

b(0) = 1, whose zeros belong to { ] z ] 11 + cu} and { ] z ] 11 + p), respectively. We shall 

* show in Appendix A that Kp7q 
Q’P 

is compact, meaning that every sequence k,(z) has a 

subsequence km(z) which converges to some k(z)E Ki$ in the sense that the coefficients 

kjm:f the power series expansions km(z) = C”- ’ j j -o kjmz ( I z ] ~1) converge to kj’ where 

k(z) = Cm- j -o kjzj. We now assume that p,q,cr,p are fixed, that (Y>O if p>O, and @O if 

q>O. (A separate discussion wilI be given in section 6 for unrestricted autoregressive 

models.) Define 0 = (0,oo)~K~~~ a! p . With each 0 = (g2,k) E 0 we associate a stationary, 
, 

invertible ARMA model with spectral density function 

f[Oj(X) z < ]k(eix)12 . 

Also, if we define GN[k] to be the covariance matrix whose (r,s)-entry is given by 

w gr+[k] z $1’ ] k(eiX) I 2cos(r-s)XdX , 
--T 

we can associate each 0 with a Gaussian log-likelihood function LN[q for a vector of N 

observations YN = [yl...yN]’ by means of 

(5.2) -2LN[q 3 N-10@ru2 + 10gdetGN[k] + + YNG$[k]YN . 
u 
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It is known that detGN[k] 2 1, see Lemma 3.5 of Dunsmuir and Hannan (1976). 

Let us assume that the zero mean process y, has stationary second moments to which 

the sample estimates converge almost surely. We ako assume that the spectral 

distribution Fy(X) has a density fy(X) E dFy/dX which is not almost everywhere 0. Then a 

variety of relevant properties of LN[q and of the related quantity 

- hold with probability 1 when N is sufficiently large. Most of those listed in (5.3) below are 

given explicitly, or follow easily, from arguments in Deistler and Pijtscher (1984)’ and 

Pijts:her (1987)’ hereafter referred to as DP and P. They will help us show that 8N exists 

and belongs to a set F as required in Proposition 4.1. 

(5.3) LN[fl b continuous on 0, and I GN[k] ] and c$k] m continuous QQ Kp7q 
Q’B * 

(Theorem 3.3 of DP). gi[k] converges uniformlv on Kp7q to 
a,8 - 

gi[k] z 1’ ] k(eiX) Ie2dFy(X) 
-7r 

a probabilitv 1. (established in the proof of Lemma 3.7 of P.) 

It follows that gi[k] is non-zero and continuous on Ktj and therefore has a 
, 

2 
non-zero minimum amin and a finite maximum Q zax on this compact set. If we choose 

6 = gLn/2, then since 
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holds for all but finitely many N, with probability one, the same is true of 

Hence, with probability one, for sufficiently large N, the concentrated log-likelihood 

L;[k] = - ; log2lteo;[k] - $ log ] CN[k] ] 

* is finite and continuous on Kp,q 
Q’P 

and so has a maximizing VdUe iiN in this COInpaCt Set. 

The; 4, - - ’ (“;[kNl’ kN) maximizes LN[0] over 8. We conclude that, with probability 1, 

e, exists and is an element of the compact set F 5 [0Ln/2, 3giax/2] x KFj. By 
7 

Lemma 3.2 and the proof of Lemma 3.7 of P, NelLN[q converges on 0 and uniformly on F 

to 

&,[O’j = - f log2xc2 - f &k]/g2, 

whose maximum value over 0 is given by 

& co= - ; log2zeo& . 

Consequently, 

limN-w N-lLN[$N] = E, (W.- I), 

verifying (2.3). Under the assumptions of Proposition 5.1 below, Theorem 7.4.10 of 

Hannan and Deistler (1988) establishes that 
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(5.4) 0o = {(g2[k], k) E 8; a2[k] = rr2. 
mm } 

has the property (4.2). Thus Proposition 4.1 applies and we have 

Proposition 5.1. SuDDose &I-& y, h a DureIp non-deterministic covariance stationarv time 

series whose one-step-ahead forecast error (innovations) process ez, which determines the 

Wold rerxesentation y, = C~=ok~ e2I_j, has the pronertv that its sample moments 

converge w.p.1 to the process moments, 

(5.5) I 
(N-j)-l 

N 
C eyey . - EeYeY 

n=j+l n n-J 
n n-j (W.p.1) (j = O,l,...). 

Then the proDertv (3.5) holds for the ARMA(p,q) Gaussian model log-likelihood familv 

LN[e], e 6 0, with 0 = (0, 00) X Kf$$ assumingcr>Oifp>O~~Oifq>O. 
> 

The somewhat abstract parametrization used above for ARMA models is needed when 

p,q>O because of the possibilities that, in the largesample limit, the highest order 

estimated coefficients will become zero, or that common roots wil.I occur in the AR and MA 

polynomials. In these situations, the resulting km(z) will have a multiplicty of 

representations of the form koo(z) = b(z)/a(z) with.deg{a(z)} < p and deg{b(z)) < q. 

A more familiar parametrization can be used for the stationary models associated with 

the structural component models utilized in section 10. For these, the spectral densities 

have the form 

(5.6) 4u2,~,v,q](X) f 02{p]1 -eix14 + v]l- 7+x]2]u(eix)]2 

+ 11 -eix]4]u(eix)]2}, 
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where u(z) = 1 + z + . . . + zl’ and 

(u2,p,v,??) E 0 = (o,w)x[o’oo)x[o’~>x[o,l]. 

It is easy to see that f[c2,p,v,q](X) is nonzero everywhere in [-T,~F] (that is, the model is 

invertible) if and only if (cY~,~,v,~) belongs to the subset 

8* = (o,w)~(o’oo)~(o’c+[o’l), 
. 

and t,~ verify that each compact set F in 0* corresponds to a set of (variance, transfer 

function)-pairs (c2,k) contained in a compact set of the form [g$g$xKi,r with 0 < 0: < 
7 

0; < 00 and p > 0. If the true spectral density f(X) is bounded away from zero in a 

neighborhood of the zeros of 1-e 
iX and u(e”), then the set e. defined in (5.3) will belong 

to O*, and the reasoning leading to Proposition 5.1 shows that (3.5) holds. 

On the other hand, if f(X) shares zeros with l-ei’ or u(elX) (an indication of 

“overdifferencing”) and if some parameter vector with p = 0 or Y = 0 or 7 = 1 belongs to 

Oo, then all we can say at present is that, under (5.5), the basic convergence result (2.3) 

holds, now with E, defined as the supremum of the &,[Bj. This motivates the graph of 

(3.1) as a diagnostic. ((2.3) follows from (7.4.47) of Hannan and Deistler (1988, p. 347).) 

In our analyses, the graph of (3.2) in such situations has almost always resembled the 

graph of (3.1), see Figs. 6-8, which suggests that further research may yield a justification 

for the use of (3.2) with an overdifferenced model. (The one or two exceptions we observed 

may turn out to be explained by likelihood maximization difficulties.) 

6. A STRENGTHENED FORM OF (3.5): AUTOREGRESSIONS WITH GAPS 

There is a restricted class of ARMA models for which we have been able to establish 

somewhat deeper results, including an upper bound on the rate of convergence to 0 in (3.5) 
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which shows that sample paths of LM[fiN] will not differ greatly from ME,. This is the 

class of autoregressions, some of whose coefficients might be constrained to be zero, whose 

parameters are estimated via sample momenbs (Yule-Walker estimates). We assume in 

this section that y, is a, mean zero, stationary time s”rics whose lag j autocovariance yj z 

EY,Yn-j 
is estimated by 

-rj(N) 5 ; E 
n=l j/+1 

ynynBl jl (j:=O,fl,..., d:(N-I.)) . 

* We assume that n.l.l autocovariance matrices Tm = [yiBilo ( i i < m-, are non-singular. 
.- 7. -. 

