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1. INTRODUCTION 

Work by Cox and Ernst (1982), Causey, Cox and Ernst (1985) 

and Ernst (1986) has demonstrated the utility of linear 

programming in obtaining solutions to some statistical problems, 

particularly in sample design and estimation. In this paper some 

further developments in this area are presented. 

In Section 2 the controlled rounding problem in three 

dimensions is considered. Controlled rounding is concerned with 

replacing nonintegers by integers in an additive array while 

preserving additivity. Cox and Ernst (1982) demonstrated that a 
t 

controlled rounding exists for every two-dimensional additive 

array. It is established here, by means of a counterexample, 

that the natural generalization of their result to three 

dimensions does not hold, but that a rounding does always exist 
. 

under less restrictive conditions. 

Causey, Cox and Ernst (1985) presented an optimal solution 

under very general conditions to the problem of maximizing 

overlap between primary sampling units (PSUs) when redesigning 

sample surveys. Their solution modeled the problem as a 

transportation problem. In Section 3 two modifications of that 

procedure are presented. One modification very substantially 

reduces the size of the transportation problems used in the 

original procedure, which sometimes can be unmanageably large. 

The second modification results in an overlap procedure which 

preserves the independence of the selection of sample PSUs from 

stratum to stratum, an independence which is generally destroyed 

by overlap procedures if the initial and new designs do not have 

the same stratification. 

In Section 4 linear programming is considered as an 

alternative to stratification as a method of reducing between PSU 

variances. The linear programming approach is conceptually very 

simple and flexible, and permits the optimal balancing of such 

often conflicting goals as the minimization of variances and the 

ability to estimate variances. Linear programming is also 
-. . 
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applicable to the selection of PSUs for two or more dependent 

designs simultaneously, such as when the sample PSUs for one 

design are required to be a subset of the sample PSUs from a 

second design. As a result, this approach has possible 

applicability to the proposed expansion of the Current Population 

Survey (CPS) as will be explained. However, as noted in 

Section 4, the procedure also has the potentially fatal flaw for 

some design problems that the corresponding linear programming 

problem may be too large to solve practically. 

2. THREE-DIMENSIONAL CONTROLLED ROUNDINGS 

Cox and Ernst (1982) introduced the concept of controlled 

rounding in two dimensions and proved that there exists a 

co&trolled rounding for every two-dimensional additive array. 

The question of whether that result generalized to three 

dimensions had remained unanswered until now. In Section 2.2 a' 

negative answer to this question is presented by means of a 

counterexample. Then in Section 2.3 it is proven that a rounding 

satisfying a less restrictive condition exists for each three- 

dimensional array. First, however, the notation and concepts of 

controlled rounding, and the results in Cox and Ernst (1982) are 

briefly summarized in Section 2.1. 

2.1 Preliminaries 

A (mtl)x(ntl)x(LtI) array A'(aijk) is said to be a tabular 

array if 

i aijk = ai(ntl)k' 
j=l 

aW = a ij(ll+l)' 

l<jtn+l, 

ltitmtl, 

l<i<mtl, 

l<k<i+l, 

l<k<E+l, 

l<j<n+l. 

(2.1) 

U-2) 

(2.3) 



This is analogous to the definition of a tabular array in two 

dimensions for which the third subscript is omitted from (2.1) 

and (2.2). and there is no (2.3). A two-dimensional, (m+l)x(n+l) 

tabular array can be represented in the form 

. . . 'ln 

. . . . 

. . . . 

I al(ntl) 

I 
. . 

. . . . . . 

aml . . . a mn am(n+l) 

. 
a(mtl)l l ' ' a(mtl)n 

I 
‘(m+l)(ntl) 

and a' three-dimensional, (m+l)x(n+l)x( etl) tabular array can be 

represented by the following sequence of a+1 two-dimensional f 

tabular arrays, that will be referred to as levels 

together with the additional condition that each cell entry in 

level (rtl), that is the totals level, be the sum of the entries 

in the corresponding cells of levels 1 through a. Observe also 

that in the three-dimensional case, the right hand side of (2.1) 

is a one-dimensional marginal if j<n+l and k<t+l, a 

two-dimensional marginal if j=n+l or k=e+l but not both, and the 

grand total if j-n+1 and k=L+l. Similar statements hold for 

(2.2) and (2.3). 

