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MAKING DIFFICULT MODEL COMPARISONS

David F. Findley
Statistical Research Division
Bureau of the Census, Washington, D.C. 20233

SUMMARY

The process of statistical model selection often involves comparison of quite distinct
competing models, none of which is correct in any strict sense In such situtations, the
classical, nested—model comparison procedures are inapplicable. This paper describes an
easily calculated and broadly applicable graphical diagnostic for model comparison and also
some robust generalizations to the time series situation of a test statistic of Vuong (1989)
for non—nested model comparisons of incorrect models. After presenting some supporting
theory, we illustrate the application of these new procedures by comparing ARIMA models
with "structural" component models for forty seasonal economic time series, continuing a
study by Bell and Pugh (1989) who used AIC for this purpose. When the comparison
procedures are decisive, ARIMA models are usually favored.

Keywords: ARIMA MODELS; GRAPHICAL DIAGNOSTICS; INCORRECT
MODELS; MAXIMUM LIKELIHOOD; NON-NESTED COMPARISONS;
ROBUST SPECTRUM ESTIMATION; STRUCTURAL MODELS;
VUONG’S TEST.

1. INTRODUCTION

There are few situations where one could expect the properties and assumptions of a
statistical model for observed data to perfectly describe the properties of the data, even if
arbitrarily large sample sizes could be obtained with which to verify the convergence of the
parameter estimates. Consequently, given the inherently approximate nature of statistical

models, it is not surprising that modeling experts working independently of one another



usually obtain different models for the same data. Thus there is a basic need for broadly
applicable model comparison procedures. The very large role played in the theoretical
statistical literature and in textbooks by the assumption that at least one of the model
classes considered is correct has obscured the fact that such an assumption is not necessary
for model comparisons, even of non—nested models, as we demonstrate in this paper. Our
methods are based on the fact that if two models do not provide equally good fits to the
data in large samples, then their log—likelihood—ratio will usually diverge linearly to an

infinite value.

1.1. An Introductory Example

Consider the following simplistic example. Let Yo be a covariance stationary time
series with mean zero, and with autocovariances %= Eynyn_k and autocorrelations
P = fyk/70, k=0, + 1,... such that p, # p? # 0 and |p2| <1. Suppose two autoregression
models are considered for ¥, regression on y n—1 and regression on Yp—o- All of the usual
estimates of the regression coefficients (least squares, m.l.e., etc.) converge to py and p,

respectively, with increasing sample size, yielding the competing asymptotic model

equations
- (1)
(1.1) Yn=P1¥p1t &
and
2
(1.2) Yy = Po¥p o+ el(1 ) .

2 2
Set 0(3) = Eel(lj) , j=1,2. The regression error processes 81(11) and ex(12) satisfy



(1.3) Ee(J)

w2
2 .
By _i=0 oW =10 (=12),

and it can be shown that they are not white noise processes (uncorrelated series). Therefore

(1.1) and (1.2) are incorrect models for . Clearly the models are non—nested: neither is

a restricted version of the other. The quantities 0(1)2 and 0(2)2 provide natural
goodness—of—fit measures for these models. A first question to ask is whether one of these
error variances is smaller than the other. This reduces, by (1.3), to a question about the
magnitudes of py and Pg, SO the well-known limiting joint distribution of the sample
autocorrelation estimates of q and Py could be utilized to provide a classical test of
hypcithesis for choosing the asymptotically better fitting model if there is one, that is, if
|p1| # {p2|. However, finding analogous hypothesis tests for more complex model pairs
could be very difficult, so a different approach is needed in general. This paper describes
two rather simple and very general procedures for detecting an asymptotically better
fitting model according to a natural measure of fit. It will be apparent from the exposition
that the range of applicability of these procedures is not limited to time series model

comparisons. For reasons of space, only time series applications are presented.

1.2. General Introduction

Suppose one wishes to decide between two model families, not necessarily nested and
not necessarily correct, for observed data VI Conceptually, there are two possible
situations, illustrated by the example above: either the theoretically best—fitting models
from the competing classes fit (i) equally well, or (ii) one model class is capable of
providing a better fit than the other. In case (i), variability arising from parameter
estimation can still cause one of the two classes to be preferred, and this is the playing field
of the null hypothesis in classical statistical tests. However, general statistical procedures

for identifying the preferred class in this case seem to require rather strong assumptions



about the approximate correctness of the models. By contrast, as the results of this paper
show, there are theoretically founded procedures with relatively weak requirements for
making the more fundamental decisions, does (i) hold, or (ii)? — and, if (ii), which model
class provides the better fit?

As section 2 explains, these two questions are answered by deciding if the
log—likelihood difference f,lsl’z) of the maximum likelihood values from the two families
diverge to an infinite value as N — oo and, if so, whether to + oo of — 0c0. The obvious
diagnostic for such divergence is a graph of the log—likelihood differences from an
appropriately selected increasing sequence of subsets of the observed data set. However,
the cilcula.tion of the sequence of m.l.e.’s and the likelihood values required for such a
graph can be quite demanding computationally and therefore poorly suited to interactive
modeling. In section 3, we will describe a related graphica.l diagnostic which is suited to
interactive modeling and is especially convenient because it requires only quantities which
are usually available from the full-data—set likelihood maximizations. Also, a condition,
(3.5), is given which guarantees that this diagnostic describes the relevant behavior of
ﬂ§1’2) for large enough sample sizes N. The proposition of section 4 shows that (3.5) can
be verified under rather weak assumptions: for example, it is not required that the
maximum likelihood parameter estimates converge uniquely.

The rest of the paper is devoted to time series models in preparation for the
comparison study, in section 10, of ARIMA and structural component models for 40
economic time series. Sections 5 and 6 provide verifications of (3.5) for two classes of
ARMA time series models. Section 7, which discusses the connection between
log-likelihood differences for ARIMA models and those for the corresponding ARMA
models, may be of independent interest.

The first general hypothesis testing procedure for detecting divergence to infinite

values of the log—likelihood difference for non—nested, incorrect models seems to be that of

the very insightful paper of Vuong (1989), which examines the case of independent and



identically distributed data. A natural generalization of Vuong’s statistics to the case of
ARMA and ARIMA models is presented in section 9, based on the asymptotic distribution
obtained for N_l/ 21‘.1@’2) in Proposition 8.4 of section 8. In section 10, two robustified
versions of this statistic are applied to model comparisons for 40 economic time series and
are shown to lead to the same model selection as the graphical diagnostic of section 3 in all
situations in which both procedures have a preferred model . This is reassuring, also

because our theoretical derivation of the asymptotic distribution of the test statistics in

section 9 is incomplete.

Z. WHEN AND HOW DO LOG-LIKELIHOOD-RATIOS DIVERGE TO % oco?

Let LNW(I)], 1) ¢ o)) and LN[0(2)], #2) ¢ 0(2) be two parametric families of
log—likelihoods defined by competing models for observed random variates Yp-¥N- We
do not assume that the competing log—ikelihood functions have a similar form or are
related in any way. A notation that more strongly emphasized possible differences of form
would be L(j)[ﬂ(j)], j=1,2, but we will avoid the duplicated superscript to reduce notational
complexity, anticipating that this will not cause confusion for the reader. Usually each
family of log—likelihood functions has an associated family of non—random "entropy"
functions € oo[o(j)]’ gd) € G(j) which are the limits (existing with probability one) of the

sample—size—normalized log~likelihood functions,
i . -1 i .
(2.1) £ [0 =timy _ Nl (=12) (wp1).
If maximum likelihood estimates 91@ exist and if we consider the entropy supremum

(2:2) £ L9 = sup (), o 0) £, [,



then, ordinarily (with p—lim denoting convergence in probability)
- =1y (i = g (]
(2.3) plimy _ NI =g (D)

will hold for j = 1,2: see White (1990) and the proof of Theorem 7.4.10 of Hannan and
Deistler (1988) where (2.3) is established without the assumption that the model classes
under consideration contain the true model. Recently Potscher (1990) has established (2.3)
for incorrect noninvertible ARMA models. We will use the abbreviations qufj) 3 LN[bISIj)]’
i =12, and, for the log-likelihood difference ( = log likelihood—ratio),

Then, from (2.3), we obtain
(2.4) p-limy _, N-II:ISIIQ) = 80(01) - 80(02).
Consequently,
(1D 4g(2)
(25) ML 4652, then
P"limN—-»oo i§1’2) =% 00,
where the sign of the limit and its asymptotic slope are the sign and the slope of
(1) _g(2 i (1,2) L
(el - e hN. Thys, L{?) = 0,(N).
This result has a particularly straightforward interpretation when Gaussian likelihood

functions are used to model the mean and covariance structure (without assuming the data

are Gaussian), because then, usually,



(2.6) eld) = —%log%eao(oj)z,

.)2

where o o(oJ is the variance of the asymptotic "residuals" process associated with the best

fitting model(s) in the class being considered: for example, we shall show in sections 5 and

02
7 that for competing Gaussian ARMA (or ARIMA) time series models, Uo(oj) is the
variance of the one—step—ahead forecast error process of a model determined by a limiting

2)

N 2
value 00(0-’) of 01£;J); j=1,2. Under (2.6), the sign of 80(01) - go(o is that of 00(02) -

2
o 0(01) . This means that the model class with better one—step—ahead forecasting
properties for the observed time series is the model class whose log~likelihood function will

domj‘nate the log—likelihood difference as N—oo.

3. GRAPHICAL DIAGNOSTICS FOR MODEL COMPARISON: DETECTING
DIVERGENCE PROPERTIES OF THE LOG-LIKELIHOOD RATIO.

The result (2.5) immediately suggests a graphical method for detecting whether or not
one of two log—likelihoods will, in large samples, strongly dominate the other and thereby
identify itself as the model which is to be preferred. The method is: reestimate the model
over an increasing sequence of subsets of the available observations and plot the resulting
sequence of likelihood ratios as a function of sample size, looking for a persistently sloping
trend movement vin the later part of the graph. In a situation where the data index has a
natural ordering, as with time series, this procedure would suggest calculating bl\(dl) and

91\(42) from Yy for, say, N/2 < M < N, and plotting the log—likelihood differences

(3.1) L N2 <M¢N



as a function of increasing M.
However, the calculation of the quantities in (3.1) could be time consuming and also
quite inconvenient with some software packages. We shall argue in this and the next

sections that plotting
(3.2) LM[aISII)] ~Ly[2{Y], N2 < M¢N

versus M is much less burdensome computationally, yet also, when N is large enough,
equally informative about the divergence properties of ﬁ§1’2). Calculating (3.2) rather
than (3.1) has the clear advantage that only a single likelihood maximization is necessary
for e;ch model class to obtain 31&1) and 9&2). Less obvious is the fact that the quantities
in (3.2) are often immediately available as a byproduct of the calculation of &Iglj)’ j=1,2.
This is easy to see when the data are modeled as thoﬁgh they were independent and

identically distributed: in this case the log—likelihoods have the form

Lt = 5 g gldiy,),

n=1
and, for any M < N,
2= ¥ 108 g0l
(33) Iyl = Z log slinVlir,)
for j = 1,2.

