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Constrained Noise for Masking Microdata Records 

ABSTRACT 

The objective of this report is to present two algorithms which transform 
data generated by a random number generator into data satisfying certain 
constraints on means and variance-covariance structure. One algorithm uses 
a linear transformation and translation to force data generated from a 
multivariate normal distribution to have a specific mean vector and 
variance-covariance matrix. The other algorithm uses a series of additions 
and subtractions to ensure that data generated from a uniform distribution 
has a certain mean and variance. Data sets such as these may be beneficial 
when used for introducing noise in order to mask microdata as a disclosure 
avoidance technique. 

I. INTRODUCTION 

The objective of this report is to present two algorithms which transform 
data generated by a random number generator into data satisfying certain 
constraints on means and variance-covariance structure. One algorithm uses 
a linear transformation and translation to force data generated from a 
multivariate normal distribution to have a specific mean vector and 
variance-covariance matrix. The other algorithm uses a series of additions 
and subtractions to ensure that data generated from a uniform distribution 
has a certain mean and variance. Data sets such as these may be beneficial 
when used for introducing noise in order to mask microdata as a disclosure 
avoidance technique. 

Random number generators are designed to generate a finite set of random 
numbers from a given infinite population with a specified distribution. In 
the process of masking microdata files, random number generators are used to 
obtain data sets of random numbers from a multivariate normal distribution 
with some specified mean vector m and some specified variance-covariance 
matrix V. These random numbers are added to the microdata or to some 
transformation of the microdata to produce noise in the data and reduce 
risk of disclosure through reidentification. One must realize that the mean 
vectors and variance-covariance matrices of data sets created by random number 
generators are not exactly the specified m and V. In fact, the values in 
this vector and this matrix can be off to a degree such that the mean vector 
and variance-covariance matrix of the masked data are considerably different 
from those which the masking technique was designed to yield. 

Masking data through the addition of noise for disclosure avoidance has been 
discussed in numerous papers including (Spruill 1982), (Cox, et al. 1985>, 
(Kim 1986), and (McGuckin and Nguyen 1988). The basic idea is that by 
adding noise to individual records, an intruder will not be able to link a 
respondent to a microdata record using an exact match based on information in 
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the intruder's data base. In (Kim 1986), the author proposed a method of 
masking microdata which involves adding random noise generated from a 
multivariate normal distribution with mean vector m-0 and variance-covariance 
matrix V=cW to the data where c is some constant and W is the 
variance-covariance matrix of the original data. The resulting data set is 
then transformed in such a manner that the mean vector and variance-covariance 
matrix of the noise-added data are preserved. Unfortunately, the mean vector 
of the noise-added data is typically not the mean vector of the original data 
as desired, and the variance-covariance matrix of the noise-added data is not 
(l+c)W as also desired. This is due to the fact that the mean vector of the 
noise is not exactly 0, and the variance-covariance matrix of the noise is not 
exactly cW. 

In this paper, we describe an algorithm which transforms data created by a 
random number generator designed to generate random numbers from a 
multivariate normal distribution with mean vector m and variance-covariance 
matrix V into a finite data set with mean vector exactly m and 
variance-covariance matrix exactly V. That is, the finite sample randomly 
drawn from the infinite population is constrained to have the specified mean 
vector and variance-covariance matrix. Accordingly, when masking a data 
file using these values, we will be adding constrained noise. The algorithm 
is described in Section II. Also described in Section II is an algorithm 
which slightly adjusts data created by a random number generator designed to 
generate random numbers from a uniform distribution on a given interval in 
order to obtain a data set with the exact mean and arbitrarily close variance 
of this distribution. Benefits in using such data sets for the purpose of 
adding constrained noise to microdata are discussed in Section III. 

II. THE ALGORITHMS 

A. MULTIVARIATE NORMAL DISTRIBUTION 

1. ALGORITHM 

Let us assume we use a random number generator to obtain a data set of N 
observations in P variables from a multivariate normal distribution with mean 
vector m and variance-covariance matrix V. Call the matrix of this data set 
E, (NxP). The transformation process of the data set involves three steps. We 
begin by calculating the mean vector of the data set represented by matrix Es. 
This mean vector is subtracted from each row of E, yielding a data set with 
mean vector 0. Call this revised data set E,. 