The conventional rounding of a tabular array A'(aijk) with 

respect to a positive integer base b is an array (rijk) for which 

rijk = Caijk /b+.5j'b for all i,j,k, where [ ] denotes the greatest 

integer function. Such a rounding is often not a tabular -r 
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array. The search for a less restrictive form of rounding which 

it was hoped might always yield a rounding of a tabular array 

that was itself tabular motivated the definition of controlled 

rounding. In the three-dimensional case a controlled rounding of 

a (mtl)X(ntl)X(Qt1) tabular array “=(aijk) with respect to a 

positive integer base b iS a (m+l)X(n+l)X(Q+l) array R(A)=(rijk) 

for which 

R(A) is a tabular array, V-4) 

kk = Ca ijk/b]b or rijk'[aijk/b]b + b for all i,j,k. (2.5) 

The analogous definition in two dimensions is obvious. The 

definition of a slightly more restrictive form of rounding known 

as *zero-restricted controlled rounding is obtained by replacing 

(2.5) by the condition, . 

rijk is an integral multiple of b 

and 1 rijk-[aijk /b]b/cb for all i,j,k. (2.6) 

Note that for each i,j,k the set of rijk satisfying (2.5) and 

(2.6) only differ when aijk is a multiple of b, in which case 

(2.6) is satisfied only if rijk = aijk. 

In Cox and Ernst (1982) it was established that a controlled 

rounding and even a zero-restricted controlled rounding exists 

for every two-dimensional tabular array. In Causey, Cox and 

Ernst (1985), an example was presented of a three-dimensional 

tabular array which has no zero- restricted controlled roundings, 

but that array does have controlled roundings. In the next 

subsection it is shown that controlled roundings do not always 

exist in three dimensions, but then in Section 2.3 it is shown 

that there exists for every three-dimensional tabular array 

A=(a ), ijk 
a tabular array R(A)=(rijk) for which 

rijk is an integral multiple of b and 

Ir.. - [a 
1Jk 

ijk!b]bl<2b for all i,j,k. (2.7) 



2.2 A Three-Dimensional Tabular Array with No Controlled 

Roundings 

For any (m+l)x(n+l)x(Ltl) tabular array A'(aijk), let I(A) 

denote the mxnxL matrix consisting of the internal elements of A, 

that is I(A)=(aijk), I<i<m, I<jtn, I<k<Q. 

The construction of a tabular array B' for which no 

controlled rounding exists consists of two steps. First let 

B=(bijk ) be the 5x5x5 tabular array, with the following 

representation as a set 

w Level 1 

.5 0 .5 0 1 

0 .5 .5 0 1 

.5 .5 0 0 1 

0000 0 

11 10 3 

Level 3 

0 0 0 0 0 

0 0 .5 .5 1 

0 .5 0 .5 1 

0 .5 .5 0 1 

0 1 1 1 3 

of five levels: 

Level 2 

.5 0 0 .5 1 

0 .5 0 .5 1 

0 0 0 0 0 

.5 .5 0 0 1 

110 1 3 

Level 4 

0 0 .5 .5 1 

0 0 0 0 0 

.5 0 0 .5 1 

.5 0 .5 0 1 

1 0 1 1 3 

Level 5 

0 1 1 

1 1 1 

1 0 1 

1 1 0 

3 

3 

3 

3 

12 

Figure 1. The Tabular Array B 
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Then let B' = (bijk ) be the 13x13~5 tabular array with the 

set of internal elements I(B') defined by 

b:. 
1Jk 

= bijk if l<i<4, l<j<4, 

if 5titt3, %J<8, 

if 9<i<12, 9<j<12, 

= 0 for all other i,j,k. 

* I(B') can be represented as a set of 9 blocks, each 4x4~4, as 

shown in Figure 2. 
* 

I(B) 0 0 

. 

0 I(B) 0 

, 

0 0 I(B) 

Figure 2. Block Representation of I(l3') 

Since the grand total for B, b555, is 12, the grand total 

for a controlled rounding of B could be 12 or 13. However, a key 

step in the proof that there are no controlled roundings 

for B' is to establish the following result: 

If R(B) = (rijk) is a controlled rounding of B 

then r555 = 13. (2.8) 

It will first be shown that there exists no controlled roundings 

of B' provided (2.8) holds, and then that (2.8) does indeed hold. 