Set I 

N-l 
fN(X) z (24-l c k.(N)cc)sjX (- TJ < \ 5 T). 

j=-N+l J 

Given a vector of lags, C z ($, ,..., 1,), with l<ll<...<!n,, wc! define the coefficient 

vector C# = (4, . . . Cm] to be the solution of 

The coefficient matrix in (6.1) is a submatrix of rl and so is nonsingular. We define the 
m 

error process ei by mean of 

VW e 
yn = #lY,-$+ .-* + 4mY,,-~m + em . 

Therefore ef is a mean zero, stationary process which, from (6. l), is uncorrelated with 

Y& J “‘J Y,-e P so its variance is given by 
1 m 
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Given data yl,...:yN, we can fit an autoregression with gaps of the form (6.2) by replacing 

the autocovariances in (6.1) with their sample estimates. If a’(N) z [$1(N) . . . $m(N)] is 

the resulting coefficient vector and if we define 

(6.4) ,2/(N) G +,(N) - $1(N)jt 
1 
(N) - ... - $,,(Nhj (N) , 

m 

. 

then the pair A;(N), d’(N) is the unique maximizer of 

* 

(6.5) 

where #‘(ei’) z 1 - $lei’lX - 4, ei’mx . The maximum val11r3 is 

Under conditions weaker than the more easily stated assumptions of Proposition 6.1 

below, Theorem 7.4.3 of Hannan and Deistler (1988) establishes that 

(6.6) supl<j<oo 1 7j - ij(N)I = O{(logN/N)‘l2} (w.p.1) . 

In (6.6), 7j(N) E 0 if j > N. A straightforward argument based on (6.6), which we 

omit, leads to (6.7) and (6.8) below. 
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Proposition 6.1. !hDDOSe that y, has a linear representation v-- 

00 

Yn = jio kjen-j 

in which en -- N I.I.D.(O,g’) and Eet < co. Sunpose, too, that k(z) = Eyzo kjzj is non-zero -w- 

on { ] z I 5 1) and that (i) and (ii) hold: 

(9 ? j1/2]k.] < 00 . 
j=l J 

(ii) 
* 

SUPj j]kj] < 00 . 

Then $l(N),...,Jm(N) and i:(N) satisfy 

(6.7) SuPl<j<m j I d - ~j(N) I = O{(10g'/N)1'2} (W.p.1) 
-- 

and 

(6.8) 1 al - k;(N) 1 = O((logN/N)l/2) (w.p.1). 

Set 8; : [a2(e) C&(N) . . . $m(N)]’ and EL 3 (-1/2)log2rci. Note that 

Since ] log(1 + x) -x ] 5 2 x2 when Ix] < l/2, and since logN/N is a decreasing function 

for N 1 3, a strengthened form of (3.5) follows from (6.8): 
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Corollary 6.1. Under the assumptions of Proposition 4.1, the bound (6.9) holds: -- 

(6.9) SUPN>M I M-lLM[eN] -EL] = O{(logM/M)1’2} (w*p.I) . 

It follows that if two such autoregressive models, with lag vectors .! and 1 respectively, 

are being considered for y,, and if we define E, ’ ” = (-1/2)logg;/g2 , then M-l{LM[BN] - 
4? 

-2 LM[BN]} converges to E, ’ ,l uniformly over N/2 c M i N as N ---) 00 (w.p.1). 

z The two autoregressive models will be non-nested if each lag vector has an entry not 

shared with the other. Autoregressions with gaps have been proposed as alternatives to 

ARGA models, see Kenny and Durbin (1982). 

7. LOG-LIKELIHOODS FOR ARIMA MODELS AND (3.5) 

The models we wish to compare in section 10 are nonstationary ARIMA models. The 

nonstationarity introduces some subtle complications which we address in this section. 

Consider the situation in which a stationarizing backshift+perator polynomial S(B) of 

degree d with 6(O) = 1 is applied to the observed series yI,...,yN to obtain the data wn z 

6(B)YnY n = d+l,...,N which are actually modeled, from a log-likelihood family 

LN,d[e] = L[6rj(wd+I,...,wN)q If we let Ld(yI,...,yd) denote the (unknown) true 

log+iensity of yl,“.,yd, then 

(74 LN[fl ’ LN,d[q + Ld 

is a log-likelihood for yl,“.,yN, in the sense that 
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I [RN %@‘N[61)dYl***dYN = 1 Y 

if the integral of exp( LN d[ 4) over [RNA is 1: indeed, since the Jacobian of the 
, 

transformation (yIy...yyN) + (y1y...yydywd+ly...ywN) is I, we have 

RN eXP(LN[fl)dYl***dYN = 

lRd exdLd)dYl”‘dYd I RN4 

For a general discussion, Findley (1990a). that LN[B ] will the correct 

density for if LN 6J )I Y 
is correct log of wd+l,...ywNy if, at 

same time, are independent the w, This independence usually 

assumed, order to that the forecast+rror (innovations) 

of y, with that wn, see (1984). 

Remark In the of “overdifferencing’,, some proper d(‘)(B) of 

d(O) < transforms yt a stationary wn (O) a(‘)(B)y,, there an issue 

concerning LN[q defined in which deserves In this although LN[q 

properly be a model function for it cannot, general, 

describe Correct log-likelihood of yly..+,yNy because LN d[q(wd+ly...,wN) will not be 
Y 

the conditional log-likelihood of wd+ly”‘ywN given yly...yyd. The problem is that the 

(0) independence of the wn from yI,... yyd(0) can preclude the independence of wn = G(B)yt 

from yd(o)+lY-~YydY as simple calculations with b-( )( OB 1 = 1-B and 6(B) = l-B2 reveal. 

Perhaps the error in LN[fl in this situation will be unimportant when N is large, a 
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possibility that deserves further investigation. Another technical problem that arises when 

b(B) is too large is the presence of zeros in the spectral density of wt, which places LN d[O] 
Y 

beyond the reach of the verifications of (3.5) given in this paper. With overdifferencing, it 

will still be possible, usually, to verify (2.3), so the graph of (3.1) can be used, see below. 

Suppose we have candidate transformations &j)(B) of degree d(j) and candidate m.1.e. 

-(j> a -(j> - models LN,d(J) z LN,d(j)[ON,d(j)] for the data wn (j) = do,, n = d(j)+1 ,..., N, j = l,2. 

- ( V) Then the log-likelihood difference LN z LN[ +$‘A( l)] - LN[ bk2$(2)] satisfies 
Y Y 

(7.2) $J2ht2) + iLdtl) - L c2)) Y d ’ 
* 

so i, t 12) 3 
N 1s known to within a summand which is a function of yl,.,.,y ----- --- 

Of course, when d(l) = d(2), then L1$ly2) is known, 

max{d(‘) d(2)}. Y 

(7.3) (d(l) = d(2))* Y 

and the graphical procedures of section 2 can be applied. In fact, since Ld(l) - Ld(2) does 

not change with N, it follows from (7.2) that, whether or not d tl) = dt2) Y 

- (1) so the eranh of L M, d( 1) - d2)2 N M ,d( ), /2 < M s N can be examined to see if an ultimate 

direction for Lily2) k wrested. 

When d(l) # d(2), we shall refer to the quantities in (7.5) and (7.6) below as 

pseudo-llqg-likelihood-ratios (pseudo-LLR’s): 

(7.5) ik’$(l) - tA2$(2), N/2 < M 5 N . 
Y Y 
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(7.6) LM d(l)[i@)] - LM d(2)[8i2)], N/2 < M <_ N. 
Y Y 

In section 10, graphs of (7.5) and (7.6) are given for two series with models having 

d(l) # dc2) , see Figs. 3(c), (d) and 7(c), (d). 