Let 

V, - E,' * E, (PxP) 

be the variance-covariance matrix of this new data set -- where E,' is the 
transpose of the matrix E,. We make the assumption that the columns of E, are 
linearly independent so that Vi is nonsingular and positive definite. We now 
make use of Cholesky Decomposition. This is a special form of triangular 
factorization of matrices which enables us to write any positive definite, 
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symmetric matrix A (NxN) as A - B' * B where B is nonsingular (NxN). See 
(Kennedy and Gentle 1980) for a further description of this process. We use 
Cholesky Decomposition to obtain a nonsingular matrix C, (PxP) such that 

Cl’ * c, = v,. 

Cholesky Decomposition is also used to obtain a matrix C (PxP) such that 

c’*c=v 

where V is the desired variance-covariance matrix which we assume to be 
positive definite, hence nonsingular. Thus C is nonsingular. We wish to 
obtain a nonsingular matrix T (PxP) which could be multiplied with E, to yield 
an (NxP) matrix 

E2 - E, * T, 

with the desired variance-covariance structure. That is, we seek T such that 

T' * E,' * E, * T ( = E,' * E, ) = V. 

Note that 

T' * E,' * E, * T = T'*V,*T - T' * C,' * C, * T 

so our requirement is satisfied when 

T- CT,-l * c 

as can be seen through direct substitution above. Thus we multiply matrices 
to obtain the matrix 

E2 = E, * T. 

Our new data set represented by the matrix E, has variance-covariance matrix 
V. 

In order to obtain our desired mean vector m, we then calculate the mean 
vector of E,, subtract it from each row of E,, and add the vector m to each 
row of E,. The resulting data set, call it Es, has mean vector m and 
variance-covariance matrix V. 

2. EXAMPLE 

A short and simple Fortran program has been written to implement this 
algorithm. It has successfully run on several data sets, one of which is 
given in Table 1 as an example. The data set resulting from the algorithm 
has exactly the properties we would like it to have. Code is available from 
the author. 
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Table 1 

Example of a Noise Data Set Before and After Transformation 

N - 100 
P I 4 

Desired Mean Vector 

Desired Variance-Covariance Matrix 

Mean Vector of Data Set Obtained 

- ( 0.00 0.00 

= 5.0 -1.0 
-1.0 6.0 
3.0 -2.0 
0.0 -5.0 

- (-0.15 -0.18 
by Random Number Generator 

Variance-Covariance Matrix of Data - 
Set Obtained by Random Number Generator 

Mean Vector of Data Set 
Resulting from this Algorithm - 

(-0.75 x lo+ -0.36 x lo+ 0.22 x 10-s -0.28 x lO+j) 

Variance-Covariance Matrix of Data 
Set Resulting from this Algorithm - 

4.99999332 -1.00000381 2.99999523 -0.13 x 10-5 
-1.00000381 5.99998283 -1.99999523 -4.99999619 
2.99999523 -1.99999523 3.99998951 1.00000000 
-0.13 x 10-5 -4.99999619 1.00000000 4.99999428 

5.53 -1.79 
1.79 6.63 
3.37 -2.00 
0.43 -5.24 

0.00 

3.0 
2.0 
4.0 
1.0 

0.06 

3.37 
2.00 
3.97 
0.80 

0.00) 

0.43 
5.24 
0.80 
5.06 

B. UNIFORM DISTRIBUTION 

1. BACKGROUND 

There are also random number generators designed to generate a finite set of 
random numbers from the uniform distribution on the interval (a,b). A 
typical set of numbers generated in this fashion will not have mean exactly 
(a+b)/2 nor variance exactly (b-a)2/12. If desired, a set of random numbers 
from the uniform distribution on the interval (a,b) generated by a random 
number generator can be adjusted and constrained to have a mean of exactly 
(a+b)/2 and a variance arbitrarily close to (b-a>2/12. For all practical 
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purposes, we can treat the new data set as if it were randomly drawn from a 
uniform distribution. 

