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Canonical Cyclic Orderings 

for Point Sets in the Plane 

Alan Saalfeld 
Bureau of the Census* 

Abstract 

For points in general position in the plane, 
we describe a family of cyclic orderings which 

are invariant under isometries. We prove that 

the family can contain at most 60 orderings. 
The entire family of orderings can be built in 

O(nlog n) time in O(n) space, where n is the 
number of points to be ordered. The method 
used to generate the cyclic orderings of points 

works for the vertex set of any free tree em- 

bedded in the plane. We apply the method to 

the Euclidean minimum spanning tree for the 
points in general position to obtain our family 

of cyclic orderings. 

1 Motivation 

The technique we will describe in this paper 
was inspired by and imitates procedures of 
systematic sampling from lists [KISH]. Coinci- 

dentally, one of the important applications of 
our ordering procedure is the systematic selec- 

tion of subsets of points in the plane for sam- 

pling purposes. Point sets chosen by our pro- 

cedure will exhibit excellent spatial represen- 

tativeness properties; and, morever, our sam- 

ple subsets will be independent of any coor- 
dinate system that may affect and bias other 

sampling strategies. 

*The views expressed herein are the author’s nnd 
not necessarily the views of the Bureau of the Census. 

2 Algorithm Overview 

We will describe and illustrate the algorithm 

by performing it on a simple example. Sup- 

pose we are given n points in the plane in gen- 

eral position, such as shown in figure 1. 
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Figure 1: Eight Points in “General Position” 

Build their Euclidean minimum spanning 
tree, as shown in figure 2, in time O(nlog n), 

[AHO] and simultaneously sort the edges at 
each vertex in clockwise order. (General posi- 

tion of the points is used to guarantee unique- 
ness of the EMST.) 

Figure 2: The Euclidean Minimum Spanning 
Tree for those Eight Points 

Start anywhere on some edge and perform 

1 



2 ALGORITHM OVERVIEW 2 

a two-sided Eulerian tour of the tree. A two- 
sided Eulerian tour walks every edge twice and 

visits each vertex p deg(p) times, as shown in 

figure 3. Having the edges sorted in clockwise 
order permits the Eulerian tour to be made in 

linear time.’ 

Figure 3: A Two-sided Eulerian Tour of the 
EMST 

While making the Eulerian tour, build an 

interval of total length n units as follows: each 

time vertex p is visited on the tour, attach to 

the current right-most end point r of the par- 

tially built interval [0, r), a half-open interval 
[r, r + l/deg(p)) of length l/deg(p) labeled 

“p” as shown in figure 4. Since the number of 

visits any vertex receives during the Eulerian 

tour is equal to its degree, the total length of 

subintervals that correspond to any individual 
vertex p will be deg(p) . l/ deg(p) = 1 unit; and 
the total length of all the subintervals will be 

n, the total number of vertices. 

Figure 4: The Successive Weighted Vertex Vis- 
its of the Eulerian Tour 

‘Note: Garey and Johnson [GAREY] and others 
[PR.EPARATA], [EDELSBRUNNER] describe an or- 
dering based on a two-sided Eulerian tour which they 
use to approximate a Euclidean Travelling Salesman 
Tour to within a factor of 2, but the tour they describe 
is not canonical. It depends on the starting point for 
the Eulerian Tour; and changing the starting point 
may produce up to O(n) different cyclic orderings. 

Attach the two ends of the composite in- 
terval to make it cyclic. Notice that the 

cyclic interval we have built up to this point 

is completely independent of our initial start- 
ing point and of the position of the point set 

in space-any translation, rotation, scaling, or 

other transformation that preserves the EMST 

will give us the same circular ordering of half- 

Figure 5: The Successive Weighted Vertex Vis- 

its Ordered Cyclically 

Next choose an arbitrary starting point in 

this cyclic interval of length n. Then select 
n points by skipping along the cyclic interval 

one unit at a time, adding the point p to our 

ordered list when the skipping point lands in 

a half-open subinterval corresponding to p, as 

shown in figure 6. 

The important features of our construction 

of the cumulative interval are the following: 

1. Every vertex is selected exactly once 

by this procedure. 

2. There are at most (up to cyclic per- 

mutations) 60 orderings that can 
arise from this procedure. 
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Resulting cxdeting 
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Figure 6: Vertex Ordering Based upon Skip- 
ping along Cyclic Interval 

3 Proof Sketches 

3.1 Ordering the Vertices 

The proof that the selection procedure actu- 

ally produces an ordering of the vertices fol- 
lows immediately from the following lemma 

and its first corollary. 