The proof that there exists no controlled roundings 

of B' given (2.8) is obtained by contradiction. Assume 

that R(B')=(rijk) is a controlled rounding of B' and partition 

I(R(B')) into 9 blocks R1,...,R9, each 4x4x4 corresponding to the 

9 blocks in Figure 2 as follows. 

. 
Figure 3. Block Representation of I(R(B')) 

Sin?e bi3 13 5 = 36, 
, , 

r;3,13,5 
= 36 or ri3,13,5 = 37. (2.9)’ 

Furthermore, since all marginals of B' are integers, it follows 

that 

r: 
ijk 

= b: 
ijk 

or r: 
ljk= 

b: 
ljk 

+ 1 for all marginal cells i,j,k, (2.10) 

and, in order for (2.9) to be satisfied, 

%k' 
b: 
ijk 

+ 1 for at most one marginal of dimension one in each 

of the three directions. (2.11) 

It follows from (2.10) and (2.11) that either all elements in the 

off-diagonal blocks in Figure 3 are 0, or that there is a total 

of a single 1 in all of these six blocks combined. In the former 

case, R1' R5 and R9 would then each constitute a set of internal 

elements for a controlled rounding of B since the marginal 

constraints that have to be satisfied for a controlled rounding 

of B would be met by each of these blocks by (2.10) and (2.11). 

However, then by (2.8), the sum of the elements in each of the 
-. 
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blocks R1, R5, and Rg would be 13, contradicting (2.9). 

In the latter case, when one off-diagonal block, say R2, has 

a 1 cell, then Rg would be a set of internal elements for a 

controlled rounding of B and, by (2.8), the sum of the elements 

in Rg would be 13. The sum of the elements in each of Rl and R5 

must be at least 12 by (2.10) and the sum of the elements in the 

union of RI, R2, Rg and Rg would be at least 38, contradicting 

(2.9) and thus establishing that there are no controlled 

roundings of B' provided (2.8) holds. 

To establish (2.8), consider a controlled rounding R'(rijk) 

of B and observe that if r555=b555=12 then 
. 

%k = b ijk for each marginal Cell (i,j,k), (2.12) 

I 

since all marginals of B are integers. (2.8) will be established 

. by assuming (2.12) and then showing that (2.12) implies that 

4 
7 

kg1 
rijkf 1 for either (i,j) 

= (WL F’J), G’J) or UJ3, (2.13) 

contradicting (2.12) for one of the corresponding four marginals 

cells (1,2,5), (2,2,5), (2,3,5), (3,2,5). (2.13) in turn will be 

proven by establishing the following four statements concerning 

the Cell Values for (rijk) in levels 1 through 4 respectively: 

rlll=r231=r321=L 
or rlll=r231=r321=0, (2.14) 

rl12=L r 222=r232=r322=0 
or rl12=0, r222=1, r232=r322=0, (2.15) 
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r223=1, r233=r323=0, or r223=0, r233=l, r323=0, 

or r223=0, r233=0, r323=1, (2.16) 

(2.17) 

(2.14 - 2.17) establishes (2.13) since only the first possibility 

in (2.14) in combination with the first possibility in (2.16) 

satisfies 

4 

c 
k=l 

However, that combination together with either of the 

* possibilities in (2.15) yield 

I 

3 3 

c rllk 
=2 or 7 

k=l kd 
r22k = 2. 

. . 
Thus it remains only to establish (2.14 - 2.17). In proving 

these statements use is made of the fact that 

if (i,j,k) is an internal cell of 6, (i,j,k) + (2,2,3) 

Or (1,1,4), and bijk'U, then rijk'o, (2.18) 

since at least one of the three, one-dimensional marginal cells 

corresponding to each such cell in B is 0. 

To prove (2.14), observe first that if rlll=l, then since 

r151=1 by (2.12), it follows that r131=0. Next r131 =0 combined 

with r531=1 and (2.18) yield r231=1, which in turn implies that 

r221=0, which finally implies that r321=1. Thus if rlll=l, the 

first possibility in (2.14) holds. Similarly rlll=O yields the 

second possibility in (2.14). 

To establish (2.15) first note that r232=r322=0 by (2.18). 