An algorithm has been devised which takes a set of numbers randomly generated 
from the uniform distribution on the interval (-1,l) and slightly adjusts 
several of the numbers in the set so that the mean and variance of the data 
set are exactly 0 and arbitrarily close to l/3 (the mean and variance of a 
uniform distribution on the interval (-1,l)). Note here that the user can 
start with a data set generated from the interval (-1,l) or with a data set 
generated from any other interval (c,d). In the latter case, a simple 
transformation may be used to change the data from the interval (c,d) to 
data on the interval (-1,l). For every number x0 in the data set on the 
interval (c,d), let the corresponding number x1 in the data set on the 
interval (-1,l) be 

Xl = (z/Cd-c)) * x0 + ((c+d)/(c-d)) 

After the data on the interval (-1,l) has been altered to obtain a mean of 
exactly 0 and a variance arbitrarily close to l/3, a simple transformation can 
be used to change the data on the interval (-1,l) to data on the desired 
interval (a,b). For every number x1 on the interval (-l,l), let the 
corresponding number x2 on the interval (a,b) be 

x2 = ((b-a)/2) * x1 + ((a+b)/2) 

The mean of the data on the interval (a,b) will be exactly (a+b)/2 and the 
variance will be arbitrarily close to (b-a>'/l2. 

2. ALGORITHM 

Let us assume a random number generator is used to generate N random numbers 
from the uniform distribution on the interval (-1,l). The adjustment of the 
data set to obtain the desired mean and variance is done by adding or 
subtracting two small positive numbers, call them k, and k,, to a subset of 
the values in the original data set. 

The first part of the algorithm adjusts the mean of the data set. The sum, 
S, of the random numbers is calculated. If S-O, we have our desired mean. 
Otherwise choose a large integer L and let k, = ISl/L. Typically, we have 
been using 610,000. If S is less than 0, then one of the numbers from the 
data set which is less than or equal to l-k, is randomly chosen and k, is 
added to it. This is done L times. The sum of the resulting numbers, and 
hence the mean, will thus be 0. On the other hand, if S is greater than 0, 
then one of the numbers from the data set which is greater than or equal to 
k,-1 is randomly chosen and k, is subtracted from it. This is done L times to 
produce a data set with a mean of 0. 

The second part of the algorithm adjusts the variance of the data set. The 
desired variance is l/3. Note: 

f(x) = 0.5 -1 <- x <= 1 
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1 
E(x) = j- 0.5 * x dx = 1/4 - 1/4 = 0 

-1 

and 

1 
Var(x) = E(x') - (E(x))~ = s 0.5 * x2 dx - 0 = l/6 + l/6 = l/3 

-1 

Given that the mean is 0, the variance of the sample data set will equal l/3 
if the sum of the random numbers squared is equal to N/3. That is, 

N 
(l/N) * I: (x~-X)~ = l/3 

i-l 

so 

N 
C xi2 = N/3 
i-l 

Following the adjustment of the mean, the sum of the random numbers squared, 
SS, is calculated. If SS=N/3, we are done. Otherwise, consider the case 
that this sum is less than N/3. This means that the numbers are too clustered 
around the mean of 0 and need to be spread out. Choose a large integer L. 
Typically, we have been using L=lO,OOO. Let 

k, = ((N/3)-SS)/(2*L). 

k, will be a very small number. The addition of k, to one of the random 
numbers greater than 0 and less than l-k, in the data set would cause an 
increase in the sum of the random numbers squared. The subtraction of k, from 
one of the random numbers between k,-1 and 0 would also cause an increase in 
the sum of the random numbers squared. One integrates to find the average 
increase in the square of a number between 0 and l-k, when k, is added to that 
number. Note that this average increase will equal the average increase in the 
square of a number between k,- 1 and 0 when k, is subtracted from that number. 
Call this average increase I,. 

l-k, l-k, 

I, = j- (x + k2j2 / (l-k,) dx - s x2 / (l-k,) dx = k, 
0 0 

It is interesting to note that I, = k,. An increase in the sum of the 
random numbers squared is brought about by the appropriate addition or 
subtraction of k, to several randomly chosen numbers in the data set. The 
process requires that k, is added to a random number the same number of 
times that k, is subtracted from a random number in order to maintain the 
mean of 0. Because the numbers in the data set are approximately uniformly 
distributed, L additions and L subtractions of k, to appropriate, randomly 
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chosen numbers in the data set will yield an expected increase in SS of (N/3)- 
ss. To start the process, one of the numbers between 0 and l-k, is randomly 
chosen, and k, is added to it. This is done L times. Then one of the numbers 
between k,-1 and 0 is chosen and k, is subtracted from it. This is also done 
L times. Thus the numbers are spread out, the variance is adjusted, and the 
mean remains 0. 