In the case of dependent time series data modeled as a Gaussian ARMA or ARIMA

model, there is an analogue of (3.3) which arises from the conditional decomposition



. . N .
LN[‘)’(J)] = log g[(?(J)](yl) + n§2log g[ﬂ(”](ynlyn_l,---,yl)

and which has the form

" M » _
(34) Lyl =-3 z {1og2mi|n_lw§”]+ ik

In this expression, y n| n__1[0] denotes the linear function of y n—1Y1 which would
provide the best predictor of Yo if the data were Gaussian with the mean and covariance
structure specified by 6 (when n=1, yn|n—1[0] is the mean specified for y, by 9); 0121|n—1[0]
is the function of § equal to the mean square of Yo~ ynln_l[ﬁ] calculated with respect to
the joint density exp(LN[ﬂ]). All of these quantities can be calculated from one pass over
the data with the Kalman filter algorithm, given a state space representation of the time
series model and a suitable initialization, see Jones (1980) or Bell and Hillmer (1990), for
example. If the Kalman filter has been used to evaluate the likelihood function in the
maximization routine, all of the quantities required for (3.4) and (3.2) will be available
after the last maximization step.

Graphs of (3.1) and (3.2) for competing models (described in section 10) for eight
economic time series are presented in Figs. 1-8. The subfigures (a) are graphs of (3.1), and
the subfigures (b) are graphs of (3.2). There is further discussion of these Figures in
section 10.

In subsequent sections, we shall demonstrate the large—sample equivalence of the sets

of statistics (3.1) and (3.2) for model comparison by verifying the condition

(3.5) limyy o SUPs MLy (0] €| =0 (wp.1)
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for the classes of models under consideration. This condition shows that either set of

statistics can be used to determine the sign of 80(01) - 80(02) if this quantity is non—zero.

Remark 3.1. When (3.5) holds, then, in theory, the lower bound, N/2, of M in (3.1) and
(3.2) could be replaced by N/r for any fixed r > 1. In practice, if too large a value of r is

used, early values of f‘h(/Il’2) can have a graph quite different from LM[blgl)] - [LM[@(z)].

4. VERIFICATION OF (3.5): A GENERAL RESULT
One attractive feature of the result of this section is that it accommodates the
situation (observed by Kabaila (1983) to occur sometimes with an incorrect first order
moving average time series model) wherein the m.l.e.’s bN do not converge to a unique

value, because £__[6] has a set of maximizing values,

(4.1) 0,z {# e [A=¢_}.

For a set F containing @O, we shall write

-

(4.2) o — O (in F, w.p.1)

if, excluding realizations {y_(w) which form an event of

}1$n<oo of {yn}1$n<oo
probability 0, every subsequence of {9N(w)} 1<N<oo COntains a subsequence which is in F
and which converges to a point in ©,. This is equivalent to saying that, given any
neighborhood V of @0 in F, the probability is 1 that only finitely many of the events

bN gV, N=12,..,occur. The result we are after is the following.



Proposition 4.1. Suppose there is a set F containing the £ OO[0]—ma‘x1'mizing set defined

in (4.1) above such that (i) with probability one, the log-likelihood functions LN[H], N2N,

are continuous on F; (ii) N_lLN[H] converges uniformly to EOO[H} on F (w.p.1); and (iii) the
condition (4.2) is satisfied. Then (3.5) holds.

Proof. It follows from (i) and (ii) that £ oo[(9] is continuous on F. Given § > 0, theset V =
{0eF: |E [0l -E ] < §/2} is thus an open set in F containing ©,. Therefore, by (4.2),
the probability is one that only finitely many of the events 9N ¢ V occur and also, by (ii),

that only finitely many of the events
sup gy |M  Lygl0l =€ [A)] 2 6/2 (M =12,.)
occur. Since
MLy~ €| < IM T Ly £ [A] + €[ - €],
it follows that, with probability one, at most finitely many of the events
supN2M|M‘1LM['0N] —£ 126 M=12.)
occur. This establishes the condition (3.5).

In many situations, the condition (ii) of the Proposition is a uniform law of large

numbers, see Potscher and Prucha (1989) and their references.
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5. VERIFICATION OF (3.5): ARMA MODELS WITH POLES AND ROOTS
BOUNDED OUTSIDE THE UNIT CIRCLE

We will now verify the conditions of Proposition 4.1 for some important classes of time
series models. For each pair of non—negative integers p, q and each pair of non—negative
real numbers a,f define Kg:% to be the set of rational functions k(z) of the form b(z)/a(z),
where a(z) and b(z) are polynomials of degrees at most p, respectively q, satisfying a(0) =
b(0) = 1, whose zeros belong to {|z|21 + a} and {|z|21 + G}, respectively. We shall
show in Appendix A that Kp,q is compact, meaning that every sequence k (z) has a

subsequence k (z) which converges to some k(z)e KP % in the sense that the coefficients

kjm of the power series expansions k _(z) = O_]O—O im? 7 (lz] <1) converge to k. 7 where
k(z) = 2°j° k zJ We now assume that p,q,a,0 are fixed, that a>0 if p>0, and >0 if

qQ>0. (A separate discussion will be given in section 6 for unrestricted autoregressive
models.) Define © = (O,w)xKg’%. With each § = (02,1() € © we associate a stationary,

invertible ARMA model with spectral density function

2 .
2
< 1xe™)? .

161(2)
Also, if we define Gy [k] to be the covariance matrix whose (r,s)—entry is given by
I U P D NS
(51) gl = g |1 Peostes)ar

we can associate each # with a Gaussian log—likelihood function LN[HJ for a vector of N

observations Yy = [y1 yN] by means of

(5.2) 2Ly [0 = Nlog21ra +logdetGN[k]+—2—YNG [k]YN
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It is known that detGy[k] 2 1, see Lemma 3.5 of Dunsmuir and Hannan (1976).

Let us assume that the zero mean process Yo has stationary second moments to which
the sample estimates converge almost surely. We also assume that the spectral
distribution Fy(/\) has a density fy(/\) = dF y/ dA which is not almost everywhere 0. Then a

variety of relevant properties of LN[(J] and of the related quantity
2 1l A1

hold with probability 1 when N is sufficiently large. Most of those listed in (5.3) below are
given explicitly, or follow easily, from arguments in Deistler and Potscher (1984), and
Potscher (1987), hereafter referred to as DP and P. They will help us show that bN exists

and belongs to a set F as required in Proposition 4.1.

(5.3) LN[H] is continuous on O, and IGN[k]I and aﬁ[k] are continuous on Kg:% .
(Theorem 3.3 of DP). aﬁ[k] converges uniformly on Kg ’% to

o2 [ 1) 2ar, )
o0 —r y

with probability 1. (established in the proof of Lemma 3.7 of P.)

It follows that aozo[k] is non—zero and continuous on Kg’% and therefore has a

?

non—zero minimum Uxiin and a finite maximum 02

max °1 this compact set. If we choose

— g2 :
§=o_; /2, thensince

2 2
SUPyeKP | olk] = o5 k| <6
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holds for all but finitely many N, with probability one, the same is true of

1 2 . 2 2 3 2
0 <3 oin $ Mt RN < Mg oK ¢ § o

Hence, with probability one, for sufficiently large N, the concentrated log—likelihood
LE[K] = — N log2mec2[k] — & log| G [K]|
NS = = 7 20BemeaN K] =7 081N
" is finite and continuous on Kg’q, and so has a maximizing value f‘N in this compact set.
Then ?)N = ( UI%[IEN], ch) maximizes Ly[6] over ©. We conclude that, with probability 1,
?)N exists and is an element of the compact set F = [aim/& 3031&(/2] x Kg:% . By

Lemma 3.2 and the proof of Lemma 3.7 of P, N_lLN[O] converges on © and uniformly on F

to

£ 0= 2-10g27ra —20 [k]/a ,

whose maximum value over © is given by

Consequently,

. N1
limy oo N Lylonl = € (w7 1),

verifying (2.3). Under the assumptions of Proposition 5.1 below, Theorem 7.4.10 of
Hannan and Deistler (1988) establishes that
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_ 2 D21 2
(5.4) 8y ={(s k], k) € ©; o“[k] = it
has the property (4.2). Thus Proposition 4.1 applies and we have

Proposition 5.1. Suppose that Yo is a purely non—deterministic covariance stationary time
series whose one—step—ahead forecast error (innovations) process ei, which determines the

Wold representation Y )3°J°_0k§ ey n—j has the property that its sample moments

converge w.p.1 to the process moments,

N
7L Yy Yoy L=
(5.52 (N-j) n=2j?+1enen - Eeje? - (w.p.1) (j=0,1,..).

Then the property (3.5) holds for the ARMA(p,q) Gaussian model log—likelihood family

LN[B], f e ©, with © = (0, 00) x Kﬂ’q, assuming a > 0 if p > 0 and >0 if ¢>0.

The somewhat abstract parametrization used above for ARMA models is needed when
p,q>0 because of the possibilities that, in the large~sample limit, the highest order
estimated coefficients will become zero, or that common roots will occur in the AR and MA
polynomials. In these situations, the resulting k 00(z) will have a multiplicty of
representations of the form k _ (z) = b(z)/a(z) with deg{a(z)} < p and deg{b(z)} < q.

A more familiar parametrization can be used for the stationary models associated with
the structural component models utilized in section 10. For these, the spectral densities

have the form

(56) P mpl(0) = PHull =+ vi1 - et u(e))?
+ 1= a3,
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whereu(z) =1+z+ ... + 21! and

(0%, 5,0,m) € © = (0,00)x[0,00)x[0,00)x[0,1].

It is easy to see that f[a2,u,v,17]()\) is non—zero everywhere in [—m, ] (that is, the model is

invertible) if and only if (02,p,u, n) belongs to the subset
x
© =(0,00)x(0,00)x(0,00)x[0,1),

*
and tp verify that each compact set F in © corresponds to a set of (variance, transfer

function)—pairs (02,k) contained in a compact set of the form [ag,rf%]xKg’é3 with 0 < ag <

a? < oo and § > 0. If the true spectral density f()) is bounded away from zero in a
neighborhood of the zeros of 1-¢* and u(ei’\), then the set 6, defined in (5.3) will belong
to @*, and the reasoning leading to Proposition 5.1 shows that (3.5) holds.

On the other hand, if f(A) shares zeros with 1-e* o u(ei’\) (an indication of
"overdifferencing") and if some parameter vector with 4 = 0 or v = 0 or = 1 belongs to
©, then all we can say at present is that, under (5.5), the basic convergence result (2.3)
holds, now with €  defined as the supremum of the £ oolfl- This motivates the graph of
(3.1) as a diagnostic. ((2.3) follows from (7.4.47) of Hannan and Deistler (1988, p. 347).)
In our analyses, the graph of (3.2) in such situations has almost always resembled the
graph of (3.1), see Figs. 6—8, which suggests that further research may yield a justification

for the use of (3.2) with an overdifferenced model. (The one or two exceptions we observed

may turn out to be explained by likelihood maximization difficulties.)