Furthermore, if rl12=1 then, proceeding as was done to establish 

(2.14), it follows that r142=0, r242=1 and finally r222=0. 

Similarly, it is established that if rl12=0 then r222=1. 
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To obtain (2.16), first note that if r223=1 then r233=r323=0 

by (2.12). If r223 =0 and r233 =l then from (2.12) and (2.18) it 

is successively obtained that r243=0, r343=1 and finally 

r323=0. Similarly if r223=0 and r233=0 then r323=1. 

(2.17) immediately follows from (2.18). 

Remark 2.1: All the marginals of B' are inteyers, a fact that 

was used extensively in proving that there are no controlled 

roundings of B'. However, B' can be easily modified to obtain a 

5x5~13 tabular array, B"=(b*' ijk) which has no controlled 

roundings and for which none of the cells, internal or marginal, 

- are integers. Simply define I(B") by choosing any E 

with 0<~~1/576 and letting b:': =b: 
1Jk ijk 

+ c for each internal cell 

U ,J,W Since there are 576 internal cells in B", no cells 

of B'*, including marginals, are integers and [b" ijk]=[b;jk] for 

all cells in B". Therefore, the set of controlled roundings - 

of 6" is identical to the set of controlled roundings 

of B', namely the empty set. 

2.3 An Additive Rounding in Three Dimensions Which Always Exists 

It will be shown that for every (m+l)x(n+l)x(Q+l) tabular 

array A'(aijk ) there exists a (m+l)x(n+l)x(R+l) array R(A) 

= ( rijk ) satisfying (2.4) and (2.7). Such an array is obtained 

by successively defining a sequence of two-dimensional, base b, 

zero-restricted controlled roundings. First let (rijl) be a 

zero-restricted controlled rounding of the (m+l)x(n+l) array 

(a- 1. ijl Then for k=2 , l l l , Q, let 

k 

'ijk = c l<i <m+l, l<jtntl, 
t=1 

(2.19) 

and take (rijk ) to be a two-dimensional zero-restricted 

controlled rounding Of the (mtI)x(n+I) array (Cijk) with k 

fixed. Finally, let 
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r 
ij(tt1) 

l<i tmtl, l<j<n+l. (2.20) 

Observe that the three-dimensional array (rijk) is clearly 

tabular. 'To establish (2.7), first note that it is obviously 

true for any cell for which k=l. For k=2 
, l l l , Q, it follows from 

(2.19) that 

(r.. 
1Jk - aijk 1 < (r.. 

JJk - 'ijk ) + ]c.. 
1Jk - aijkl 

. 
= Ir. ljk - 'ijk I + Ic ij(k-1) - rij(k-l)l < 2b' (2.21) 

exce:t that a ijl replaces c. ljl in (2.21) when k=2. 

Finally, by (2.19) and (2.20), 

11 

lr ij(at1) - aij(etl)l = I kLl rijk 

= r.. - c.. 
1JL lJ1 

( < b. 

3. FURTHER RESULTS ON MAXIMIZING THE OVERLAP BETYEEN SURVEYS 

The problem of maximizing the expected number of PSUs 

retained in sample when redesigning a survey with a stratified 

design for which the PSUs are selected with probability 

proportional to size was introduced to the literature by Keyfitz 

(1951). Causey, Cox and Ernst (1985) were able to obtain an 

optimal solution to this problem under very general conditions by 

formulating it as a transportation problem. Unlike previous 

approaches, this procedure imposed no restrictions on changes in 

strata definitions or number of PSUs per stratum. The reader of 

this section is urged to read that paper to facilitate 

understanding of the work to be presented here. 

‘I. 
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There are several difficulties associated with the use of 

the procedure of Causey, Cox and Ernst. One of these can occur 

when the initial sample of PSUs was not selected independently 

from stratum to stratum, in which case the information necessary 

to compute all the joint probabilities needed to use this method 

may not be known in practice. An alternative linear programming 

procedure for use in that situation was developed by Ernst (1986) 

and was used by the Bureau of the Census in the last redesign of 

the demographic surveys that they conduct, in the selection of 

the sample PSUs for the CPS and the National Crime Survey. In 

this section approaches are presented for handling two other 

difficulties. 