A similar process is carried out if the sum of the random numbers squared 
is initially too large. If this is the case, the random numbers are too 
spread out and need to be pulled in a little toward 0. Choose a large integer 
L. Again, we typically have been using G10,000. Let 

k, = (SS-(N/3))/(2*L) 

k, will be a very small number. The subtraction of k, from one of the numbers 
between k, and 1 would cause a decrease in the sum of the random numbers 
squared. The addition of k, to one of the numbers between -1 and -k, would 
also cause a decrease in the sum of the random numbers squared. Integration 
can be used to find the average decrease in the square of a number between k, 
and 1 when k, is subtracted from that number. Note that this average decrease 
will equal the average decrease in the square of a number between -1 and -k, 
when k, is added to that number. Call this average decrease D,. 

D, - s' x2 / (l-k,) dx - ;(x-k2)2 / (l-k,) dx - k, 

k2 k2 

It is also interesting to note that D, = I, - k,. A decrease in the sum of 
the random numbers squared is brought about by the appropriate addition or 
subtraction of k, to several randomly chosen numbers in the data set. The 
process again requires that k, is added to a number the same number of times 
that k, is subtracted from a number in order to maintain the mean of 0. L 
additions and L subtractions of k, to appropriate, randomly chosen numbers in 
the data set will yield an expected decrease in the SS of SS-(N/3). To start 
this process, one of the numbers between k, and 1 is randomly chosen and k, is 
subtracted from it. This is done L times. Then one of the numbers between -1 
and -k, is randomly chosen, and k, is added to it. This is also done L times. 
Thus the numbers are pulled in, the variance is adjusted, and the mean remains 
0. 

Note that the part of the algorithm which adjusts the variance of the data set 
is based on the expected value of the change in SS brought about by the 
addition or subtraction of k, to appropriate, randomly chosen numbers in the 
data set. This does not guarantee a final variance of exactly l/3. However, 
because we have chosen such a large L and therefore obtained such a small k,, 
the variability of the change in SS is negligible, and the resulting variance 
will be closer to l/3 than the original variance. If not satisfied with the 
variance of the data set after it has been run through the algorithm once, the 
user may run the data set through the algorithm a few more times until a 
satisfactory variance is obtained or the difference between the variance and 
l/3 is less than computer tolerance. 



3. EXAMPLES 

A simple Fortran program has been written to carry out this algorithm. It 
has successfully run on several data sets, yielding means and variances of 0 
and l/3 without changing the basic level of uniformity of the data. See 
Tables 2 and 3 for two examples. Code is available from the author. 

Table 2 

Example of a Constrained Data Set from the Uniform Distribution 

Original Data Set, Sample Size = 1000 

Mean = 0.00999873 

Variance - 0.322009 

HISTOGRAM 
o.gcJ+**************************** 

.***************** 
***************************** 
.********************** 
************************ 
*********************************** 
************************* 
********************************* 
**************************** 
*********************** 
******************************** 
********************** 
.**************************** 
.******************** 
**************************** 
************************* 
********9*-k************** 
-****Jr******************* 
************************** 

-().95+*********************** 
-_--+-mm -+----+----+----+----+---- 

* MAY REPRESENT UP TO 2 COUNTS 

# 
55 
34 
55 
43 
46 
68 
47 
63 
54 
44 
62 
42 
56 
40 
53 
47 
48 
48 
49 
46 

BOXPLOT 

1 
! I 

; i +-----+ 
! 
I 
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Table 2, continued 

Constrained Data Set, Passed through Algorithm Once, Sample Size - 1000 

Mean = 3.436 * lo-' 

Variance = 0.333163 

HISTOGRAM 
0*95+**************************** 

,****************** 
**********-k***************** 
****************SC********** 
*****************Jr**** 
*********************************** 
************************** 
*******************x************ 
***********Jr***+************ 
,********************** 
*************************** 
.**********I********** 
********************************** 
****************** 
,************************* 
*********************** 
***************************** 
************************* 
**********Jr************** 

-o*g5+***************************** 
----+----+----+----+----+----+---- 

* MAY REPRESENT UP TO 2 COUNTS 

# 
56 
35 
53 
49 
40 
68 
49 
61 
54 
43 
51 
42 
65 
34 
50 
44 
55 
47 
47 
57 

BOXPLOT 

1 

; 1 
1 I 
*--+--* 
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Table 2, continued 