6. A STRENGTHENED FORM OF (3.5): AUTOREGRESSIONS WITH GAPS
There is a restricted class of ARMA models for which we have been able to establish

somewhat deeper results, including an upper bound on the rate of convergence to 0 in (3.5)
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which shows that sample paths of LM[bN] will not differ greatly from M¢ - This is the
class of autoregressions, some of whose coefficients might be constrained to be zero, whose
parameters are estimated via sample moments (Yule—-Walker estimates). We assume in

this section that Y, is a mean zero, stationary time series whose lag j autocovariance 7,

Eynyn—j is estimated by
JOPRI. ( )
7{N) = z ¥.¥ g (=0,%L H(N=1)).
J Nn=|j|+1 n’ n—| j|

i i =17 . PR i
We assume that all autocovariance matrices I' = | '1—_1]0 Cij<mer ME non—singular.

Set

. N—-1 |
ffM =@ B Y (N)eosiA (1< A <),
j=—N+11

Given a vector of lags, £ = (ll,...,lm), with lgll<...<£m, we define the coefficient

vector ¢l = [q&l qﬁm}' to be the solution of

(

6.1) [y heiwm @ =11, 7 |
( Ll— lj 1<i,j<m [ ll... lm]

The coefficient matrix in (6.1) is a submatrix of ', and s0 is nonsingular. We define the
m

€ITor Process ef‘ by mean of
= 4
(6.2) Yn= ¢lyn—ll+ et ¢myn—lm tem-

Therefore efl is a mean zero, stationary process which, from (6.1), is uncorrelated with

yn—-ll’ ey yn—fm' so its variance is given by
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2
(6.3) R T PR M
(= 1 ll m lm_
Given data y,,....y, we can fit an autoregression with gaps of the form (6.2) by replacing
the autocovariances in (6.1) with their sample estimates. If &S!! N) = [<}51(N) z}:m(N)] is
the resulting coefficient vector and if we define

(6.4) 4N = (N) = By (N (N) = = (13 (),

-~

then the pair Bi(N), [f/(N) is the unique maximizer of

T : 9.
(6.5) Lyl 89 = = ¥ {logara® + 1—2J 1762y (VdA}
—ﬂ -

a

where qbl(ei’\) =1- qﬁleill)‘ - b eilm’\ . 'The maximum value is

: N -2
ngl) =-3 l()g27reoe(N)

Under conditions weaker than the more easily stated assumptions of Proposition 6.1

below, Theorem 7.4.3 of Hannan and Deistler (1988) establishes that

(6.6) 51Dy ¢j<oo | 75— 1M = O{(1ogN/M)' /%) (wp1).

In (6.6), :7j(N) = 0if j> N. A straightforward argument based on (6.6), which we
omit, leads to (6.7) and (6.8) below.



Proposition 6.1. Suppose that y_ has a linear representation

18

y = k.e s
n j=0 J o)

in which e~ I.I.D.(O,o2) and Eei < 00. Suppose, too, that k(z) = EOJO k .z _s RON—Zero

on {|z| < 1} and that (i) and (ii) hold:

S i1/2
_]-—1

(i)

|k|<oo

. ik, .
(i) sup; jlk;| < oo

Then ¢,(N),..., ¢ (N) and o5(N) satisfy

(67) SUP il ¢ = 3| = O{(108N/N)/?} (wp.1)
and
(6.8) |0, = 75(N)| = O{(logN/N)}/2}  (w.p.1).

Set I = [5%() ,(N) .. 3, (M) and €2 = (~1/2)log2no%. Note that

1, o ¢ 1 ”l(N) - "t
Lyliyl - €4 =~ L10g |1 +

Since |log(l + x) —x | <2 x* when |x| ¢ 1/2, and since logN/N is a decreasing function

for N > 3, a strengthened form of (3.5) follows from (6.8):
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Corollary 6.1. Under the assumptions of Proposition 4.1, the bound (6.9) holds:

(6.9) uDyy u MLy (0 -4 | = of(logM/M)Y?}  (wp1).

= (=1/2)logo? l/a then M2 {Ly (8] -

8«\

are being considered for y_, and if we define £

LM[@I\%]} converges to Eoﬁ’l uniformly over N/2<M (NasN—oo0 (w.p.l).
The two autoregressive models will be non—nested if each lag vector has an entry not

shared with the other. Autoregressions with gaps have been proposed as alternatives to

ARMA models, see Kenny and Durbin (1982).

7. LOG-LIKELIHOODS FOR ARIMA MODELS AND (3.5)

The models we wish to compare in section 10 are nonstationary ARIMA models. The
nonstationarity introduces some subtle complications which we address in this section.
Consider the situation in which a stationarizing backshift—operator polynomial §(B) of
degree d with 6(0) = 1 is applied to the observed series ¥{»--¥y to obtain the data LA
§(B)yn, n = d+1,...,N which are actually modeled, from a log—likelihood family
LN,d[gl = L[0](wd+1,...,wN). If we let L;(y;,-..,y4) denote the (unknown) true
log—density of Yyrea¥ g then

(7.1) Lyld = LN,dM + Ly

is a log—likelihood for Yy YN in the sense that
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JmN exp(Ly[f])dy,dyy =1,

if the integral of exp(LN d[6’]) over gN—d is 1: indeed, since the Jacobian of the

transformation (yl"“’yN) — (yl""’yd’wd+1""’WN) is 1, we have

JRN eXP(LN[e])dyl"'dyN =
J[Rd exp(L4)dy; "dy4 J[RN—d exP(LN,dM)dwd.*.l“'dwN

= LRN—d exp(Ly 4lfl)dwy - dwy -

For a more general discussion, see Findley (1990a). Note that LN[0(0)] will be the correct
: . 0) . . :

log density for y,...,yy if LN,d[a( )] is the correct log density of WiV and if, at

the same time, Y0¥ q aTe independent of the W Process. This independence is usually

assumed, in order to insure that the one—step—ahead forecast—error (innovations) process

of y,, coincides with that of w_, see Bell (1984).

Remark 7.1. In the case of "overdifferencing", when some proper divisor 6(0)(B) of degree

d(o) < d transforms y, into a stationary series WI(IO) = 5(0)(B)yt, there is an issue
concerning Ly [6] as defined in (7.1) which deserves mention. In this case, although L[]
can properly be called a model log—likelihood function for Yy ¥ N it cannot, in general,
describe the correct log—likelihood of Y ¥ N because LN, d[ﬂ](w d +1""’WN) will not be
the conditional log—likelihood of w d+17 N given ¥ g The problem is that the
independence of the WI(10) from Yy d(0) can preclude the independence of w n = cS(B)yt
from yd(0)+1""’yd’ as simple calculations with 6(0)(B) = 1-B and §B) = 1-B2 reveal.

Perhaps the error in Ly [f] in this situation will be unimportant when N is large, a
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possibility that deserves further investigation. Another technical problem that arises when
8(B) is too large is the presence of zeros in the spectral density of w,, which places Ly d[0]
beyond the reach of the verifications of (3.5) given in this paper. With overdifferencing, it

will still be possible, usually, to verify (2.3), so the graph of (3.1) can be used, see below.

Suppose we have candidate transformations é(j)(B) of degree d(j) and candidate m.l.e.
models I]ISf()i(j) z LN,d(j)[bISI',’c)i(j)] for the data wl(l-l) = é(J)(B)yn, n= d(J)+1,...,N, ji=12.
Then the log—likelihood difference I:1£11’2) = LN[Z)&} 21(1)] - LN[bISI? ‘)1(2)] satisfies

(71.2) 1{b? = i&f&(l) - ilgf’()i(a) + {Ly(1) Ly 2)}.

So I:ISII’Q) is known to within a summand which is a function of yl""’yma.x{d(l) d(2)}

Of course, when d(l) = d(2), then ﬂ§1’2) is knowh,
(7.3) i =i{Nw -1 = 4@y

and the graphical procedures of section 2 can be applied. In fact, since L d(1) -L d(2) does
not change with N, it follows from (7.2) that, whether or not a) = d(2),

(7.4) £412) & o0 if and only if tlglg(i) —L{ @) — £ oo,

so the graph

E

fi'IsIl?i(l) - f‘l\(/Izc)i(z)’ N/2 < M < N can be examined to see if an ultimate
direction for £§1’2) is suggested.

When d(l) # d(z), we shall refer to the quantities in (7.5) and (7.6) below as

seudo—log-likelihood-ratios (pseudo~LLR's):

(7.5) LGt -2, N2 <Men.
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(7.6) LM,d(l)[’olﬂll)] - LM,d(2)[91£12)]’ N/2<M¢N.

In section 10, graphs of (7.5) and (7.6) are given for two series with models having

4(1) # d(2), see Figs. 3(c), (d) and 7(c), (d).

Remark 7.2. To make the theoretical situation concerning the case d(l) # d(2) clearer, we

point out that if both W1(11) and wl(lz) are (covariance) stationary (and have continuous
spectral distribution functions), then it follows from the result (3.1) of Findley (1985a) that
there is a common divisor 5(0)(B) of 6(1)(B) and é(z)(B) such that w1(10) = 6(0)(B)yn is
statiBnary. Thus Remark 7.1 applies. On the other hand, if, say, 6(1)(B) is a divisor of
6(2)(B) and wx(12) is stationary but W1(11) is not ("underdifferencing"), then the movement
of i§1’2) toward —oo can be at a rate proportional to N¥ with r > 1. For autoregressive

models, this follows from results of Tiao and Tsay (1983) or Chan and Wei (1988).

Remark 7.3. If the approach described here to defining I:lgl’?‘) for ARIMA models is used,
there are some implications concerning the applicability of Akaike’s AIC criterion.

Consider the difference of AIC values,
(7.7) aac{H? = 2L (M) + 2(dim V) — dime?),

where dimﬂ(j) denotes the number of estimated parameters in the j~th model family,
j=1,2. It is clear from (7.2) than when d(l) # d(2), since Ld(l) - Ld(2) has non—zero
mean, the calculable analogue of (7.7),

(7.8) -2{1‘,1&})1(1) - tlﬁf)i(z)} + 2(diméY) — dimd?)y
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will not have the same asymptotic mean as the uncalculable quantity AAICN(1’2) when
the means of the sequence ILIEIW) converge. As a consequence, in this case the bias
calculations motivating the use of AIC (see Findley (1985b) and Findley and Wei (1989))
do not support the use of the sign of (7.8) for model selection. Of course, if i§1’2) —
+ o0, the finite bias correction term 2(dim0(1) - dim0(2)) is inconsequential.

There is another technical problem in the situation of "overdifferencing", regardless of
whether d(l) $ d(2) or d(l) = d(2): here the spectral density function of at least one of the
series,wx(lj), j=1,2 may have a zero, and in this situation, it does not appear to be known if

the Fisher information matrix plays the role in the limiting distribution of N1/ 2(;91£1j) -
Oo(oj)‘) needed for the derivation of AIC, see Findley (1985b).