The first problem is that in the procedure of Causey, Cox 

and-Ernst the transportation problem used in the selection of the 

sample PSUs for the new design in each stratum can be 

unmanageably large. To see this, note that each possibility for' 

the set of PSUs in a new stratum S that were in the sample for 

the initial design corresponds to a row in the transportation 

problem, and each possibility for the set of PSUs in S in sample 

in the new design corresponds to a column. If S consists of n 

PSUs from which m are to be selected without replacement in the 

new design, then the number of columns is (I), which is a 

reasonably-sized number for m=l or 2 say, if n is moderately 

sized. Yowever, for any m the number of rows can be as large as 

2”s resulting in a transportation problem too large to 

practically solve even for moderately-sized n. For example, if 

n=40, m=2, the (I) = 780, while 2" exceeds one trillion. A 

situation where the upper bound of 2" is attained occurs if each 

of the PSUs in S were in a different initial nonself-representing 

stratum and the sampling in the initial design was one PSU per 

stratum selected independently from stratum to stratum. In that 

case any of the 2" subsets of S can be the set of PSUs in S that 

were initial sample PSUS. 

In Section 3.1 a modified procedure is presented for which 

the number of initial outcomes used in the transportation problem 
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is vastly reduced, resulting in a transportation problem that 

should be manageable for typical values of n and m. The expected 

number of PSUs retained when applying this modified procedure is, 

not surprisingly, generally less than for the original procedure, 

but it is believed that in practice the loss in overlap usually 

would be small. 

The second problem considered in this section, unlike the 

first, applies not only to the procedure of Causey, Cox and 

Ernst, but to all previous overlap procedures that this author is 

aware of, whenever the initial and new designs have different 

stratifications. Overlap procedures in this case destroy the 

. independence of the selection of sample PSUs from stratum to 

stratum in the new design (Ernst 1986). Among the consequences 

of Lhis loss of independence are changes in variances which are 

almost never accounted for in the variance estimates. In Section 

3.2 another modification of the procedure of Causey, Cox and f 

Ernst is presented which preserves the independence of the 

selection of sample PSUs from stratum to stratum in the new 

design. The procedure also generally reduces expected overlap in 

comparison with the original procedure, in some cases 

drastically. 

The two procedures to be presented in this section can also 

be combined to accomplish the goals of both procedures, as 

described in Section 3.2. 

3.1 A Reduced-Size Transportation Problem for Maximizing Overlap 

The reduced-size procedure will, for ease of presentation, 

be described in detail only for the case when both the initial 

and new designs are two PSUs per stratum without replacement. 

Then the changes necessary to apply this procedure for other 

initial and new designs will be sketched. It is assumed 

throughout this subsection that PSUs in the initial sample were 

selected independently from stratum to stratum. 

The general outline of the procedure for the particular case 

to be detailed is as folloy-s. Let Al,***, An denote the set of 



-14- 

. 

PSUs in a new stratum S. Let the random set I denote the set of 

integers i for which Ai was in the initial sample and let N be 

the corresponding random set with respect to the new sample. The 

set of all distinct pairs of integers i,j E (l,...,n) will be 

ordered in a manner that the pairs i,j listed earlier correspond 

to pairs of PSUS Ai, Aj that have a better chance of being 

retained in sample in the new design if they were in sample in 

the initial design. If I consists of at least two integers then 

the new selection probabilities are conditioned only on the first 

listed pair in the ordering contained in I. If I consists of 

exactly one integer or is empty then the new selection 

probabilities are conditioned on the actual initial outcome, that 

is I itself. Thus the new selection probabilities would be 

coniitioned on exactly (i)+n+l events instead of a possible 2" 

events. 

To obtain the desired ordering of the pairs of integers, an' 

ordering f(1) ,...,f(n) of {l ,...,n\ will first be obtained. Then 

corresponding to each k=l ,*a*, n-l, an ordering gk(I),...,gk(n-k) 

of {l ,...,n)M(f(l),...,f(k)) will be constructed. A linear 

ordering of the distinct pairs in {l,...,n) would then be 

determined as follows. Each such pair can be represented 

uniquely as an ordered pair (f(k), gk(p)) for some 

k E {l ,...,n-1) II E {l ,...,n)w{f(l),...,f(k)}. A second pair 

representable in the form (f(k'), gk#(il*)) precedes 

(f(k), Sk(g)) if and only if either k'<k, or k'=k and 11.~11. 