Lemma 3.1 (Integral-Branch-Weights) 

The fractional vertex weights accumulated be- 

tween any two consecutive visits of the Eule- 
rian tour to a multivisited vertex always add 

up to an integer. 

Proof: The proof of this lemma rests entirely 

on the observation that between two consec- 

utive visits to any vertex, an entire branch 

emanating from that vertex is completely con- 
sumed by the subwalk of the Eulerian tour (i.e. 

every edge of the branch is traveled twice.) 

The branch consumed is that branch associ- 
ated with the edge2 that was both ‘exiting” 

edge for the first visit and then “entering” edge 

2The branch associated with an edge out of a ver- 
tex consists of all of the vertices and edges that can 
be reached by a p& from the vertex in question that 
starts along the edge in question. The branch as we 
have defined it does not include the starting vertex. 

for the second visit of the two consecutive vis- 
its in question. Note that the “exiting” edge 

of the first visit and the Uentering” edge of 
the second visit are always equal on consec- 
utive visits of the Eulerian tour, as shown in 

figure 7. 

In consuming an entire branch, one must 

visit every vertex in that branch as many times 

as possible, i.e. as many times as the degree 
of that vertex. Thus each vertex in the branch 

gets fully counted. In other words, the sum of 

weights for all the visits for any individual ver- 

tex during the walk of the branch is 1. And the 

sum of weights for all the visits of all vertices 
during the walk of the branch is an integer, 
equal to the number of distinct vertices in the 

branch. q 

I I 
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Figure 7: A Consumed Branch Contains All 
Visits of All Its Vertices 

This lemma has two useful corollaries. To 

prove the first corollary we will want to talk 

about the fractional part of a number or an 

interval of numbers. Our meaning is the usual 

one: the fractional part of 5.35 is 0.35. The 

fractional part of an interval such as [17.32, 
17.84) is just the set of all possible fractional 

values: [0.32, 0.84). 

Corollary 3.2 Every vertex gets hit exactly 

once by skipping one unit at a time through 

the cyclic n-interval. 

Proof: Consider any vertex ZI of degree = lc. 

Each visit to the vertex will result in an in- 

terval of length l/k being added to the cu- 

mulative interval. We want to prove that, no 
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matter where we fix a start for our cyclic in- 

terval, the fractional parts of the intervals cor- 
responding to u in the total interval of length 

n have no overlap. From lemma 3.1, it is clear 
that each successive interval corresponding to 
u has its fractional part begin where the frac- 
tional part of the last interval corrsponding to 

u left off, since an interval of integer length 

(i.e. having no fractional part) corresponding 

to all of the vertices of the branch consumed, 
has intervened. In fact, the fractional parts of 
values assumed in the intervals corresponding 

to any individual vertex must span all of the 
values between 0 and 1. Thus any real number 

r or integral augmentation r + m of r can hit 
at most one of the k intervals of length l/k; 
and there is exactly one integer mo such that 

r + me will hit one of the k intervals. CI 

The next corollary follows immediately from 

the proof of the lemma. 

Corollary 8.3 The collection of vertices of 

any branch of the EMST always constitute 

a complete interval (i.e. appear consecutively) 

for any cyclic ordering produced by our order- 

ing procedure. 

In the above corollary, recall that a branch ex- 

cludes its starting vertex. 

3.2 The Orderings are Few 

The argument that there are at most sixty 

such cyclic orders follows from the fact that 

the degree of the vertices in a Euclidean min- 

imum spanning tree is at most 6 (or 5 if one 

insists on points being in general position). In 
either case, the least common multiple of pos- 

sible vertex degrees is 60; and, therefore, on 
our cyclic cumulative interval, we can imagine 

subdividing all of the intervals of length l/5 

or l/4 or l/3 or l/2 or 1 into subintervals of 

length l/60 (or of length l/12 if there are no 
vertices of degree 5), still labeling the subin- 

tervals as before with the appropriate corre- 

4 

sponding vertex indentifier (see figure 8). Now 

it is clear that there can be at most 60 effec- 

tively different ways (12 ways, if no vertices 
have degree 5) of placing our skip pattern. q 

Figure 8: Equal-siaed Selection Bands of l/12 
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