8. WEAKLY EQUIVALENT MODELS AND THE ASYMPTOTIC DISTRIBUTION OF
N—1/2ﬁ§1’2).

The discussion so far is completely general in the sense that it applies both to nested
and non—nested model comparisons of model classes which might or might not contain the
correct model. In sections 9 and 10, we will discuss a hypothesis testing procedure for
reaching the same conclusions about the limiting behavior of t§1,2) which takes advantage
of a component of the log—likelihood—ratio which ordinarily only occurs when non—nested
and incorrect models are fit, a phenomenon we shall explain precisely in this section with
two easy Propositions and a somewhat deeper result. The properties of interest concern
the models defined by the large—sample limits of the m.l.e. models.

In this section, y denotes a mean zero, purely non—deterministic stationary time

series with innovations representation
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. = 2 Yey . (=1

=kJ y
= k’(B)ey

and spectral density fy(A). In sections 5 and 6, the assumption that the candidate model
500

J
simplified the presentation. That is not the case for this section, so no special form will be

(innovations) transfer function k(z) = =0 J 7 (k = 1) was a rational function

assumed. We suppose that k(z) # 0if |z| < 1. If k(z) is such that
T .

(8.2)° aﬁmsj ()72 ()dr
-r

is finite, then 02[k] is the variance of the covariance stationary series e [k] = k(B)_lyn, and

there is a moving average representation for y  with transfer function k(z),

(8.3) v, -JEOkfnJ&]

The candidate spectral density function for Yq defined by

2 .
(8.4) | f(A) = 5 k()2

coincides with the true spectral density fy(/\) if and only if en[k] is a white noise process
(an uncorrelated series), in which case the representations (8.1) and (8.3) are identical,

kj=k?].'ande [k]—e A
general, to rega.rd e, [k] as a one—step—ahead forecast—error process and 02[k] as the mean

» J=0,1,... . We shall explain shortly why it is appropriate, in



square forecast error. Thus 02[1(] defined by (8.2) is a theoretical goodness—of—fit measure
for transfer function models k(z).

We shall say that two transfer function models k(l)(z) and k(2)(z) are weakly
equivalent if az[k(l)] = az[k(2)]. There are two theoretically important modeling

situations in which weak equivalence implies that the models coincide, k(l)(z) = k(2)(z).

Proposition 8.1. Suppose the transfer function model k(z )f& Iy, is weakly equivalent to

the true innovations transfer function k¥(z) = % -0 k? that is, suppose 2[k] coincides

the true innovations transier j=
with the innovations variance 03 = E(ey ) . Then k(z ) is correct, k( ) = k%(z). On the
other hand, if k(z) and k¥(z) are not weakly equivalent, [k] > o2

y’

Proof. Note that, since kY(0) = k(0) = 1
e [k —¢f = {1/K(B) -~ 1/k(B)}y,

is a linear functionof y__ ., j 2 1, and so is uncorrelated with ei. Because e_[k] = ei +

n-)
{e (k] - ei}, we therefore have 02[1(] = a?, + Efe [k] - ei}2 from which the asserted

results follow.

Our null hypothesis in section 9 will hypothesize weakly equivalent models with

distinct covariance structures. Proposition 8.1 above shows that the situation where one of

the models is correct is excluded by this hypothesis. We observe next that nested models
are also excluded when the m.l.e.’s from the larger class of models have a unique limit.

The result is obvious but fundamental.

Proposition 8.2. Let k[0(j)](z), ﬂ) € e(j), i=1,2 be two families of innovations transfer

function models for Ya such that (i) — (iii) hold:
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P10 = [1ke L e ()

73

toinf, (i) ¢ o) V) (3= 12).

) in 6(2)

(iii) There is only one such minimizer 00(0 in

Then, if k[9.{ ] and k{6 { ) are weakly equivalent models, that is, if o*(6.{ V)] =
2147, hen 8.1 = K0

-1/27 (1,2) .
LN in the

We turn now to the derivation of the limiting distribution of N
situation in which the best transfer function models from the two competing families are
weakly equivalent but not coincident. We will utilize the conditional decomposition of the
Gaussian log-likelihood function for the covariance structure for y_ specified by f[k](A)

defined in (8.4). Lety | 1] denote the linear function of y defining the best

n_l,...,yl
linear predictor of y (the Gaussian conditional mean) under the model flk](1), and let

2
% n_l[k] denote the mean square of

enln—l[k] =Jn T Y| a1l

(the Gaussian conditional variance) calculated under f[k](A). The interpretation of e_[k]
and az[k] as prediction error quantities arises naturally from the fact that the differences
e [k] - €| n— _ylkland ¢ [k] — g2 a|n _[k] tend to zero as n — oo. We need a specific rate

of convergence. Baxter (1962) provides rates of convergence for the case in which f[k]()) is
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the true spectral density of y o’ but minor and straightforward modifications of his proofs
show that the same rates apply whatever the autocovariance structure of Yo S€e also

Findley (1990b). We state the variant of his Proposition 3.1 that we need as

Proposition 8.3. Suppose that k(z) = L‘Oj°=0 ka-i satisfies (i) and (ii):

(i) K(z) # 0 for all |z<1.

0 9)
(ii) T

i%*|k.| < oo, for some a > 0.
j=1

Then (8.5) and (8.6) hold:

(8.5) lim__, _ 0®%o[k] - aﬁln_l[k]} = 0.

n—

(8.6) lim n*“E{e_[K] K2=0.

n — 0o _en|n—1[

These convergence results lead to a useful approximation to the Gaussian
log-likelihood determined by f[k](}A), which is obtained from (5.2) by setting § = (az[k], k)
and which we will denote by Ly[k]. This log-—likelihood has a decompositon like (3.4),

N N e, [k
(8.7) LN[k]=—%n§1 {log27ral21|n_1[k]+ > %‘J&[]}

n=1 U'n I n_l[k]

The following approximation result is proved in Appendix B.
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—r e —————————— ——— e e e i, i <

Corollary 8.1. Suppose that the innovations transfer function model k for y, satisfies the

hypotheses of Proposition 8.3 with @ = 1/2. Then N_1/2LN[k] can be approximated in

N

(88)  limy _  NU2E|Ly[k] + HNlogamo[k] + Eleg[k]/a2[k]}[ =0.

If two such transfer functions k(l) and k(2) are given, consider the mean zero series

(12) ei[k(l)] 9121[]‘(2)]
(8.9) = 2] T )

1,2) is a covariance

and suppose that the series Ya is fourth—order stationary. Then Cx(x
stationary series. Let f(1’2)(A) denote its spectral density function. If ¥, is strictly
stationary and satisfies Assumption 2.6.1 of Brillinger (1975), requiring the absolute
convergence of the cumulants of each order, then so does ¢ 511’2), and Brillinger’s Theorem

4.4.1 applies, resulting in
12 N 1,2) A1,2)
(8.10) N2 5 (V) i, w02 D0)).
n=
1f we set L1 2 L[k — L [k(3)], it follows from (8.8) and (8.10) tha
~1/2, (1,2) , 1/2 . o2fkD) £1.2)
(8.11) N2, (1) 4 N1 20 : ]“’dist.”(o’2 2)(0)) .
o

The next result, concerning the asymptotic distribution of 2N_1/ 21319’2) for

log—likelihood differences ﬁ§1’2) of estimated models, now follows immediately via the
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decompositions
8.12) NG = N2 a( - Ly L0y + V2L 0 () (21 2),

because the first expression on the right tends to zero in the usual situations, as we explain

below.

Proposition 8.4. Let Yo be a strictly stationary, zero—mean time series satisfying

" Assumption 2.6.1 of Brillinger (1975, p. 26). Suppose that LN[H(j)], od) € @(j), j=1,2 are

Gaussian log—~likelihood functions families for Y0¥ N having maximizing values 3’1@ and

b( 2) which converge in probability as N — oo to limiting values 0( 1) and 0( 2).

N 00 00
Suppose these define innovations filters k() = k[0o(01.)] and k(2) = k[ﬂo(oz)], respectively,
which satisfy the assumptions of Corollary 8.1. Let 02[k(1)] and 02[k(2)] denote the

associated innovations variances, defined as in (8.2), and let f(1’2)(A) denote the spectral

density of the series (1(11’2) defined by (8.9).

Then if the log-likelihood difference sequences Ly {24 ™) — Ly (64 )] and L84 -

Ly[61 2], N=1,2,... are bounded in probability, it follows that the log-likelihood

. s (1,2 y r .
difference sequence L1£I 2) £ LN[Olgl)] - LN[01SI2)] satisfies (8.13):
. 2n (1)
(8.13) aN~1/2,(12) 4 N1/ 2g t it no,2xt:2)(0)) .
o

Concerning the boundedness—in—probability assumption, we note that if LN[0(j)] is a
differentiable function of a vector parameter 6’0) and if blng) is in the interior of the
parameter set, so that the gradient I'JN[QIEIJ)] = aLy| f9§j)] / o) is zero, it follows via
Taylor’s formula that there is a Plgj) on the line segment between 9§j) and Ho(oj) such that
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2Ly (64 - L6y =

M0 - o Shy o L Pl - 0 L)),

for j = 1,2. Hence, the boundedness in probability of these sequences will follow from
convergence in distribution of N/ 2(91@) - ao(oj) ) and convergence in probability of the

sample—size normalized Hessian matrices N_ILN[PIEIj)].

" £ {1,2) . . . - (1,2)2
This proposition shows that if £7°/(0) # 0 and if a consistent estimator oy of

27rf(1’2)(0) can be found, then when az[k(l)] = 02[k(2)],
(8.14) ARG ER bl G PAC S (S1)

The test statistic Z(1’2)(N) can be used to test the hypothesis az[k(l)] = 02[1((2)] against

the two—sided alternative az[k(l)] # az[k(2)] and the associated one—sided alternatives.
This test is a time series analogue of the test presented in Vuong (1989) for the case of

i.i.d. observations. Vuong shows that, in the i.i.d. case, under rather general assumptions,

if density functions g(l)[O(l)](y) and g(z)[b‘(z)](y) are being fit to y,...,yy, then

- 2 N 7 7
AP =N 5 gog eVl sy i)y

n=

is a consistent estimator of the asymptotic variance of N-l/ 2i1$1’2), and that V§1,2) =
N_1/2f4§1’2)/&§1’2) has a }{0,1) limiting distribution when 80(01) = E{log g(l)[0o(°1)]} is
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equal to 80(02) = E{log g(2)[6’0(02)]}. (Our notation differs from Vuong’s.) In the

discussion of the hypothesis test associated with \71&1’2)

following the statement of
Theorem 5.1 of Vuong (1989), it is assumed that the sign of IA‘ISIM) indicates the direction
of linear movement of ﬁ&l’z) toward + oo if the null hypothesis of no such movement is
rejected. While this must be correct for large enough N, it need not be true for all N, and
the analysis of the series bigrrs in section 10 suggests that the sign of i§1,2) could be

misleading in situations encountered in practice. It therefore seems prudent to use Vuong’s

test in conjunction with a graphical diagnostic like those discussed in section 3.