To obtain the ordering f(l),...,f(n), first let pi, mi 

denote the probability that i E I and i E N respectively, and 

P* ,j, “ij’ i#j, be the joint probability that i,j E I and 

i,j c N respectively. Then successively define 

f(k), k=l ,Q**, n, by choosing f(k) E Tk satisfying 
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where 

T1 
= {l ,...,n), Tk = Tk-lU{f(k-l)}, k=2,...,n, 

p(k)l 
i 

P(i E I and I C Tk), k=l ,***, n, i E Tk. 

Since pil)= pi, the ordering just defined corresponds to placing 

first a PSU Ai with the highest ratio for gi/pi . This is 

appropriate since a high value for this ratio makes it more 

likely that a PSU can be retained in the new sample when it was 

in the initial sample. For k>2, the denominator of this 

0) ratio, pi , is the probability that if f(k)=i then an attempt is 

* made to retain Ai in the new sample either as the first member of 

an ordered pair of initial sample PSUs or as the only initial 

sample PSU in S. 

0) It remains to explain how to compute pi for k>2. To this- 

end, let r denote the number of initial strata with PSUs in 

common with S and let F a' a=1 ,...,r denote a partition 

of {l 9***, n) such that i and j are in the same Fa if and only if 

Ai and Aj were in the same initial stratum. Then let 

P;(T) = P(1 fl F,CT) for T c {l,...,n), a=l, . . . , r, 

P;;(T) = P(i E I and I n Fa c T) for TC{l,...,n), a=l,... ,r, i E FanT, 

and observe tha,t 

P;(T) = I - 1 pi + 1 
icFa-T i ,jcFa-T 

Pij9 

i<j 

P;;(T) = Pi - 1 Pij' 
jtzFa-T 
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and finally that 

p(k), 
i f';;(Tk) i p;(Tk), k=l,...,n, i E Fa fl Tk. 

e=l 
a#a 

Next, for each k=l ,...,n-1 the ordering g,(r), i=l,...,n-k, is 

recursively defined by choosing g,(e) E Tkn. satisfying 

'f(k)dk(e) 
(0 

'Pf(k),gk(e) 
(0 

= max{"f(k),j/Pf(k),j' j E Tk& 

. 
where 

=Tkl = (1 ,...,n)~{f(l),...,f(k)j) 

TkQ = Tk(r-1)"{gk(b')}9 ~=L.-,n-k, 

* 

Tk!? 
= Tkeu{f(k)}, &=l,...,n-k, 

(0 
'f(k),j 

= W(k), j 

The rationale for th 

analogous to the rat 

E 1 and IcTkII * ), e=l ,**e, n-k, j E Tkr. 

is ordering for the second PSU in the pair is 

ionale for the ordering of the first PSU. 

To compute p (0 
f(UJ’ 

observe that if f(k) E F 
a’ 

j E Fg, then 

0) 
r * 

pfW,j = pf(k),j tfl Pi(Tke) 
if a=B, 

tfa 

= P;(k),a tT;g)P;; 
* r * 

(Tke) & P(tTkg) if a+8* 

t#a,8 

Having defined the ordering of the distinct pairs of 

integers in (l,...,n), it will next be stated how for each 
-. 
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. 

possibility for I a unique Ii is associated among the subsets 

Ii, i=l,...,(i)+n+l, of {l,...,n) of two or fewer elements, 

together with formulas for computing pf, the probability that Ii 

is the associated set. For each I, it is the associated Ii on 

which the new selection probabilities are conditioned. If I 

consists of two or more integers then Ii = {f(k), gk(&)} where 

(f(k), gk(e)) is the first pair in the ordering just defined for 

which {f(k), gk(!zj}cI, and pi = pifl),gk(e). If I={t), for 

some t E F 
a’ 

then Ii={t) and 

r 
p; = p" ({t)) n P; (It)) l 

ta u=l 

u#a 

Finally if I=@, then Ii = fl and 

p; = 
r 
ll P;(b) l 

u=l 

As for the new sample, there are (",) possibilities 

denoted S., j=l ,...,(i), for N. If S. = {s,t), then v;, the 

probabiliiy that N=Sj, 
J 

is simply nst. 