Constrained Data Set, Passed through Algorithm Twice, Sample Size = 1000 

Mean = 5.208 * 1O-8 

Variance = 0.333332 

HISTOGRAM # 
0*95+**************************** 56 

*Jr***************** 35 
**************************** 53 
************************** 49 
*********Jr*********** 40 
*********************************** 68 
************************** 49 
****d--k************************** 61 
**************************** 54 
*********************** 43 
.************************** 51 
********************** 42 
**********Jr*********************** 65 
****************** 34 
************************** 50 
**Jr******************** 44 
,**************************** 55 
************************* 47 
.************************ 47 

-0.95+***************************** 57 
--- -+----+----+----+----+----+---- 

* MAY REPRESENT UP TO 2 COUNTS 

BOXPLOT 
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Table 3 

Example of a Constrained Data Set from the Uniform Distribution 

Original Data Set, Sample Size = 10000 

Mean - 0.00236354 

Variance = 0.329832 

HISTOGRAM 
o-95+****************************************** 

******************************************** 
**************************************** 
.******************t*********************** 
********************************************** 
********************************************* 
***************************************** 
******************************************* 
******************************************* 
****************************************** 
,*****************************A-********** 
******************************SC*************** 
********************************************** 
.****************************************** 
,***************************************** 
,******************************************* 
*********************************************** 
,**************************************** 
.***************************************** 

-0.95+**************************************** 
----+----+----+----+----+----+----+----+----+- 

* MAY REPRESENT UP TO 12 COUNTS 

# 
502 
509 
464 
502 
529 
519 
475 
500 
502 
481 
476 
540 
533 
494 
488 
509 
544 
478 
483 
472 

BOXPLOT 

i 

! 
+-----+ 

i ! 

; ; 
1 + I 
*-----* 

; ; 
I I 
+-----+ 

! 

! 
I 
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Table 3, continued 

Constrained Data Set, Passed through Algorithm Once, Sample Size = 10000 

Mean = 3.370 x 10-6 

Variance = 0.333439 

HISTOGRAM 
o-95+******************************************* 

******************************************** 
***************************************** 
*************Jr****************************** 
********************************************* 
*Jr****************************************** 
***************************************** 
*********Jr********************************* 
.******************************************* 
**************************************** 
**************************************** 
********************************************** 
,********************************************** 
*t**************************************** 
********Jr********************************* 
******************************************** 
******Jr**************************************** 
*************Jr**************************** 
****************************************** 

-0*95+****************************************** 

# 
506 
509 
470 
502 
526 
515 
479 
497 
510 
460 
459 
531 
545 
491 
487 
506 
541 
484 
485 
497 

BOXPLOT 

; 

3 
+-----+ 

I 

1 
i 

; 
1 + I 
* -----* 

! ; 

i ; 
+-----+ 

i 

----+----+----+----+----+----+----+----+----+- 

* MAY REPRESENT UP TO 12 COUNTS 
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Table 3, continued 

Constrained Data Set, Passed through Algorithm Twice, Sample 

Mean = 3.615 * lo-' 

Variance = 0.333333 

HISTOGRAM 
o.gs+******************************************* 

******************************************** 
***************************************** 
.****************************************** 
********************************************* 
******************************************** 
***************************************** 
******************************************* 
**A+***************************************** 
**x************************************* 
**************************************** 
.********************************************* 
*********************************************** 
****************************************** 
****************************************** 
.******************************************* 
,********************************************** 
****************************************** 
*****Jr************************************ 

-0.95+****************************************** 

# 
506 
509 
470 
502 
526 
515 
479 
497 
510 
460 
459 
531 
545 
491 
487 
506 
541 
484 
485 
497 

Size = 10000 

BOXPLOT 

+-----+ 

I 1 

; ; 
1 I 

----+----+----+----+----+----+----+----+----+- 

* MAY REPRESENT UP TO 12 COUNTS 

III. RELATIONSHIP TO MASKING FOR DISCLOSURE AVOIDANCE 

A. MULTIVARIATE NORMAL 

1. CONSTRAINED NOISE 

As stated before, microdata can be masked for disclosure avoidance purposes 
by adding noise to the data, thus inhibiting intruders from linking 
respondents to their individual records. Noise added to the data can be 
created by a random number generator used to generate random numbers from a 
multivariate normal distribution with a specified mean vector and 
variance-covariance matrix. Unfortunately, the noise data resulting from such 
a random number generator will not have the exact mean vector and 
variance-covariance matrix desired by those masking the data. Thus, due to 
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variability when generating random numbers, a set of numbers created by a 
random number generator, when added to a data set, can yield a data set with a 
mean vector and a variance-covariance matrix considerably different from those 
for which the masking technique was designed. If this same set of random 
numbers was constrained to have a specified mean vector and a specified 
variance-covariance matrix, more control could be maintained over the 
noise-added data. 