Remark 8.1. The distributional result (8.13) concerning I]lsl’z) also holds if the competing
mode'ls are invertible ARIMA models with the same stationarizing polynomials

6(1)(B) = 6(2)(B), providing ﬁ(l’z) is defined as in section 7. In this case, the series el(ll)
and ex(l2) defining Cr(11,2) are obtained from the stationary series 15(1)(B)yn = 5(2)(B)yn.
On the other hand, if, say, é(l)(B) is a proper divisor of 6(2)(B) and é(l)(B)yn is
stationary, so that 6(2)(B) represents "overdifferencing”, then the result (8.10) holds as
before but the status of (8.8) for 45(2)(B)yn and of (8.13) is uncertain , because k(z)(/\) may
or may not have zeros, see Corollary 3.1 of Potscher (1990). In practice, we have found
that the use of tlﬂzf&u) - t&?&(z) in place of L{1? in 2(12)(N) when d!) 4 d®) often
leads to incorrect conclusions: the difference in the numbers of observations utilized for the
likelihood calculation does not seem to be negligible in its effect at the usual sample sizes,

even though this effect must vanish as N — oo because of the divisor Nl/2 in Z(l’z)(N).

We do not recommend the use of hypothesis tests based on (8.14) when A1) (B) # 5(2)(B).

Our efforts to verify that natural estimators of 21rf(1’2)(0) are consistent, and in this
way obtain a theoretically complete time series analogue of Vuong’s test, have only been

partially successful, as we shall explain in the next section.
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9. TIME SERIES ANALOGUES OF VUONG’S STATISTIC

To be able to use the distributional result (8.14) for testing the asymptotic weak

. 2
equivalence of two maximum likelihood time series models, we need an estimator 0(1’2)(N)
of 27rf(1 2) ), where f(1 2)()\ ) is the spectral density of the unobserved process ((1 2)

defined in (8.8). One approach is to use an autoregressive spectrum estimator, with order
1/2

determined by Akaike’s minimum AIC criterion, considering orders up to N°/ “, see Berk
(1974) and Shibata (1981). This autoregression is fit to the process
(D) &2 1p(2)
(9.1 6(1,2) _ n[n—l[eN ] en]n—l[eN ]
| n oy 1 of oy
%n|n—1 %n|n-1"N
where e |n_1[6(1)] =y - nln 1[01£Il)], and Yn|n—1["1£11)] and Unln-l[glgll)] are defined
as in section 3. Thus ( (1 2) 1,...,N can be obtained from the Kalman filter output for

the two maximum likelihood models. If the autoregressive model fit to this data has order
p, estimated coefficients él(N),...,ip(N), and estimated innovations variance &2(N), then

an estimate of 27rf(1’2)(0) is given by

(9.2) 12 (ny = 2 - ay(N) = - = (N))

There are several possible ways of estimating the coefficients and innovations variance
used in (9.2). The empirical study presented in the next section makes clear that it is

. 2
essential to use robust estimates. We will use the notation a{,&,’z) when (9.2) is

. 2
calculated from sample moment estimates discussed in section 6, and we will use Uémldﬂ)

when the robust scale and GM—estimates of coefficients from the routine ar.gm of S—PLUS

are used, see Martin (1981) for definitions and supporting theory. We define the
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corresponding test statistics

(9.3) ARTIRE s A PR EDIY
and
(9.4) zi?) 2 on 2 {12 5L LDy

)2

. ~(1,2
It is to be expected that IYW

(N) and c}éhld’z)2(N) will converge in probability to
27rf(]‘2)(0), see Berk (1974) and Shibata (1984), but we have not been able to prove this.
Our best result to date applies only to the comparison of autoregressions with gaps for Yo
and shows, based on slight generalizations of (6.6) —(6.8), that, for fixed p, the
Yule—Walker estimates from Zx(ll’z) converge to the same limiting values as a p—th order
autoregression fit to the unobservable process (1(11’2). This result will not be proved here,
because it is inadequate for the examples of the next section, which involve models with
moving average terms. It can be seen there that results compatible with the graphical
diagnostics of section 3 are usually obtained if Zél\lllg) is referred to a standard normal
distribution, but that Z&V{,’z) is often misleadingly small. Consistency results for
GM-—estimates exist but are difficult, see Boente, Fraiman and Yohai (1987). A second
autoregression—based robust estimator will also be used in section 10. When using robust

estimates of #1’2)(0), we do not know how to verify that f(l’z)(o) #0.

Remark 9.1. It is not surprising that robust methods are needed, because the two series
en|n_1[9§j)], j=1,2 which define &§1,2) are forecast errors from imperfect models. Also,
even in the situation where the series en[k(l)] and en[k(z)] defining (1(11’2) are Gaussian,

the distribution of the series Cr(11’2) will be heavier—tailed: for example, the marginal
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distributions will be linear combinations of independent chi—square variates with one

degree of freedom.

Remark 9.2. One would like model selection procedures to have the property of
transitivity: if model 1 is preferred over model 2, and model 2 over model 3, then model 1
should be preferred over model 3. For the graphical diagnostics of section 3, transitivity

follows simply from the additivity of the log—likelihood ratios: for example, since

(9.5) AR A A

it follows that if, for positive numbers a, § and for all M satisfying NO < M <N, the
inequalities f.,l\(,ll’m - i‘l\(/Iliz) > aand i‘l\slz’s) - ﬁl\({gia) > G hold, then 11541’3) - ﬂl\({ii:;)
> a+/f holds for these values of M. In other words, the ultimate slope of the graph of

2’3). For our

i‘l\(/Il’3) will exceed the ultimate slopes of the graphs of i‘h(/ll’2) and i‘l\(/I
generalization of Vuong’s test, it is not clear that transitivity will hold for any fixed sample

size, but it can be obtained asymptotically from (9.5) and the strict inequality
1 1/2 1,2 1/2 2,3 1/2
({30 2 < (B o)'/? + (202,

which holds if the joint spectral density matrix of 41(11’2) and 41(12’3) is non—singular at
A=0.

10. COMPARISONS OF MODEL PAIRS FOR SOME ECONOMIC TIME SERIES
In this section, we elaborate the study of Bell and Pugh (1989). They used AIC to

compare the basic structural component model (BSM) of Harvey and Todd (1983) with

ARIMA models fit individually to a large set of log—transformed economic time series,
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from the Business, Industry and Construction Statistics Divisions of the U.S. Census

Bureau. The BSM can be written
(10.1) yp=S,+ T+ 1
where S " Tn and In are independent series presumed to satisfy

(1+4B+ .. BM)s =e . e -iid #0uc?)

2 . 2
(1-B)*T, = (1-1B)ey, (72 0), &y, - i.i.d. H0,v0”)
I -iid. #0,0°).

n 7T

In our study, if the estimated value of 7 exceeded 0.9, we often used a different model for
the "trend" component Tn’

1-B)T =C +e ~idd. .U(O,Vaz),
n n

2n° 2
with C a constant term, in order to avoid the technieal problems caused by
non—invertibility which were discussed in section 5. We refer to this model as a modified
component model.

In addition to the three components of (10.1), the models considered for most of the
series have a mean component consisting of a sum of indicator variables for highly
significant additive outliers or level shifts together with linear regression expressions
modeling calendar effects, see Bell and Hillmer (1983). Table 3 indicates, for each series,
which effects were included in the mean function. The theoretical discussion in the

preceding sections concerned mean zero time series, so we need to say something about the
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additional assumptions and developments required to cover the situation of estimated mean
functions. The estimation of the coefficients of the indicator variables for additive outliers
and limited—duration level shifts has an asymptotically negligible effect on the likelihood
function. So, for theoretical purposes, we assume that such coefficients are fixed and not
reestimated as N — oo. The calendar effect variables can be regarded as periodic with
long periods, and they satisfy Grenander’s conditions as discussed in Hannan (1973) as does
a constant mean variable. Our method of simultaneously estimating regression and ARMA
coefficients is described in Findley, Monsell, Otto, Bell and Pugh (1988). We shall assume
that with properly chosen coefficients (perhaps zero) these regression variables completely
describe the mean function of y , even though the remainder of the model might not
comﬁletely describe the covariance structure of the series. With this assumption, the
methods used for the proof of Theorem 4 of Hannan (1973) can be utilized to obtain a
generalization of Proposition 5.1 which covers models with such mean functions. The
analysis of section 8, which concerned the asymptotic models’ covariance structures, carries
over without change if one replaces y  withy — Ey,.

Bell and Pugh used Akaike’s AIC as the basic comparison statistic. Hence they used
the sign of (7.7) to indicate the preferred model, the first model being preferred over the
second if AAIC§1’2) < 0. In our comparisons, the ARIMA model family is designated the
first family (j=1) and the component or modified component model family is always the

second family (j=2).

10.1 Comparison Results

The model comparison results have been divided into two categories, determined by

the extent of conformity to assumptions utilized above. Table 1 presents the results for the
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ten series for which both the ARIMA and component models obtained were invertible and
supported by the theoretical results of the earlier sections concerning (3.2) and the
Z(1’2)(N)—statistics. For the other comparisons, given in Table 2, one of the models had
to be overdifferenced to achieve b(l)(B) = 5(2)(B), a condition which seemed to be
necessary in order to obtain reliable Z(l’z)(N)—statistics with series of the length used in
the study. The results now to be discussed have led us to conclude that the
Z§1’2)——statistics are useful complements to the graphical diagnostics if two limitations are
taken into account. First, their values are sometimes distorted by nonstationarities in the
3511’2.) so it is worthwhile to graph this series. Second, being summary statistics, the
Z(1’2)(N) are inherently less informative than (3.1) and (3.2) about changes in the
statistical properties of the most recent observa.tions.A

The designations of the modeled series are explained in Table 3. The values of the
statistics AAIC, ZYW and ZGM and the interpretation of the graph of (3.2) for each series
are given in Tables 1 and 2. This graph was interpreted as inconclusive (I) unless two
requirements were satisfied: first, the general trend of the later portion of the graph must
move toward an infinite value, linearly or faster. Second, the subinterval of (N/2, N] in
which this later movement occurs must be longer than any earlier subinterval in which the
general movement is in the opposite direction. As the discussion of the examples below
shows, these requirements may be a bit too restrictive. For instance, if the trend of the
graph is linearly upward over (N/2, 7N/8] but level over (7N/8, N], the graph would be
interpreted as inconclusive in the study, but it would usually be reasonable to select the
model favored by the upward trend, since it was never dominated by the other model.
However, the leveling out at the end indicates a change in the nature of the time series
being modeled, so one should investigate the adequacy of the fits of both models over

(7N /8, N] before completing the selection.
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The ambiguity about whether the hypothesis tests based on Zél\l,l’z) should be
intepreted as one—sided tests (based on the sign of f.lsm)) as in Vuong (1989), or as
two—sided tests, leads to ambiguity in the definition of the significance levels and critical
regions of the test. If we choose a five—percent significance level and assume that the
asymptotic distribution is appropriate for the test statistic, then (1.645, co0) and (—o0,
—1.645) are the critical regions for the one—sided tests, and (—o0, —1.96) U (1.96, c0) is the
critical region for the two—sided test. There are two series, icmeti (ZGM = -1.94) and
bdptrs (ZGM = 1.88) where this ambiguity affects the conclusion of the test. For icmets,
the graphical diagnostics (Figs. 5a, 5b) offer support for the rejection of the null hypothesis
in accord with the one—sided test. For bdptrs, the graphs (Figs. 1a, 1b) were classified as
incomclusive. To help resolve this ambiguity, a more elaborate "cleaned residuals" estimate
of f(1’2)(0) was calculated utilizing the fitted robust AR models as prefilters, as described
in section XIII of Martin (1981), and using a 10% data taper and the ¢(3, 5) periodogram
smoothing window of S—PLUS. The values of the test statistic Z(1’2)(N) obtained from
these estimates are presented as ZSP-va.lues in Tables 1 and 2. For icmeti and bdptrs,
these values are 9.44 and 1.60 respectively, which are unambigously in accord with the
interpretation of the graphical diagnostic. Thus, in Table 1, there is coxﬁplete agreement
between the interpretation of (3.2) and the one—sided test based on ZSP‘ By constrast, in
about a third of the comparisons in Table 2, one of the new comparison methods is decisive
(usually the test based on Zgp) and the other (the graph of (3.2)) is not. Some of the

causes of such disagreements are discussed in the next subsection.