Remark 7.2. To make the theoretical situation concerning the case d (l) # d(2) clearer we Y 

(1) point out that if both wn and wi2) are (covariance) stationary (and have continuous 

T spectral distribution functions), then it follows from the result (3.1) of Findley (1985a) that 

there is a common divisor a(‘)(B) of 6(‘)(B) and b2)( B) such that wp) = a(‘)( B)y, is 

statiznary. Thus Remark 7.1 applies. On the other hand, if, say, a(‘)(B) is a divisor of 

h2)(B) and wr) (1) * is stationary but wn 1s not (“underdifferencing,,), then the movement 

of L( 1Y2) 
N toward -co can be at a rate proportional to Nr with r > 1. For autoregressive 

models, this follows from results of Tiao and Tsay (1983) or Chan and Wei (1988). 

- ( 12) Remark 7.3. If the approach described here to defining LN for ARIMA models is used, 

there are some implications concerning the applicability of Akaike’s AIC criterion. 

Consider the difference of AIC values, 

(7.7) 

where dim &j) denotes the number of estimated parameters in the j-th model family, 

j=1,2. It is clear from (7.2) than when d (l) # d(2), since Ld(‘) - Ld(2) has non-zero 

mean, the calculable analogue of (7.7), 

(7.8) 

. 

-2{ikth(l) - ikfi(2)} + 2(dime(‘) - d.imk2)) , 
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will not the asymptotic as uncalculable AAICN when 

t 12) the means of the sequence LN converge. As a consequence, in this case the bias 

calculations motivating the use of AIC (see Findley (1985b) and Findley and Wei (1989)) 

- t 14 do not support the use of the sign of (7.8) for model selection. Of course, if LN -tp 

f 00, the tinite bias correction term 2(dim8 (l) - dimh2)) & inconseauential. 

There is another technical problem in the situation of “overdifferencing”, regardless of 

whether d(l) # d(2) or cl(‘) = d(2): here the spectral density function of at least one of the 

- series,wi), j=1,2 may have a zero, and in this situation, it does not appear to be known if 

the Fisher information matrix plays the role in the limiting distribution of N 

0ij)3 needed for the derivation of AIC, see Findley (1985b). 

8. WEAKLY EQUIVALENT MODELS AND THE ASYMPTOTIC DISTRIBUTION OF 

N-1/2L ( b2) 
N ’ 

The discussion so far is completely general in the sense that it applies both to nested 

and non-nested model comparisons of model classes which might or might not contain the 

correct model. In sections 9 and 10, we will discuss a hvuothesis testing procedure for 

- ( 14 reaching the same conclusions about the limiting behavior of LN which takes advantage 

of a component of the log-likelihood-ratio which ordinarily only occurs when non-nested 

and incorrect models are fit, a phenomenon we shall explain precisely in this section with 

two easy Propositions and a somewhat deeper result. The properties of interest concern 

the models defined by the large-sample limits of the m.1.e. models. 

In this section, y, denotes a mean zero, purely non-deterministic stationary time 

series with innovations represent ation 
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(84 
00 

Yn = C ky ey . (kg = l), 
j=o J n-J 

= kY(B)ei 

and spectral density fy(X). In sections 5 and 6, the assumption that the candidate model 

(innovations) transfer function k(z) = CyZo kjzJ (k. = 1) was a rational function 

simplified the presentation. That is not the case for this section, so no special form will be 

assumed. We suppose that k(z) # 0 if ] z ] < 1. If k(z) is such that 
. 

(8.2)’ g2[k] E 
I 

T 
-a 

1 k(eiX) Ie2fy(X)dX 

is finite, then a2[k] is the variance of the covariance stationary series e,[k] z k(B)-‘yn, and 

there is a moving average representation for y, with transfer function k(z), 

(8.3) 
00 

Y, = C k.e .[k] . 
j=o J n-J 

The candidate spectral density function for y, defined by 

(8.4) fIk](X) z .* ] k(eiX) ] 2 

coincides with the true spectral density fy(X) if and only if e,[k] is a white noise process 

(an uncorrelated series), in which case the representations (8.1) and (8.3) are identical, 

k . = k$ and e,_j[k] = ei-j, j=O,l,... . 
J 

We shall explain shortly why it is appropriate, in 

general, to regard e,[k] as a one-step-ahead forecast-error process and g2[k] as the mean 
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2 square forecast error. Thus Q [k] defined by (8.2) is a theoretical goodness-&& measure 

for transfer function models k(z). 

We shall say that two transfer function models k (1) (z) and k (2) (z) are weakly 

eauivalent if g2[k(‘)] = CJ [k 2 (2) 1. There are two theoretically important modeling 

situations in which weak equivalence implies that the models coincide, k (l)(z) = k(2)(z). 

Prouosition 8.1. Sunpose the transfer function model k(z) for y, is weakly eauivalent Q 
. 

the true innovations transfer function ky(z) = Coo- j -o kpJ; that is, SUDDOSC! c2]k] coincides 

* with the innovations variance a2 -- y = E(ez )2. Then k(z) is correct, k(z) = ky(z). On the -- 

other hand if k(z) and ky(z) are not weakly eauivalent, then a2[k] > o2 . --Y - I Y 

Proof. Note that, since ky(0) = k(0) = 1, 

is a linear function of y n-j, j 2 1, and so is uncorrelated with ei. Because e,[k] = ei + 

{e,[k] - ei}, we therefore have g2[k] Y2 = gf + E(e,[k] -en} from which the asserted 

results follow. 

Our null hypothesis in section 9 will hypothesize weakly equivalent models with 

distinct covariance structures. Proposition 8.1 above shows that the situation where one of 

the models is correct is excluded by this hypothesis. We observe next that nested models 

are also excluded when the m.l.e.% from the larger class of models have a unique limit. 

The result is obvious but fundamental. 

Prouosition 8.2. & k[&j)](z), &j) E 0(j), ’ 1=1,2 be two families of innovations transfer 

function models for y, such that (i) - (iii) hold: 
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6) Q(l) s Q(2) . 

(ii) -- -- There exist OAj) E e(j) such that 

.2p3~j)l = 1 k[O ( 00 j)](e”) lB2f 
Y 

(X)dX 

is finite and eaual to inf&j) E ,(j) g2[k[e(j)]] (j = 1,2). 

T (iii) ( 2) There is onlv one such minimizer Boo in EJ2). _ 

Then if k[B ( ‘)I and k[B ( 2)] -Y - ccl 
are weaklv eauivalent models, that &., ir Q [Boo 2 t ‘)I = 

g2[e~2)1, then k[eoo ( ‘)I(; = k[fIi2)](z). 

We turn now to the derivation of the limiting distribution of N -1/2f,h1~2) in the 

situation in which the best transfer function models from the two competing families are 

weakly equivalent but not coincident. We will utilize the conditional decomposition of the 

Gaussian log-likelihood function for the covariance structure for y, specified by f[k](X) 

defined in (8.4). Let ynI n-l [k] denote the linear function of yn,l,...,yl defining the best 

linear predictor of y, (the Gaussian conditional mean) under the model flk](X), and let 

2 a, I n - l[k] denote the mean square of 

en 1 n-likl = Yn - Yn I n-likl 

(the Gaussian conditional variance) calculated under flk]( A). The interpretation of e,[k] 

and 02[k] as prediction error quantities arises naturally from the fact that the differences 

e,[k] - enI n-l[k] and a2[k] - CT: I n-l[k] tend to zero as n - 00. We need a specific rate 

of convergence. Baxter (1962) provides rates of convergence for the case in which f[k](X) is 
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the true spectral density of y,, but minor and straightforward modifications of his proofs 

show that the same rates apply whatever the autocovariance structure of y,, see also 

Findley (1990b). We state the variant of his Proposition 3.1 that we need as 

Pronosition 8.3. Suuuose that k(z) = BTZo kjd satisfies (i) and (ii): 

(9 k(z) # 0 for all ] z ] 51. 

z al 

(ii) C j’lkjl < oo, for some a 2 0. 
j=l 

* 

Then (8.5) and (8.6) hold: 

(8.5) 

(8.6) lim n-w n2aE{en[k] - enI n-l[kl12 = 0 , 

These convergence results lead to a useful approximation to the Gaussian 

log-likelihood determined by f[k](X), which is obtained from (5.2) by setting 8 = (c2[k], k) 

and which we will denote by LN[k]. This log-likelihood has a decompositon like (3.4), 

(8.7) 
N 

LN[k] = - ; B log2sc$ n-l[k] + .;I . 
n=l = 

The following approximation result is proved in Appendix B. 
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. 