2. SAMPLE VARIANCES OF MASKED DATA 

a. FULL DATA SET 

There are also benefits in using a noise data set with constraints on the 
mean vector and variance-covariance matrix in terms of the sample variances 
of the means of the masked data. Consider one variable, call it y, of a 
masked data set consisting of n records. An observation yi, i-l,...,n 
consists of the sum of the original microdata value, call it xi, and the 
noise value, call it ci: 

Yi = xi + ci. 

Now consider the mean of the yi, 7, and note that 

and 

var (7) = var(G) + var(T). 

If the variable y has been masked using noise generated by a random number 
generator, 

var(7) - var(c)/n f 0. 

We could generate several noise data sets using a random number generator, 
and because the Ed' s are being taken from an infinite population, the 
T's will be different, so var(T) # 0. If, however, the noise used for 
masking has been constrained to have a given mean, then all possible noise 
data sets would have the same T. Thus in the case of constrained noise, the 
variance of a sample mean is smaller because 

var(S) = 0, 

and 

var(r) = var(x). 

Also note that if constrained noise is used and r - 0, then 7 = x. 

b. SUBSETS 

Users of microdata are often interested in specific subsets of the data. 
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See (McGuckin and Nguyen 1988). The benefits of using constrained noise in 
terms of sample variances of means of the full data set as described above 
extend to sample variances of the means of subsets of the masked data. 
Consider the same variable y of the masked data set with n records where 

Yi - xi + Ei, 

the sum of the original data value and the noise value. 
particularly interested in a specific subset of the yi. 

A user might be 
Call this subset 

ysj j=l,...,q such that 

y=j - xsj + Esj 

where the xsj are the original data values of the subset and the csj are 
the noise values which were added to those original values. Then 

Ys = xs + Ts 

and 

var($) = var(%) + var(Es>. 

If the variable y has been masked using noise generated by a random number 
generator, then 

var(Ys) - var(e)/n, 

because the n1 csj’s have been generated from an infinite population. If, 
however, the noise used for masking this variable has been constrained 
to have a specific mean and variance, then 

var(Ts) - (l-nl/n)Jtvar(E>/nl. 

Here, a finite correction factor can be used because the ej's are a subset 
of size n1 of a finite noise data set of size n. Thus the use of 
constrained noise leads to a smaller variance of a sample mean of a subset 
of the masked data. 

B. UNIFORM 

Although noise that is added to data sets for the purpose of masking is 
usually thought of as from a multivariate normal distribution, one may want 
to add noise from other distributions. This was one reason for devising the 
algorithm which slightly adjusts the set of random numbers from the uniform 
distribution in order to obtain the exact mean and variance of that 
distribution. We hoped that such a constrained set of uniform random numbers 
would be useful when obtaining values from other distributions with given 
parameters. The reason for this is that generated random numbers from many 
distributions are often transformations of generated random numbers from the 
uniform distribution on the interval (0,l). It was hoped that a data set of 
random numbers from some distribution derived in such a manner would have 
parameter values closer to those desired if the set of uniform random numbers 
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from which they came had a mean of exactly l/2 and a variance of exactly l/12 
(the mean and variance of a uniform distribution on the interval (0,l)). 
Testing has shown, however, that this is not the case. In fact, under 
non-linear transformations, the constraints on the original data set do not 
ensure the corresponding constraints on the parameters of the resulting data 
set. 

IV. CONCLUSION 

In this report, we have presented two algorithms which transform data 
generated by a random number generator into data satisfying certain 
constraints. The motivation of these algorithms and the benefits of their 
use have been discussed in terms of masking microdata for disclosure 
avoidance purposes. Examples of program performance have also been 
provided. Code is available from the author. 
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