10.2 Examples of Graphs of (3.1), (3.2), (7.5), (7.6) and (9.1)

Figs. 1-5 present graphs associated with series in Table 1. Fig. 6—10 are associated
with Table 2. In the subfigures labelled (a),(b), (c) and (d), the horizontal axis is the time

= sample size axs for the stationary series obtained by applying 1-B and 1+B+ ... + il
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as needed. The vertical axis gives the values of the log—likelihood differences in the (a)
and (b) figures and the values of the pseudo—log—likelihood—ratios in (c) and (d) of Figs. 3
and 7.

A feature of some of these graphs facilitates the use of AIC. For the model
comparisons associated with these figures, the parameter dimension difference, dimﬁ(l) -

dim0(2), took on the values —1, 0, and 1. If
(10.2) i{b? > dimdY) — dimg'?) |

then model (1) is preferred by the minimum AIC procedure. If the opposite inequality
holds., model (2) is preferred. When both models are invertible and have the same
stationarizing transformation, so that i§1’2) is known, a horizontal line is drawn in the
figures at the level dimé’(l) - dim6’(2) (provided that this ordinate value is within the
range of the graph) in order to make it possible to see how persistently the graph stays
above or below this level. This provides information about the stability of AIC’s choice.
The stability of such statistics is a matter of special concern in non—nested comparisons,
because if f(1’2)(0) # 0, the variance of AAICISII’Z), like that of t§1,2)’ has order N,

asymptotically, in the situation of weakly equivalent models. This is precisely the

situation in which the means of these quantities usually have a finite limit, and,
consequently, the graphical diagnostics are expected to be inconclusive and the Z—statistic
small. It is often the natural context in which to use the minimum AIC criterion, see
Findley and Wei (1989).

The subfigures (a) and (b) of Figs. 1-8 present graphs of (3.1) and (3.2) for situations
in which the ARIMA model and the component model have the same stationarizing
polynomial, 6(1)(B) = 6(2)(B), at the expense, in Figs. 68, of using the basic structural
component model even when it was non—invertible. In all cases, the graphs of (3.1) and

(3.2) are quite similar.
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Figs. 1-2 are graphs which were classified as inconclusive. The movements of the
graphs relative to the dashed line at level dime(l) - dim0(2) suggest that AIC’s preference
for the ARIMA model is rather stable in the case of bdptrs, but tentative in the case of
bfrnrs, because of the downward movement at the end in Fig. 2. For the other series in
Table 1 for which (3.2) was inconclusive ,bgasrs, this graph (not given) stayed above the
level dimﬁ(l) - diml?(z) in a way that suggested that AIC’s preference for the ARIMA
model was stable.

The graphs in Figs. 3—5 favor the ARIMA model as does the Zgp—statistic. The
graphs of Figs. 6—8 are the only ones in the study which could be interpreted as favoring
the component model, although in none of these graphs does the downward trend seem to
hav; a constant slope. At least one of the models in each of these last three comparisons is
non—invertible, so there is uncertainty about the applicability of the Z(l‘z)(N)—statistics.

The subfigures (c) and (d) of Fig. 3 and Fig. 7 present the pseudo—log~likelihood—ratic
graphs (7.5) and (7.6) for situations in which the statiorarizing polynomials 6(1)(8) and
6(2)(B) differ by a factor 1-B. In the case of Figs. 3(c) and 3(d), a non—invertible
component model was used in place of the preferred modified component model to obtain a
comparison in which 6(2)(B) = (1—8)6(1)(B). In the case of Figs. 7(c) and 7(d), the use of
the modified component model to avoid noninvertibility resulted in 6(1)(B) =
(1-8)6(2)(B). In both cases, the shapes of the graphs closely resemble those of the
subfigures (a) and (b).

Figs. 3(e) and 7(e) present plots of the series 61(11’2) for two series for which the
non-robust statistic ZYW is strongly biased toward 0 by "outliers". Tables 1 and Table 2

contain further examples of too—small values of this statistic.

10.2.1 Series with an early change of regime.
Fig. 7(e) reveals that the first six years of the series 61(11’2) from ifatvs have a different

character than the rest. Since the graph of the original series (Fig. 9(i)) also suggests a
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change of regime after the first six years, these early observations were deleted, the models
were reestimated rom the remaining data, and the diagnostics were recalculated. The
results are presented in parenthesis in Table 2. The new graph of (3.2) (Fig. 9(ii)) is
erratic and is interpreted as inconclusive (in agreement with the new, insignificant value of
Zgp = —47): the downward movement is restricted to the middle of the graph and is
stepped rather than linear.

In a similar way, the graphs of (9.1) (not given) for ihapvs and bhwws called our
attention to the fact that these series, t0o, appear to have undergone an early change of
regime, after the first three, respectively, six years. The results associated with the
shortened series are likewise given parenthetically in Table 2. The graph of thapvs and its
new (8.2) are given in Fig. 10. The values of (3.2) tend strongly upward for the first two
thirds of the graph, in line with the significant new ZSP = 4.71, but the final third has a
level trend, so this diagnostic was inconclusive. Had it become downsloping in the final
years, rather than level, we would have first considered the component model if short term
forecasting of thapus was the goal. Since the graph remained level, however, it is
reasonable to prefer the ARIMA model for this purpose. For bhdwws, there is a rapid
downward movement in the first third of the graph of (3.2) (not given) from the shortened
series (in accord with the value ZSP = -1.72) followed by a large oscillation to a lower
value, then, in the final third, a generally upward movement becoming rather level at the
end near the value —1.8. Thus the diagnostic graph is not conclusive, which is not
surprising, because the graph of the original series (not given) is quite erratic in the final

years.

10.2.2 Disagreements between graphs and tests.
For approximately one—third of the comparisons of Table 2 a situation similar to that
just described for shortened ithapus occurred, in which Zgp was significant (IZSPI > 1.65)

but the graphical diagnostic was inconclusive, because of a leveling out or a change in the
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sign of the slope in the last years of the graph. There is one series, blgrrs, where the graph
of (3.2) (Fig. 8(b)) was interpreted as favoring the component model, but the value

ZSP = 1.14 is insignificant. There is a change of direction early in the graph and its
subsequent decreasing movement is not very linear and never carries the graph below the
positive value 2.0. Thus the insignificance of Zgp reinforces the lingering ambiguity in the

graph.

In summary, we find the diagnostic graphs (3.1) and (3.2) more informative than the
Z(1’2)(N)—statistics, but we do find these statistics to be useful adjuncts to the graphs,
eithcir to confirm, or to provoke closer scrutiny of, their interpretation. When these
diagnostics and tests are conclusive, the ARIMA model is usually favored over the

structural component model.
11. OTHER TESTS AND GENERALIZATIONS

Vuong (1989) has already discussed the fundamental differences between the
hypothesis testing procedure for non~nested models of sections 8 and 9 and the tests of Cox
(1961, 1962), which were generalized to ARMA models by Walker (1967) and have
stimulated the development of a vast theoretical literature, see White (1990). To Vuong’s
discussion we wish to add one remark concerning the comparison of ARMA models: not
only are the null and alternative hypothesis of the Cox tests different from the simple and
intuitive 02[1:(1)] = 02[k(2)] versus 02[k(1)] # 02[k(2)] hypotheses of section 9, also the two

1,2) and a

quantities needed for the Cox test statistic, the null-hypothesis mean of IA.ISI
consistent estimator of the variance of the limiting distribution under the null hypothesis,
are so complex that Cox tests seem not to have been implemented for models with moving
average terms. By contrast, producing the data (3.2) for a graph or the series 31(11’2) of

(9.1) for the test statistic Z(1’2)(N) is unproblematic. The rather interesting problem
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posed by the series 31(11’2 ) is that it seems inherently to require robust methods of analysis.
Fortunately, there is a widely available statistical software package that provides such
procedures.

Finally, we mention that there are some generalizations of the diagnostics of this paper
that we plan to implement in software and apply to the series and models discussed in
section 10. These generalizations concern the selection of time series models for
m—step—ahead prediction, where m>1. (Recall from the discussion preceding Proposition
8.3 that the time series model selection procedures of this paper were seen to focus upon
the selection of one—step—ahead forecasting models because of (2.6).) If neither of the two
competing time series model classes is capable of describing the correct innovations transfer
function of the observed series, then it can happen that the class with the better forecast
function for m=1 will have the worse forecast function for some m>1: for the models of
subsection 1.1, if | 1 | >| p2|, it follows from po # pf that the m—step—ahead forecast
function pTyN of (1.1) has mean square error which is smaller than that of the forecast
function of model (1.2) when m=1, but larger when m=2. The proof of Proposition 8.1

easily generalizes to show that a correct model has strictly smaller mean square forecast

error for all values of m than an incorrect model. A generalization of Proposition 8.3 for

multistep forecasting is given in Findley (1990b).

ACKNOWLEDGEMENTS
The substantial amount of computing and special purpose programming required for
the analysis of section 10 was done by Larry Bobbitt with initial help from Mark Otto.
The author is very grateful for their careful, insightful computing support. He wishes to
also thank William Bell for stimulating conversations on several aspects of this paper and
Larry Bobbitt for helpful comments on an earlier draft.
The maximum likelihood calculations required for estimating the models, graphical

diagnostics and test statistics presented in section 10 were accomplished with the program



45

REGCMPNT designed by William Bell and Steven Hillmer, and developed by them and by
Mark Otto, Marian Pugh, Larry Bobbitt and James Bozik. The ARIMA model selection
for the full series in Tables 1 and 2 was done by Peter Burman and Mark Otto for a study

of the effects of outliers on forecasting, Burman and Otto (1988).