Corollarv 8.1. SUDDOW that the innovations transfer function model k for yn satisfies the 

hvnotheses of Pronosition 8.3 with cy = l/2. Then N -l/2 
LN[k] can be aDDroximated h 

mean absolute deviation a indicated b (8.8): 

(8.8) lim N --) o. N-1/2E ]LN[k] + $Nlog2r02[k] + i e2[k]/02[k]} 
n=l n 

1 =o. 

If two such transfer functions k (1) and k(2) are given, consider the mean zero series 

(8.9) 
* 

e2[k(‘)] 
p = n 

e2[k(2)] n 
n 

7pgpy 

(W * and suppose that the series y, is fourth+xder stationary. Then C, is a covariance 

stationary series. Let f(lY2)(A) denote its spectral density function. If y, is strictly 

stationary and satisfies Assumption 2.6.1 of Brillinger (1975), requiring the absolute 

( 192) convergence of the cumulants of each order, then so does C, , and BriIIinger’s Theorem 

4.4.1 applies, resulting in 

(8.10) N-1/2 ; <b2) 
n=l n 

-(j& w(O,2xr(l~2)(0)) . 

If we set LJ11j2) z LN[k(‘)] - LN[k(2)], it follows from (8.8) and (8.10) that 

(8.11) 2N-1/2L#2) + N1i210g w(O,2d’~2)(0)) . 

The next result, concerning the asymptotic distribution of 2N-1/2$&‘>2) for 

- ( V) log-h keli hood differences LN of estimated models, now follows immediately via the 
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decompositions 

(8.12) d2iiJJ = N-1/2{ LN[ tip)] - LN[ &j)]} + N-1’2 LN[Oij)] (j=1,2), 

because the first expression on the right tends to zero in the usual situations, as we explain 

below. 

Proposition 8.4. & y, be a strictly stationary, zero-mean time series satisfving 

WAssumption 2.6.1 of Brillinger (1975, p. 26). SuDDOSe that LN[B(j)], O(j) E O(j), j=1,2 are 

Gaussian log-likelihood functions families for yl)“‘)yN having maximizing values ai’) and 

ai2) which converge h probability a~ N ( 1) ----) 00 to limiting values Boo and Oi”). - - 

Sunpose these define innovations filters k (l) = k[ OA1)] a& k(2) = k[ BA2)], respectivelv, 

which satisfv the assumptions of Corollarv 8.1. & u [k ] and o [k ] denote the 2 (1) 2 (2) 

associated innovations variances, defined 2 & (8.2)) and let f(1,2)(X) denote the spectral -- 

densitv of the series cn (1,2) defined ~ (8.9). 

Then if the log-likelihood difference seauences LN[hi’)] - LN[#A’)] and LN[ai2)] - 

LN[OA2)], N=1,2,... a bounded & probability it follows that the &-iikelihood ,---- 

difference seauence Li1,2) z LN[ $A’)] - L [B ( 2)] satisfies (8 13). NN 
. . 

(8.13) ,N-1/2i&1j2) + N1/210g 

Concerning the boundednessin-probability assumption, we note that if LN[B(j)] is a 

differentiable function of a vector parameter SC) j and if $3 is in the interior of the 

parameter set, so that the gradient LN[a#)] 3 &,(&#/as(j) is zero, it follows via 

Taylor’s formula that there is a g#) - (j) on the line segment between ON and Oij) such that 
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2{LN[ &j)] - LN[ i&j)]) = 

for j = 1,2. Hence, the boundedness in probability of these sequences will follow from 

convergence in distribution of N 1/2( hij) _ #Aj)) an convergence in probability of the d 

sample-size normalized Hessian matrices N -I$[ f&j’]. 

z This proposition shows that if f(1,2)(0) # 0 and if a consistent estimator ii1,2)2 of 

27t-G2)(o) can be found then when g2[k(‘)] = .2[k(2)] 9 , 
* 

(8.14) 2(lJ2)(N) E 2N- 1/2ip2)/;p2) ‘di.t K(O,l) . 

The test statistic 2(1,2) (N) can be used to test the hypothesis c2[k(‘)] = c2[k(2)] against 

the two-sided alternative CY [k 2 (1) ] # u [k 2 (2) ] and the associated one-sided alternatives. 

This test is a time series analogue of the test presented in Vuong (1989) for the case of 

i.i.d. observations. Vuong shows that, in the i.i.d. case, under rather general assumptions, 

if density functions g(‘)[d’)](y) and g(2)[s(2)](y) are being fit to yl)“‘)yN, then 

is a consistent estimator of the asymptotic variance of N -1/21i1,2), and that VN * ( V) = - 

N-1/2$‘2)/;i 1,2) has a I(O,l) limiting distribution when E, ( ‘1 E E{log g(‘)[0A’)]} is 
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equal to EA2) 2 E{log g(2)[6A2) I). (Our notation differs from Vuong’s.) In the 

- ( w discussion of the hypothesis test associated with VN following the statement of 

- ( 1’2) Theorem 5.1 of Vuong (1989), it is assumed that the sign of LN indicates the direction 

^ ( 1’2) of linear movement of LN toward f 00 if the null hypothesis of no such movement is 

rejected. While this must be correct for large enough N, it need not be true for all N, and 

- t 1,2) the analysis of the series blqws in section 10 suggests that the sign of LN could be 

misleading in situations encountered in practice. It therefore seems prudent to use Vuong,s 

test in conjunction with a graphical diagnostic like those discussed in section 3. 

- t L2) Remark 8.1. The distributional result (8.13) concerning LN also holds if the competing 

modeis are invertible ARIMA models with the same stationarizing polynomials 

b’)(B) = h2)(B), providing L(1,2) (1) is defined as in section 7. In this case, the series en 

and ei2) defining Cil ,2) are obtained from the stationary series 0 1 l B y, = 6j2)(B)yn. 

On the other hand, if, say, h )t > I B is a proper divisor of b2)(B) and &l)(B)y, is 

stationary, so that J )( 
2 B represents “overdifferencing,,, then the result (8.10) holds as > 

before but the status of (8.8) for d )t > 2 B y, and of (8.13) is uncertain , because k (2)(X) may 

or may not have zeros, see Corollary 3.1 of P&scher (1990). In practice, we have found 

that the use of Lk’a( 1) - Lk2i(2) in place of Ll$‘,‘) in 2(1,2)(N) when d(l) # d(2) often 
, , 

leads to incorrect conclusions: the difference in the numbers of observations utilized for the 

likelihood calculation does not seem to be negligible in its effect at the usual sample sizes, 

even though this effect must vanish as N - 00 because of the divisor N 1/2 in z(l12)(N). 

We do not recommend the use of hypothesis tests based on (8.14) when b’)(B) # k2)(B). 