DISCLAIMER

This paper reports the general results of research undertaken by Census Bureau staff.
The views expressed are attributable to the author and do not necessarily reflect those of

the Census Bureau.

-

REFERENCES

Baxter, G. (1962). An asymptotic result for the finite predictor. Math. Scand. 10,
137—-144.

Bell, W. R. (1984). Signal extraction for non—stationary time series. Ann. Statist. 12,
646—664.

Bell, W. R. and Pugh, M. G. (1989). Alternative approaches to the analysis of time series

components. Proceedings of the Statistics Canada Symposium on Analysis of Data in
Time. Ottawa: Statistics Canada (to appear).

Bell, W. R. and Hillmer, S. C. (1983). Modeling time series with calendar variation. J.
Amer. Statist. Ass. 78, 526—534.

Bell, W. R. and Hillmer, S. C. (1990). Initializing the Kalman Filter for Non—Stationary
Time Series Models. J. Time Ser. Anal. 11 (to appear).

Berk, K. N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2,
489-502.

Boente, G., Fraiman R. and Yohai, V. J. (1987). Qualitative robustness for stochastic
processes. Ann. Statist. 15, 1293—1312.

Brillinger, D. (1975). Time Series Analysis. New York: Holt, Rinehart and Winston.

Burman, J. P. and Otto, M. C. (1988). Outliers in Time Series. Research Report Number
88/14, Statistical Research Division, Bureau of the Census.



46

Chan, N. H. and Wei, C. Z. (1988). Limiting distributions of least squares estimates of
unstable autoregressive processes. Ann. Statist. 16, 367—401.

Cox, D. R. (1961). Tests of separate families of hypotheses. Proc. 4th Berkeley Symp. 1,
105—123.

Cox, D. R. (1962). Further results on tests of separate families of hypotheses. J. R.
Statist. Soc. B24, 406—424.

Deistler, M. and Potscher, B. M. (1984). The behavior of the likelihood function for
ARMA models. Adv. Appl. Prob. 16, 843-866.

Dunsmuir, W. and Hannan, E. J. (1976). Vector linear time series models. Adv. Appl.
Prob. 8, 339—364.

Findley, D. F. (1985a). Backshift—operator polynomial transformations to stationarity for
nonstationary time series and their aggregates. Commun. Statist. A13(1), 49—61.

Findley, D. F. (1985b). On the unbiasedness property of AIC for exact or approximating
linear time series models. J. Time Ser. Anal. 6, 229—252.

Findley, D. F., Monsell, B. C., Otto, M. C., Bell, W. R. and Pugh, M. G. (1988). Toward
X—12—ARIMA. Proceedings of the Fourth Annual Research Conference, 591—622.

Washington, D.C.: Bureau of the Census.

Findley, D. F. (1990a). Conditional densities as densities, and likelihoods defined via
singular transformations. (manuscript in preparation)

Findley, D. F. (1990b). Convergence rate of the finite multi—step—ahead predictors. Note
di Matematica (to appear).

Findley, D. F. and Monsell, B. C. (1989). REG—ARIMA model—based preprocessing for
seasonal adjustment. Proceedings of the Statistics Canada Syposium on Anpalysis of
Data in Time. Ottawa: Statistics Canada (to appear).

Findley, D. F. and Wei, C. Z. (1989). Beyond chi—square: likelihood ratio procedures for
compa.rin%xexon—nested, possibly incorrect regressors. Statistical Research Division
Research Report No. RR—89/08. Washington, D.C.: U.S. Bureau of the Census.

Hannan, E. J. (1973). The asymptotic theory of linear time series models. J. Appl.
Probab. 10, 130—145.

Hannan, E. J. and Deistler, M. (1988). The Statistical Theory of Linear Systems.
New York: Wiley.

Harvey, A. C. and Todd, P.H.J. (1983). Forecasting economic time series with structural
and Box—Jenkins models: a case study (with discussion). J. Bus. Econ. Stat. 1,
299-315.

Jones, R. H. (1980). Maximum likelihood estimation of ARMA models for time series with
missing observations. Technometrics 22, 389—395. -



47

Kabaila, P. (1983). Parameter values of ARMA models minimizing the one—step—ahead
prgc_i_ii:tion error when the true system is not in the model set. J. Appl. Prob. 20,
405—408.

Kenny, P. D. and Durbin, J. (1982). Local trend estimation and seasonal adjustment of
economic and social time series (with discussion). J. R. Statist. Soc. A 145, 1-41.

Kitagawa, G. (1987). Non—gaussian state—space modeling of non—stationary time series:
Rejoinder, J. Amer. Statist. Ass. 82, 160—163.

Loeve, M. (1977). Probability Theory, 4th edn. Vol. I. New York: Springer—Verlag.

Martin, R. D. (1981). Robust methods for time series. In Applied Time Series Analysis I
(ed. D. F. Findley), pp. 683—760. New York: Academic Press.

Potscher, B. M. (1987). Convergence results for maximum likelihood type estimators in
multivariable ARMA models. J. Mult. Anal. 21, 29-52.

Potscher, B. M. (1990). Noninvertibility and quasi-maximum likelihood estimation of
misspecified ARMA models. Technical Report, Department of Economics, University
©f Maryland (College Park).

Potscher, B. M. and Prucha, I. R. (1989). A uniform law of large numbers for dependent
and heterogenous data processes. Econometrica 57, 675—683.

Shibata, R. (1981). An optimal autoregressive spectral estimate. Ann. Statist. 9, 300-306.

S—PLUS. Statistical Sciences, Inc. Seattle.

Tiao, G. C. and Tsay, R. S. (1983). Consistency properties of least squares estimates of
autoregressive parameters in ARMA models. Ann. Statist. 11, 856—871.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non—nested
hypotheses. Econometrica 57, 307—333.

Walker, A. M. (1967). Some tests of separate families of hypotheses in time series analysis.
Biometrika 54, 39—68.

White, H. (1990). Estimation, Inference and Specification Analysis. New York:
Cambnidge University Press.

APPENDIX A: COMPACTNESS OF Kg’%.

We need to show that every sequence kn(z)(= 2? zj), n=1,2,... in Kg’g has a

=0 kjn

converge, k‘m ok 7 in such a way that k(z) =

subsequence km(z) whose coefficients j

kjm
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o0

By definition, k (z) = b/ (z)/a_(z), where a _(z) and b o(2) are polynomials of degree

j D
k sz belongs to K a,}

¢ f nlgl (more precisely,

not larger than p, respectively q, of the form I}(l—(}lllz), with |
J

| anl <(1 -*-a)_1 for a (z), and |(nj| < (1+ﬂ)_1 for b(z)). Therefore, the absolute values
of the coefficients of 3 of an(z) and b in of bn(z) are uniformly bounded above, by the
binomial coefficients pC[p /2] and qC[ a/2)’ respectively. Hence we can find convergent
subsequences of the coefficients, and there is a subsequence k _(z) for which the coefficients
of the corresponding polynomials a_(z) and b__(z) converge to the coefficients of
polynomials a(z) and b(z) of degrees at most p and q, respectively, whose roots also belong
to {|z|>1+a} and {|z|>1+5}, respectively, because they are limits of roots in these
regions. From a_(z)k (z) = b (z), we obtain recursion formulas for the coefficients k.

jm
of k (z): kg, =1, and

min(j,p&

k. =-— H’m+b.

m="; 2 ¥im jm’
setting b. = 0if j > deg b_ (z). It follows by induction that k. — k., with k(z) =
€ Oim € °m jm = K

E°j°=0 k jz-i satisfying a(z)k(z) = b(z). Hence k(z) € Kg’% . This completes the proof.

APPENDIX B: PROOF OF COROLLARY 8.1

The proof is based on a special case of Toeplitz’s Lemma (Loeve 1977, p. 250): If the
sequence A_ satisfies lim oon1/2An =0, then limy, OON_llz 21:=1 A, =0.
It is clear from (8.7) that the quantity whose mean absolute convergence is at issue in

(8.8) can be written as one—half the sum of
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—1/2 N AL
N2 E ognlnl

n=1 o“[K]

and

WWQF%JWﬁﬂ-

S Ko%K

n=1 Unln_l

Thus (8.1) will follow from Toeplitz’s Lemma if we verify (B.1) and (B.2),

2

, 5 1 nop K]
(B.1) im _ nl/2 log% =0.
e21pildl  ellk]
(B.2) im _ nl/?g|Blacl ot g
B PR

Concerning (B.1), it follows from (8.5) with a = 1/2 that n(agln_l[k] - az[k]) — 0. Since

[10g(ay 5y [/ k)] < 2/ *[k] — o2 (]| /0[] when o2, ]/ oP(K] > 1/2, we

conclude that a stronger result holds under the assumptions of the Corollary, namely
2 2
n(loganln_l[k]/a [k]) — 0.
For (B.2), let us use the abbreviations énln—l S enln—l[k] /o nln_l[k] and

- . -2 -2 - - = -\
e, = e [k]/olk]. Noting that €1ln—1 " = (enl n—] " en)(enln—l +ep) it ;ollows from
1/2

the Cauchy—Schwarz inequality and the triangle inequality for RPE (E{-}2) that

-2 -2 - = 12\1/2 )3 -
(B3 BIE— el Bl ~ &) (15 gl + 151y



50

holds. Since |§n|2 = 1 and since, by (B.5) below, Ién|n-—1|2 — 1, (B.2) follows from

(B.3) and (8.6). Concerning |én|n_1|2, note that since [e k]|, = ofk], we have
(Ba) ey pylilly— ofkl] € leg gl — e Kl
From (8.5) and (8.6) with a = 1/2, and (B.4) we obtain the last result needed,

(B.5) lim 126

. ~1] =0.

n|n-1|2



Table 1. ARIMA vs. Component Model (Both Invertible)

(1) (2) (2) 2) 3)
AAIC 22 22 22 Graph!
of
(3.2)
bgasrs -2.7 0.03 0.08 0.16 I
icmeti 7.2 1.09 1.94 9.44 A
ifmeti -29.0 9.14 9.92 5.49 A
itvrei -20.6 1.59 2.62 2.28 A
baptrs(®)  -5.7 54 1.88 1.60 I
bfrnrs(4) -.3 .27 1.07 1.27 I
bmncrsE4; 921 2.80 6.82 5.73 A
coctbp'®)  _o1.2 1.03 5.94 2.26 A
cncths()  27.7 1.19 6.84 4.61 A
cneths(®) 216 1.40 2.91 2.84 A

1) Negative values favor the ARIMA model

2) IfZ>1.65 (Z < 1.65), the ARIMA model (the component model) is
avored.

§3) I = inconclusive; A = ARIMA model favored; C = component model
avored.

(4) For these series, the modified component model was used.

Graph Summary: 7 A’s, 0 C’s, 3 I’s



Table 2. ARIMA vs. Component Model (One Non- Invertible)

aarc(t) 2{2) 242 22 Graph of
(3.2)(3)
bapprs 7.3 18 0.71 0.61 I
bautrs  -14.5 56 4.89 4.95 I
belgvs “3.7 12 1.10 0.92 i
bfrnws -18.3 .43 5.47 2.88 A
bgrcrs T 0.08 -.11 - .08 I
bgrcws -6.2 1.42 3.57 4.61 A
bhdws 1.9(.8)(4) -.32(-.62) (1) _2.65(-1.3)(8)  _2.15(-1.72)(4)
I(I)(4)
blqrrs -4.3 .83 1.38 1.14 C
bshors ©3 - .49 -0.83 -0.51 I
bvarrs -1.0 0.05 0.32 0.21 I
bvapes  -13.9 1.08 2.74 1.72 I
ciftbp  -26.0 1.19 6.95 5.62 A
c24tbp 7501 1.18 2.09 1.31 I
cSptbp -9.3 .62 3.36 3.22 1
caopvp  -T1.2 4.33 10.93 11.77 A
cnetbp -8.9 46 3.23 2.56 I
cvsths _2.7 1.09 1.65 1.97 I
{apevs 1.6 ~.92 ~2.03 -0.97 i
ibevti  -49.6 2.79 10.03 6.07 A
ibevvs  -20.3 1.41 6.04 9.37 A
icmevs 9.7 196 3.4 2.74 A
ifatvs 2.7¢-.02))  _.23¢-.18) _10.14(-.62)) 4304 (Y
ifrtvs  -23.2 1.17 2.50 2.11 A
iglovs  -29.6 1.84 7.24 11.42 I
ihapti  -36.7 2.65 8.94 18.46 I
{hapvs 7(-16.2)4) _1.00(1.88)(4)  _2.24¢3.25)(8)  _1.93(a.71)(*) ¢(1)(¥)
inevuio  -47.7 3.23 7.77 6.72 i
irrevs .1 -.19 -1.25 -1.68 I
itobvs  -15.8 1.70 6.77 5.47 A
itvrvs -17.0 1.53 5.36 8.50 A

(1) Negative values favor the ARIMA model, if it can be shown that AIC is applicable
to comparisons involving non- invertible models.

(2) If Z > 1.65 (Z < - 1.65), the ARIMA model (the component model) is favored if it
can be shown that the same limiting distribution applies when one or both of the
models being compared is non- invertible.

€3g I = inconclusive; A = ARIMA model favored; C = component model favored.

4) The values in parentheses were obtained from shortened series as explained in
section 10.

Graph Summary: 10 A’s, 2(1) C’s, 18(19) I’s



Series

bapprs
bautrs

belgws
bfrnws

bgasrs
bgrcrs

bgrcws

bhdwws

bdhwws
blqgrrs
bshors
bvarrs
bwaprs

clftbp

c24tbp

c5ptbp
caopvp

cnetbp

cwsths

Table 3:

Years

67-83

67-82

67-83
67-82

67-82
67-82

67-83

67-83

73-83
67-83
67-83
67-83
67-83

64-83

64-83

64-83
64-83

64-83

64-83

Selected ARIMA

Model
(010) (011)124TD
(110) (011)12+TD

(011) (011) 12+TD
(011) (011) 12+TD

(011) (011) 12+TD
(013) (011) 12+TD+E

(013) (011)12+4TD

(011) (011) 12+TD

(011) (011)12+TD
(012) (011) 12+TD
(011) (011) 12+TD+E
(013) (011) 12+TD+E
(012) (011) 12+TD+E

(011) (011)12TD

(011) (011) 12+TD

(013) (011)12
(310) (011) 12

(011) (011) 12+TD

(013) (011)12

OQutliers

6/72
3/75

12/77,12/78,
2/79,1/80

12/70,1/72,
4/75,12/77

Level shift:
4/80

12/69,1/70
4/67,4/76
8/73

2/66,1/70,
12/70,12/78,
3/79
3/75,8/75,
6/78,4/80
12/74
4/69,8/70,
7/717
1/67,12/74,
3/77, 1/82

Series and ARIMA Models (with Regression Variables) Used in the Study

Series Description

Retail sales of household appliance
stores

Total retail sales of automotive
dealers (total)

Wholesale sales of electrical goods

Wholesale sales of furniture and
home furnishings

Retail sales of gasoline stations

Retail sales of grocery stores

Wholesale sales of groceries and
related products

Wholesale sales of hardware,
plumbing, heating equipment,
and supplies

Retail sales of liquor stores

Retail sales of shoe stores

Retail sales of variety stores

Retail sales of women’s clothing
stores

Total 1 family dwelling building per
permits

Total 2 to 4 unit building permits

Total 5+ unit building permits

Value put in place, all other
private residences

Total Northeast building permits

Total West housing starts



iapevs
ibevti
ibevvs
icmeti
icmevs
ifatvs

ifatvs
ifmeti

ifrtvs

iglcvs

ihapti
ihapvs

ihapvs

inewuo

irrevs
itobvs

itvrti
itvrvs

bdptrs

68-83
62-81
62-81
68-84
68-83
62-81

68-81
62-81

62-81

62-81

62-81

62-81

65-81

64-83

62-81
64-81

64-83

62-81

67-83

(011) (011) 12
(012) (011)12
(014) (011) 12+TD
(310) (011)12
(210) (011)12
(011) (011)12

(011) (011)12
(210) (011)12

(011) (011)12

(012) (011)12

(012) (011)12
(011) (011)12

(011) (01 1&6)12

(011) (011) 12

(011) (011)12
(013) (011)12

(011) (011)12
(012) (011) 12

[}
(101) (011) 12+TD+E

&

12/71,3/73,
1/78

1/69,9/69,
11/82
8/74,12/75,
12/76,8/83,
12/83
10/73,8/74
10/73,8/74
10/71,10/75,
11/75,10/76,
11/76,2/77,
11/77,2/78,
12/78,11/81
4/78,5/78,
1/79,4/79,5/79
4/65,2/68,
3/68,12/70,
12/74,7/75,
3/76,3/77,8/77
8/66,1/72,
4/80

Value shipped of aircraft parts and
equipment

Total inventories of beverages

Value shipped of beverages

Total inventories of communications
equipment

Value shipped of communications
equipment

Value shipped of fats and oils

Total inventories of farm machinery
and equipment

Value of fertilizer shipped

Value of Qlass containers shipped

Total inventories of household
appliances

Value of household appliances
shipped

1/80,12/66,8/70

level shifts:
6/77,4/80
9/68,3/82

11/75,10/77,
6/79,10/79
1/69,1/76
4/67

Unfilled newspaper, periodical, and
magazine orders

Value of railroad equipment shipped

Value of tobacco shipped

Total television and radio
inventories

Value of televisions and radios
shipped

Retail sales of department stores



FIGURE CAPTIONS

Figure 1. (bdptrs). In the plots of (3.1) and (3.2) ((a) and (b)), there is no persistent
suggestion of linear movement toward = oo and therefore no suggestion that the
asymptotic fit of one model is better. However, the way in which the graphs mainly stay

above the dashed line indicating the value of dimﬁ(l) ~ dimﬁ(z) shows that AIC’s
preference for the ARIMA model is rather stable, so this would be our preferred model.

Figure 2. (bfrnrs). The plots of (3.1) and (3.2) ((a) and (b)) do not suggest linear
movement toward + 0o. Also, their final, downward movement to the dashed line at level

dim()(l) - dime(z) suggests that AIC’s preference for the ARIMA model is fragile, so these
procedures, by themselves, do not lead us to a preferred model for this series.

Figure 3. (cnetbp). A linearly increasing trend, favoring the ARIMA model, is suggested
both by the log—likelihood—ratio plots (3.1) and (3.2) (%a) and (bz), for the comparison
with the modiged component model, and also by the pseudo log—likelihood—ratio plots
(7.57and (7.6) ((c) and (d)), for the comparison with the standard component model. The
similarity between (7.5) and (7.6) suggests that the asymptotic behavior is insensitive to
identical overdifferencing in both models. The obvious "outliers" in the graph (e) of (9.1)
provide an explanation for the substantial differences between the robust statistics ZGN

and ZSP and the non-robust statistic ZYW in Table 1.

Figure 4. (cneths). An example in which the linear trend movement toward + oo in the
graphs (3.1) and (3.2) ((a) and (b)), favoring the ARIMA model, is especially clear.

Figure 5. (icmeti). An example in which the graphs of (3.1) and (3.2) were interpreted as
tending linearly toward + oo, even though there are substantial fluctuations. There is no
ambiguity about AIC’s preference for the ARIMA model, since the plots stay above the

value 1 of dim0(1) - dim0(2), which is below the range of the graph.

Figure 6. (blgrrs). Overall, the plots of (3.1) and S13.2) ((a) and (b)) appears to be moving
toward — 00, although the stepped movement at the end doesn’t suggest the linear trend
expected. The graph was interpreted as favoring the non—invertible component model.

Figure 7. (ifatvs). Movement toward — oo is a possible interpretation both of the
log-likelihood—ratio plots (3.1) and (3.2), for the comparison with an overdifferenced
non—invertible component model, and of the similarly shaped pseudo—log-likelihood—ratio
plots (7.5) and (7.6) ((c) and (d)), for the comparison with the modified component model.
This preference for the component model is also supported by the values of the robust
statistics, Zyy = —10.14 and Zgp = — 4.39 in Table 2. However, the graph (e) of (9.1)

not only shows the need for robust estimation, it also reveals non—stationarity of the
<1(11,2), whose earliest six years are less variable than the later years. See Fig. 9 for graphs
associated with models fit to the shortened series with these years deleted..

Fig. 9. Graph of ifatvs and the graph of (3.2) for models fit to the shortened series

beginning in 1968. The middle part of the diagnostic graph has some indications of
downward movement, but levels out at the end.



bfrnrs
bmncrs

cnctbp

cncths

cneths

67-82
67-83

64-83

64-83

64-83

(101) (011) 12+TD
(101) (011) 12+TD+E

(100) (011) 12+TD

(101) (011)12

(101) (011)12

12/64,1/65,
1/79
2/64,1/73,
1/75,1/77,
1/79,2/79
1/65,2/175,
2/78,2/80

Retail sales of furniture stores

Retail sales of men’s and boys’
clothing stores

Total North Central building permits

Total North Central housing starts

Total Northeast housing starts



Fig. 10. Graph of thapus and the diagnostic graph (3.2) from models fit to the shortened
series beginning in 1965. The strong initial upward movement levels out later, so the
graphical diagnostic is not conclusive with the clarity suggested by the value of ZSP (=

4.71) given in Table 2.
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Figure 2.

bfrnrs : graph of (3.1)
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Figure 3.

cnctbp : graph of (3.1)
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Figure 4.

cneths : graph of (3.1)
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Figure 5.

icmeti : graph of (3.1)
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Figure 8

ihapvs (1/62 to 12/81) : graph of (3.1)
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Ln( ifatvs ) (1/62 to 1/81)
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Figure 10.

Ln( ihapvs ) (1/62 to 1/81)
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