Our efforts to verify that natural estimators of 2 d1,2)(0) are consistent, and in this 

way obtain a theoretically complete time series analogue of Vuong’s test, have oniy been 

partially successful, as we shall explain in the next section. 
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9. TIME SERIES ANALOGUES OF VUONG’S STATISTIC 

To be able to use the distributional result (8.14) for testing the asymptotic weak 

equivalence of two maximum likelihood time series models, we need an estimator Q - k2fN) 

of 271-d~‘~)(O) where f(‘,2)(X) is the spectral density of the unobserved process Ci’,2) ’ 

defined in (8.8). One approach is to use an autoregressive spectrum estimator, with order 

determined by Akaike’s minimum AIC criterion, considering orders up to N 112 , see Berk 

(1974) and Shibata (1981). This autoregression is fit to the process 
. 

where e nln - l[&i)] z y, -ynln-l[&i)], and ~~]~-~[~k)] and ~~]n-l[$$l)] are defined 

as in section 3. Thus C, -(1)2), n-1 - ,..., N can be obtained from the Kalman filter output for 

the two maximum likelihood models. If the autoregressive model fit to this data has order 

p, estimated coefficients al(N),... ,ap(N), and estimated innovations variance i2(N), then 

an estimate of 2d’,2)(0) is given by 

(9.2) ,(1’2)2(N) z G2(N)( 1 - i2(N) - .a. - ip(N))-2 . 

There are several possible ways of estimating the coefficients and innovations variance 

used in (9.2). The empirical study presented in the next section makes clear that it is 

- ( 1 a2 essential to use robust estimates. We will use the notation ayw when (9.2) is 

calculated from sample moment estimates discussed in section 6, and we will use & b 
1 a2 M 

when the robust scale and GM-estimates of coefficients from the routine ar.gm of S-PLUS 

are used, see Martin (1981) for definitions and supporting theory. We define the 



34 

corresponding test statistics 

(9.3) 
z t 1 2) 

YW 

and 

z&/21, t ‘y2) 
N /&(2)(N) . 

- ( 1 a2 It is to be expected that gYW (N) and i&i~~)~(N) will converge in probability to 

2dL2)(o), see Berk (1974) and Shibata (1984)) but we have not been able to prove this. 

Our best result to date applies only to the comparison of autoregressions with gaps for y, 

and shows, based on slight generalizations of (6.6) -.(6.8), that, for fixed p, the 

- t 14 Yule-Walker estimates from C, converge to the same limiting values as a p-t h order 

( 14 autoregression fit to the unobservable process $, . This result will not be proved here, 

because it is inadequate for the examples of the next section, which involve models with 

moving average terms. It can be seen there that results compatible with the graphical 

diagnostics of section 3 are usually obtained if Z&ip2) is referred to a standard normal 

distribution, but that Z&&,2) is often misleadingly small. Consistency results for 

GM-estimates exist but are difficult, see Boente, Fraiman and Yohai (1987). A second 

autoregression-based robust estimator will also be used in section 10. When using robust 

estimates of t(1,2)( ) 0 , we o no d t k now how to verify that d”2)(o) # 0. 

Remark 9.1. It is not surprising that robust methods are needed, because the two series 

enI n 1[$)], j=1,2 which define <I$1,2) are forecast errors from imperfect models. Also, 

even in the situation where the series e,[k(‘)] and en[k(2)] defining <i1,2) are Gaussian, 

(1’2) the distribution of the series cr, will be heavier-tailed: for example, the marginal 
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distributions will be linear combinations of independent chit;quare variates with one 

degree of freedom. 

Remark 9.2. One would like model selection procedures to have the property of 

transitivitv: if model 1 is preferred over model 2, and model 2 over model 3, then model 1 

should be preferred over model 3. For the graphical diagnostics of section 3, transitivity 

follows simply from the additivity of the log-likelihood ratios: for example, since 

z (9.5) i t 112) + jy t 2’3) 
M M ’ 

it follows that if, for positive numbers cy, 0 and for all M satisfying No < M < N, the 

inequalities LM - ( 1~2) _ iL1i2) 2 a and f,h2j3) - c ( 213) > @ hold, then i&113) - f, ( ‘j3) 
M-l - M-l 

2 cr+o holds for these values of M. In other words, the ultimate slope of the graph of 

pp - t L2) will exceed the ultimate slopes of the graphs of LM and LM2,3). For our 

generalization of Vuong,s test, it is not clear that transitivity will hold for any fixed sample 

size, but it can be obtained asymptotically from (9.5) and the strict inequality 

(d1’3)(o))1/2 < (d1’2)(o))1/2 + (d2’3)(o))1/2 ) 

( 1’2) which holds if the joint spectral density matrix of $., and <L2,3) is non-singular at 

x=0. 

10. COMPARISONS OF MODEL PAIRS FOR SOME ECONOMIC TIME SERIES 

In this section, we elaborate the study of BeIl and Pugh (1989). They used AIC to 

compare the basic structural component model (BSM) of Harvey and Todd (1983) with 

ARIMA models fit individually to a large set of log-transformed economic time series, 
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from the Business, Industry and Construction Statistics Divisions of the U.S. Census 

Bureau. The BSM can be written 

(10.1) yn = Sn + Tn + In 

where S,, Tn and In are independent series presumed to satisfy 

(l+B + . . . B1’)Sn = eln, eln - i.i.d. J(O,pd) 

( 1-B)2Tn = ( l-qB)e2, (7 1 0), e2n - i.i.d. W(O,Y~~) 

In - 
i.i.d. J(0,g2) . 

In our study, if the estimated value of 77 exceeded 0.9, we often used a different model for 

the “trend” component Tn, 

(l-B)T, = C + e2n , e2n N i.i.d. .U(0,vu2), 

with C a constant term, in order to avoid the technical problems caused by 

non-invertibility which were discussed in section 5. We refer to this model as a modified 

comnonent model. 

In addition to the three components of (lO.l), the models considered for most of the 

series have a mean comuonent consisting of a sum of indicator variables for highly 

significant additive outliers or level shifts together with linear regression expressions 

modeling calendar effects, see Bell and HiIImer (1983). Table 3 indicates, for each series, 

which effects were included in the mean function. The theoretical discussion in the 

preceding sections concerned mean zero time series, so we need to say something about the 
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additional assumptions and developments required to cover the situation of estimated mean 

functions. The estimation of the coefficients of the indicator variables for additive outliers 

and limited-duration level shifts has an asymptotically negligible effect on the likelihood 

function. So, for theoretical purposes, we assume that such coefficients are fixed and not 

reestimated as N - 00. The calendar effect variables can be regarded as periodic with 

long periods, and they satisfy Grenander’s conditions as discussed in Hannan (1973) as does 

a constant mean variable. Our method of simultaneously estimating regression and ARMA 

coefficients is described in Findley, Monsell, Otto, Bell and Pugh (1988). We shall assume 

T that with properly chosen coefficients (perhaps zero) these regression variables completely 

describe the mean function of y,, even though the remainder of the model might not 

com:letely describe the covariance structure of the series. With this assumption, the 

methods used for the proof of Theorem 4 of Hannan (1973) can be utilized to obtain a 

generalization of Proposition 5.1 which covers models with such mean functions. The 

analysis of section 8, which concerned the asymptotic models, covariance structures, carries 

over without change if one replaces y, with y, - Ey,. 

Bell and Pugh used Akaike’s AIC as the basic comparison statistic. Hence they used 

the sign of (7.7) to indicate the preferred model, the first model being preferred over the 

second if AAICN’,2) < 0. In our comparisons, the ARIMA model family is designated the 

first family (j=l) and the component or modified component model family is always the 

second family (j=2). 

10.1 Comparison Results 

The model comparison results have been divided into two categories, determined by 

the extent of conformity to assumptions utilized above. Table 1 presents the results for the 
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ten series for which both the ARIMA and component models obtained were invertible and 

utilized the same transformation Q stationaritv. This is the category of comparisons best 

supported by the theoretical results of the earlier sections concerning (3.2) and the 

Z(lj2)(N)-statistics. For the other comparisons, given in Table 2, one of the models had 

to be overdifferenced to achieve &l)(B) = k2)(B) , a condition which seemed to be 

necessary in order to obtain reliable Z (1,2)(N)-statistics with series of the length used in 

the study. The results now to be discussed have led us to conclude that the 

z t 13 
N 

-statistics are useful complements to the graphical diagnostics if two limitations are 

* taken into account. First, their values are sometimes distorted by nonstationarities in the 

;;( 14 so it is worthwhile to graph this series. 

zi’12j(N) 

Second, being summary statistics, the 

are inherently less informative than (3.1) and (3.2) about changes in the 

statistical properties of the most recent observations. 

The designations of the modeled series are explained in Table 3. The values of the 

statistics AAIC, Zyw and ZGM and the interpretation of the graph of (3.2) for each series 

are given in Tables 1 and 2. This graph was interpreted as inconclusive (I) unless two 

requirements were satisfied: first, the general trend of the later portion of the graph must 

move toward an infinite value, linearly or faster. Second, the subinterval of (N/2, N] in 

which this later movement occurs must be longer than any earlier subinterval in which the 

general movement is in the opposite direction. As the discussion of the examples below 

shows, these requirements may be a bit too restrictive. For instance, if the trend of the 

graph is linearly upward over (N/2, 7N/8] but level over (7N/8, N], the graph would be 

interpreted as inconclusive in the study, but it would usually be reasonable to select the 

model favored by the upward trend, since it was never dominated by the other model. 

However, the leveling out at the end indicates a change in the nature of the time series 

being modeled, so one should investigate the adequacy of the fits of both models over 

(7N/8, N] before completing the selection. 
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The ambiguity about whether the hypothesis tests based on Z 
6 

&,2) should be 

- ( 132) intepreted as onesided tests (based on the sign of LN ) as in Vuong (1989), or as 

tw-ided tests, leads to ambiguity in the definition of the significance levels and critical 

regions of the test. If we choose a five-percent significance level and assume that the 

asymptotic distribution is appropriate for the test statistic, then (1.645, 00) and (a, 

-1.645) are the critical regions for the one-sided tests, and (a, -1.96) U (1.96, co) is the 

critical region for the two-sided test. There are two series, icmeti (ZGM = -1.94) and 

bdptrs (ZGM = 1.88) where this ambiguity affects the conclusion of the test. For icmeti, 

the graphical diagnostics (Figs. 5a, 5b) offer support for the rejection of the null hypothesis 
. 

in accord with the one-sided test. For b&&s, the graphs (Figs. la, lb) were classified as 

inconclusive. To help resolve this ambiguity, a more elaborate “cleaned residuals” estimate 

of f(1,2)( ) 0 was calculated utilizing the fitted robust AR models as prefilters, as described 

in section XIII of Martin (1981)) and using a 10% data taper and the c(3) 5) periodogram 

smoothing window of S-PLUS. The values of the test statistic Z (‘,2)(N) obtained from 

these estimates are presented as Zsp -values in Tables 1 and 2. For icmeti and bdptrs, 

these values are 9.44 and 1.60 respectively, which are unambigously in accord with the 

interpretation of the graphical diagnostic. Thus, in Table 1, there is complete agreement 

between the interpretation of (3.2) and the one-sided test based on Zsp. By constrast, in 

about a third of the comparisons in Table 2, one of the new comparison methods is decisive 

(usually the test based on ZSp) and the other (the graph of (3.2)) is not. Some of the 

causes of such disagreements are discussed in the next subsection. 

10.2 Examples of Graphs of (3.1)) (3.2)) (7.5)) (7.6) and (9.1) 

Figs. l-5 present graphs associated with series in Table 1. Fig. 6-10 are associated 

with Table 2. In the subfigures labelled (a),(b), (c) and (d), the horizontal tis is the time 

= sample size tis for the stationary series obtained by applying 1-B and l+B+ . . . + B1’ 
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as needed. The vertical axis gives the values of the log-likelihood differences in the (a) 

and (b) figures and the values of the pseuddog-likelihood-ratios in (c) and (d) of Figs. 3 

and 7. 

A feature of some of these graphs facilitates the use of AIC. For the model 

comparisons associated with these figures, the parameter dimension difference, dim 80 1 
- 

dim 9(2) , took on the values -1, 0, and 1. If 

(10.2) i t 1’2) 
N > dim 8(l) - dimk2) , 

then model (1) is preferred by the minimum AIC procedure. If the opposite inequality 

holds: model (2) is preferred. When both models are invertible and have the same 

- t 14 stationarizing transformation, so that LN is known, a horizontal line is drawn in the 

figures at the level dim 8(l) - dimh2) (p rovided that this ordinate value is within the 

range of the graph) in order to make it possible to see how persistently the graph stays 

above or below this level. This provides information about the stability of AIC’s choice. 

The stability of such statistics is a matter of special concern in non-nested comparisons, 

because if d’92)(0) # 0, the variance of AAICl$1,2), like that of Ll$‘,2), has order N, 

asymptotically, in the situation of weakly eauivalent models. This is precisely the 

situation in which the means of these quantities usually have a finite limit, and, 

consequently, the graphical diagnostics are expected to be inconclusive and the Zstatistic 

small. It is often the natural context in which to use the minimum AIC criterion, see 

Findley and Wei (1989). 

The subfigures (a) and (b) of Figs. l-8 present graphs of (3.1) and (3.2) for situations 

in which the ARIMA model and the component model have the same stationarizing 

polynomial, 6(l)(B) = d2)(B), at the expense, in Figs. 6-8, of using the basic structural 

component model even when it was non-invertible. In all cases, the graphs of (3.1) and 

(3.2) are quite similar. 
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Figs. l-2 are graphs which were classified as inconclusive. The movements of the 

graphs relative to the dashed line at level dim dl) - dimd2) suggest that AIC’s preference 

for the .IRIMA model is rather stable in the case of bdptrs, but tentative in the case of 

bfmrs, because of the downward movement at the end in Fig. 2. For the other series in 

Table 1 for which (3.2) was inconclusive ,bgars, this graph (not given) stayed above the 

level dim ’ 80 - dimh2) in a way that suggested that AIC’s preference for the ARIMA 

model was stable. 

The graphs in Figs. 3-5 favor the ARIMA model as does the ZSp-statistic. The 

w graphs of Figs. 6-8 are the only ones in the study which could be interpreted as favoring 

the component model, although in none of these graphs does the downward trend seem to 

hav< a constant slope. At least one of the models in each of these last three comparisons is 

non-invertible, so there is uncertainty about the applicability of the Z (l,‘)(N)statistics. 

The subfigures (c) and (d) of Fig. 3 and Fig. 7 present the pseudo-log-likelihood-ratio 

graphs (7.5) and (7.6) for situations in which the stationarizing polynomials d(‘)(B) and 

h2)(B) differ by a factor 1-B. In the case of Figs. 3(c) and 3(d), a non-invertible 

component model was used in place of the preferred modified component model to obtain a 

comparison in which b2)(B) = (l-B)&(l)(B). In the case of Figs. 7(c) and 7(d), the use of 

the modified component model to avoid noninvertibility resulted in h )@I 
1 = 

( l-B)h2)(B). In both cases, the shapes of the graphs closely resemble those of the 

subfigures (a) and (b). 

Figs. 3(e) and 7(e) present plots of the series cn -(1t2) for two series for which the 

non-robust statistic 2 yw is strongly biased toward 0 by “outliers”. Tables 1 and Table 2 

contain further examples of t-mall values of this statistic. 

10.2.1 Series with an early change of regime. 

- t 14 Fig. 7(e) reveals that the first six years of the series & from ifatvs have a different 

character than the rest. Since the graph of the original series (Fig. 9(i)) also suggests a 
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change of regime after the first six years, these early observations were deleted, the models 

were reestimated from the remaining data, and the diagnostics were rec&dated. The 

results are presented in parenthesis in Table 2. The new graph of (3.2) (Fig. g(ii)) is 

erratic and is interpreted as inconclusive (in agreement with the new, insignificant value of 

zsP = -.47): the downward movement is restricted to the middle of the graph and is 

stepped rather than linear. 

In a similar way, the graphs of (9.1) (not given) for ihupvs and bhws called our 

attention to the fact that these series, too, appear to have undergone an early change of 

regime, after the first three, respectively, six years. The results associated with the 
. 

shortened series are likewise given parenthetically in Table 2. The graph of ihapus and its 

new (4.2) are given in Fig. 10. The values of (3.2) tend strongly upward for the first two 

thirds of the graph, in line with the significant new Zsp = 4.71, but the final third has a 

level trend, so this diagnostic was inconclusive. Had it become downsloping in the final 

years, rather than level, we would have first considered the component model if short term 

forecasting of ihapvs was the goal. Since the graph remained level, however, it is 

reasonable to prefer the AFUMA model for this purpose. For bhdws, there is a rapid 

downward movement in the first third of the graph of (3.2) (not given) from the shortened 

series (in accord with the value ZSp = -1.72) followed by a large oscillation to a lower 

value, then, in the final third, a generally upward movement becoming rather level at the 

end near the value -1.8. Thus the diagnostic graph is not conclusive, which is not 

surprising, because the graph of the original series (not given) is quite erratic in the final 

years. 

10.2.2 Disagreementi between grapiu and tests. 

For approximately one-third of the comparisons of Table 2 a situation similar to that 

just described for shortened ihapus occurred, in which Zsp was significant ( 1 ZSp 1 > 1.65) 

but the graphical diagnostic was inconclusive, because of a leveling out or a change in the 
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sign of the slope in the last years of the graph. There is one series, blqrrs, where the graph 

of (3.2) (Fig. 6(b)) was interpreted as favoring the component model, but the value 

%P 
= 1.14 is insignificant. There is a change of direction early in the graph and its 

subsequent decreasing movement is not very linear and never carries the graph below the 

positive value 2.0. Thus the insignificance of Zsp reinforces the lingering ambiguity in the 

graph. 

In summary, we find the diagnostic graphs (3.1) and (3.2) more informative than the 

‘i 
Z(1’2)(N)-statistics, but we do find these statistics to be useful adjuncts to the graphs, 

either to confirm, or to provoke closer scrutiny of, their interpretation. When these 
I 

diagnostics and tests are conclusive, the ARIMA model is usually favored over the 

struct Ural component model. 

11. OTHER TESTS AND GENERALIZATIONS 

Vuong (1989) has already discussed the fundamental differences between the 

hypothesis testing procedure for non-nested models of sections 8 and 9 and the tests of Cox 

(1961, 1962), which were generalized to ARMA models by Walker (1967) and have 

stimulated the development of a vast theoretical literature, see White (1990). To Vuong’s 

discussion we wish to add one remark concerning the comparison of ARMA models: not 

only are the null and alternative hypothesis of the Cox tests different from the simple and 

intuitive 02[k(l)] = Q [k 2 (2) ) versus u [k 2 (1) ] # Q [k 2 (2) ] hypotheses of section 9, also the two 

quantities needed for the Cox test statistic, the null-hypothesis mean of LN * ( ‘I~) and a 

consistent estimator of the variance of the limiting distribution under the null hypothesis, 

are so complex that Cox tests seem not to have been implemented for models with moving 

average terms. By contrast, producing the data (3.2) for a graph or the series & -w of 

(9.1) for the test statistic 2(1,2) (N) is unproblematic. The rather interesting problem 
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- ( 192) * posed by the series C, IS that it seems inherently to require robust methods of analysis. 

Fortunately, there is a widely available statistical software package that provides such 

procedures. 

Finally, we mention that there are some generalizations of the diagnostics of this paper 

that we plan to implement in software and apply to the series and models discussed in 

section 10. These generalizations concern the selection of time series models for 

m-step-ahead prediction, where m>l. (Recall from the discussion preceding Proposition 

8.3 that the time series model selection procedures of this paper were seen to focus upon 

the selection of one-step-ahead forecasting models because of (2.6).) If neither of the two 

competing time series model classes is capable of describing the correct innovations transfer 

function of the observed series, then it can happen that the class with the better forecast 

function for m=l will have the worse forecast function for some m>l: for the models of 

subsection 1.1, if 1 p1 I> 1 p2 1, it follows from p2 # that the m-step-ahead forecast 

function PIflyN of (1.1) has mean square error which is smaller than that of the forecast 

function of model (1.2) when m=l, but larger when m=2. The proof of Proposition 8.1 

easily generalizes to show that a correct model has strictly smaller mean square forecast 

error for all values of m than an incorrect model. A generalization of Proposition 8.3 for 

multistep forecasting is given in Findley (1990b). 
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APPENDIX A: COMPACTNESS OF Ktj. 
I 

We need to show that every sequence k,(z)(= Cy=o k$z$, n=1,2,... in Ki;$ has a 

subsequence k,(z) whose coefficients k. 
P 

converge, k jm s kj, in such a way that k(z) = 
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coo j =o kj” belOngS tO Key 

By definition, kn(z) ~bO/ 0 h n z a, z , w ere an(z) and b,(z) are polynomials of degree 

not larger than p, respectively q, of the form II(l-$z), with 1 cjnl 51 (more precisely, 
j 

1 ~njl 5 (1 +a)-l for a,(z), and 1 (njl I (1+0)-l for b(z)). Therefore, the absolute values 

of the coefficients of ajn of an(z) and bjn of b,(z) are uniformly bounded above, by the 

binomial coef6cients pC1p,2] and qCIq,21, respectively. Hence we can find convergent 

subsequences of the coefficients, and there is a subsequence km(z) for which the coefEcients 

of the corresponding polynomials a,(z) and b,(z) converge to the coe&ients of 

* polynomials a(z) and b(z) of degrees at most p and q, respectively, whose roots also belong 

to { 1~1 zl+cr} and { lzl zl+@}, respectively, because they are limits of roots in these 

* regions. From am(z)km( z) = bm( ) z , we obtain recursion formulas for the coefficients k. 
P 

of km(z): kOm = 1, and 

min(j,p 
k. =- E a. 

P 
k 

i =1 lm j-b +$,I 

setting b jm i 0 if j > deg b,(z). It follows by induction that kjm + kj, with k(z) z 

CyZo kj” satisfying a(z)k(z) = b(z). Hence k(z) E Kt:]. This completes the proof. 

APPENDIX B: PROOF OF COROLLARY 8.1 

The proof is based on a speciaI case of ToepIitz,s Lemma (Loeve 1977, p. 250): g the 

seouence An mtisfies Iim, - eon n = 0, then limN - o. 1/Q N-lj2 Cizl A, = 0. 

It is clear from (8.7) that the quantity whose mean absolute convergence is at issue in 

(8.8) can be written as one-half the sum of 
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and 

* Thus (8.1) will follow from Toeplitz’s Lemma if we verify (B.l) and (B.2), 

* 

(B-1) lim 
PI 

n-+oo n112 log-* = 0 , 

2 

(B.2) lim, - o. n 
en n lLkl e2[kl 

‘12E ,+-+ = 0. 

anIn-l[kl ' ikl 

Concerning (B.l), it follows from (8.5) with a = l/2 that n(g2 
n] n-lik] - a2[k]) b 0. Since 

I l”du~l ~-1[kl/g2~kl~ I 5 2 I ff2[kl - (1 n-lIkl I /02ikl when ‘i I n-l[kl/g2[kl ? 1/2I we 
conclude that a stronger result holds under the assumptions of the Corollary, namely 

n(loga;! n 1 nm1N/g2ikl) - OS 
For (B.2), let us use the abbreviations e 

en = e,[k]/ofk]. Noting that e2 

nln-1 
-& 6 

’ en 1 n-l[kl/gn I n-likl and 

nln-1 n ( a ] n-l - ‘n)(% I n-l + ii,), it follows from 

the Cauchy-Schwarz inequality and the triangle inequality for [.I2 I (E{s}~)‘/~ that 

(B-3) El ‘zln-1 -‘iI 5 tEi’nlnel -‘n12)1’2 * (lenIn- + lenI ’ 
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holds. Since I en I 2 = 1 and since, by (B.5) below, lenln-112 - 1, (B.2) follows from 

(B.3) and (8.6). Concerning lGnln-1j2, note that since [en[k]12 = a[k], we have 

(B.4) I ien I n-l[kI I2 - 44 I < W en I n-l[kl - e,[k] 12 . 

From (8.5) and (8.6) with a! = l/2, and (B.4) we obtain the last result needed, 

(B-5) lim n-w n1121 j/G nln-112-ll =O’ 

w 



Table 1. ARM4 vs. Component lode1 (Both Invertible) 

AAIC(:‘) Zg' Graph(‘) 

$2) 

bgasrs -2.7 
icmet i -7.2 
ifmeti -29.0 
itvrt i -20.6 

bdptrs(‘) -5.7 

bfrnrs(4) 3 
-22:1 

-21.2 

-27.7 

cnet%s(4) - 21.6 

0.03 0.08 0.16 
1.09 1.94 9.44 
2.14 9.92 5.49 
1.59 2.62 2.28 

.54 1.88 1.60 

.27 1.07 1.27 
2.80 6.82 5.73 

1.03 5.94 2.26 

1.19 6.84 4.61 

1.40 2.91 2.84 

1 11 Negative values favor the ARIHA model 
2 If Z > 1.65 (Z <- 1.65), the ARIHA model (the component model) is 
avored. 

i 
3) I= inconclusive; A = 
avored. 

ARIMA model favored; C = component model 

(4) For these series, the modified component model was used. 

Graph Summary: 7 A’s, 0 C’s, 3 I’s 
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Table 2. ARIRA vs. Component lode1 (One Non-Invertible) 

AAIC(‘) 

-7.3 .18 0.71 
- 14.5 .56 4.89 

-3.7 .12 1.10 
- 18.3 .43 5.47 

.7 0.08 - .ll 
-6.2 1.42 3.57 

1.9( .8)(4) - .32(- .62) (4) 

-4.3 
3 

-20 
- 13.9 
-26.0 

-5.1 
-9.3 

-71.2 
-8.9 
-2.7 

-4kii 
- 20:3 

-9.7 

.83 
- .49 
0.05 
1.08 
1.19 
1.18 

.62 
4.33 

.46 
1.09 
- .92 
2.79 
1.41 

.96 

1.38 
-0.83 

0.32 
2.74 
6.95 
2.09 
3.36 

.10.93 
3.23 
1.65 

-2.03 
10.03 
6.04 
3.42 

1.14 
-0.51 

0.21 
1.72 
5.62 
1.31 
3.22 

11.77 

) (4) 

2.56 
1.97 

-0.97 
6.07 
9.37 
2.74 

2.7(- .02)(4) - .23(- .18)(4) -10.14(- .62)(4) -4.39(- .47)(4) #) 
-23.2 1.17 2.50 2.11 A 

11.42 
18.46 : 

Z# zd? Graph of 

(3.2) (3) 

0.61 I 

4.95 0.92 : 
2.88 A 

- .08 4.61 x 

-29.6 
-36.7 

.7(- 16.2) (4) 
-47.7 

.l 
- 15.8 
- 17.0 

1.84 
2.65 

l.OO(1.88) (4) 
3.23 
- .19 
1.70 
1.53 

7.24 
8.94 

-;.;4’“.25) c4) 

- 1:25 
6.77 
5.36 

-;.;;(4.71) (4) F(I) C4) 
. 

-1.68 
5.47 x 
8.50 A 

(1) Negative values favor the ARIW model, if it can be shown that AIC is applicable 
to comparisons involving non-invertible models. 
(2) If Z > 1.65 (Z < - 1.65), the ARIRA model (the component model) is favored if it 
can be shown that the same limiting distribution applies when one or both of the 
models being compared is non-invertible. 

3 
II 

I = inconclusive; A = ARIRA model favored; C = component model favored. 
4 The values in parentheses were obtained from shortened series as explained in 

sect ion 10. 

Graph Summary: 10 A’s, 2(l) C’s, 18(19) I’s 
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FIGURE CAPTIONS 

Figure 1. (bdptrs). In the plots of (3.1) and (3.2) ((a) and (b)), there is no persistent 
suggestion of linear movement toward f 00 and therefore no suggestion that the 
asymptotic fit of one model is better. However, thelway in which the graphs mainly stay 

above the dashed line indicating the value of dim 80 - dim0(2) shows that AIC’s 
preference for the ARIMA model is rather stable, so this would be our preferred model. 

Figure 2. (bfi-nrs). The plots of (3.1) and (3.2) ((a) and (b)) do not suggest linear 
movement toward f 00. Also, their final, downward movement to the dashed line at level 

dime(‘) - dimh2) suggests that AIC’s preference for the ARIMA model is fragile, so these 
procedures, by themselves, do not lead us to a preferred model for this series. 

* Figure 3. (cnetbp). A linearly increasin trend, favorin the ARIMA model is suggested 
both by the lo 
with the modi 

-likelihood-ratio plots 3.1) and (3.2) (?a) and (b ), for the komparison 
i 

d 
1 ed component model, and also by the pseudo log- ikelihood-ratio plots 

(7.5rand (7.6) ((c) and (d)), for the comparison with the standard component model. The 
similarity between (7.5) and (7.6) suggests that the asymptotic behavior is insensitive to 
identical overdifferencing in both models. The obvious “outliers” in the graph (e) of (9.1) 
provide an explanation for the substantial differences between the robust statistics ZGN 

and Zsp and the non-robust statistic Zw in Table 1. 

Figure 4. (cneti). An example in which the linear trend movement toward + 00 in the 
graphs (3.1) and (3.2) ((a) and (b)), f avoring the ARIMA model, is especially clear. 

Figure 5. (icmeti). An example in which the graphs of (3.1) and (3.2) were interpreted as 
tending linearly toward + 00, even though there are substantial fluctuations. There is no 
ambiguity about AIC’s preference for the ARIMA model, since the plots stay above the 

value 1 of dim 80 1 -dim 80 2 , which is below the range of the graph. 

Figure 6. (blqm). Overall, the plots of (3.1) and 3.2) ((a) and (b)) appears to be moving 
toward - 00, although the stepped movement at t 6 e end doesn’t suggest the linear trend 
expected. The graph was interpreted as favoring the non-invertible component model. 

Figure 7. (ifatis). Movement toward - 00 is a possible interpretation both of the 
log-likelihood-ratio plots (3.1) and (3.2 , for the comparison with an overdifferenced 
non-invertible corn 

P 
onent model, and o I the similarly shaped pseudo-log-likelihood-ratio 

plots (7.5) and (7.6 ((c) and (d)), for the comparison with the modified component model. 
This preference for the component model is also supported by the values of the robust 
statistics, ZGM = - 10.14 and Zsp = - 4.39 in Table 2. However, the graph (e) of (9.1) 

not only shows the need for robust estimation, it also reveals nonstationarity of the 
cc u) 
n 1 whose earliest six years are less variable than the later years. See Fig. 9 for graphs 

associated with models fit to the shortened series with these years deleted.. 

Fig. 9. Graph of i,fatvs and the graph of (3.2) for models fit to the shortened series 
beginning in 1968. The middle part of the dia 
downward movement, but levels out at the en r 

ostic graph has some indications of 
. 





Fig. 10. Graph of ihapvs and the diagnostic graph (3.2) from models fit to the shortened 
series beginning in 1965. The strong initial upward movement levels out later, so the 
graphical diagnostic is not conclusive with the clarity suggested by the value of ZSp ( = 

4.71) given in Table 2. 
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Figure 3. 
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Figure 5. 

icmeti : graph of (3.1) 
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Figure 9 
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