The transportation problem to solve for this procedure can 

at last be stated. For i=l ,..., (;)+n+l, j=l,..., (;), 

xij is the joint probability that Ii is the set associated to I 

and N=Sj, while cij is the expected number of PSUs in I nSj given 

Ii l The Xijls are the variables and the transportation problem 

to solve is to determine xij>O that maximize 

(i)+ntl (;) 

1 1 c..x.., 
i =l j=l 1J 1J 

subject to 

(;I 
* 

c 'ij = Pi9 i=l 
j=l 

,...,(i)+n+I, 
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(“)+n+l 
2 

1 xij = IT;, j=l,..., (i). 
i=l 

Once the optimal Xij 's have been obtained, the conditional new 

selection probabilities for Sj, j=l,...,(i), given Ii, 

are xij/pf. 

It remains only to explain how to compute Cij. Let 

. 

b 
it 

= P(t E: I(Ii), i=l,..., (i)+nfl, t=l s***, n, 

and note that if S. = {s,t) then cij = his + bit. 
J 

* To compute bit, observe that 

b 
it 

= 0 

= 1 

= 0 

while if Ii = 

then 

b = 
it 

1 

= 0 

= 0 

if Ii = P, 

if I 
i = fvl and t=v, 

if I 
i 

= fv) and tfv, 

{f(k), gk (II)) and f(k) E Fa, g,(t) E F8, t E Fy, 

if t=f(k) or t=gk(&), 

* 
if t I! Tkeg 

if t E Tke-+jk(k)} and a=B=Y, 

if t E TkaN{gk(k)} and a=y#B, 
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= p!$$),t if t E: TkEM{gk (e)) and B=y#a, 

* 
= P;;(&) 

* 

P;(Tkg) 

if t E. Tke”{g,(t)} and Yfa, Y#8. 

Modifications of the procedure just described when either 

the initial or new designs are not two PSUs per stratum will now 

be sketched. . 

A different number of PSUs per stratum in the initial design 

only,requires modification of some of the computations. For 

example if m=2, but the initial design was not two PSUs per 

stratum, then the computations for 0) pi (0 
' pf(k),j and 'ij 

would be' 

different but their definitions would not change. 

If m=3, then the set of all distinct triples, instead of 

pairs, of integers in {l,...,n), is ordered. If I consists of at 

least three integers then the new selection probabilities are 

conditioned only on the first listed triple in the ordering. 

Otherwise, the new selection probabilities are conditioned on I 

itself. Thus the new selection probabilities would be 

conditioned on (?3)t(z)+n+l events. 

To obtain the desired ordering of the triples of integers, 

first the orderings f(l),...,f(n) and gk(I) ,***, gk(n-k) are 

constructed exactly as in the case m=2. Then corresponding to each 

k=l ,***, n-2, a=1 ,...,n-k-l, an ordering hke(l),...,hke(n-k-E) 

of (1 ,-d+{f(l) ,.-,fW, gk(l) ,...,gk(R)} is constructed 

similarly to the construction of gk(l),...,gk(n-k). For example, 

in defining hka(v) for v>2, (0 
pf(kLj 

in the definition of gk(L) 

is replaced by 

P(f(k), gk(l), j E 1 and rcT;,-Ihke(l),....hke(V-l)})* 
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A linear ordering of the distinct triples in fl ,a*-, n) is 
then determined by representing each triple uniquely as an 

ordered triple of the form (f(k), gk('l), hkL(v)). A second 

triple (f(k'), g,.(%'), hk.&- (v')) precedes the first if and only 

if either k'<k, or k'=k and R'<E, or k'=k and I~'=R and v'<v. 

For m>4, ordered m-tuples would be defined in a similar 

manner and the new selection probahilities conditioned 

en (~)+(m~,)...+n+l events. 

For m=l, the new selection probabilities are conditioned on 

the first Ilemher of the ordering f(l),...,f(n) in I if I $ fl, or 

on 9, if I = fl. 
. 

Vote that if m exceeds the number of PSJJs per stratum in the 

initial design it is possible that at least some ordered m-tuples 

cann*ot be subsets of I, in which case all such subsets should be 

excluded from the ordering and the set of events on which the new 

selection probabilities are conditioned. If no m-tuples can be a 

subset of I then the new selection probabilities are conditioned 

on I itself. 

It is not necessary to limit the initial events used in the 

transportation problem to subsets of I of size m or less. For 

example, if m=2 and (i)+(;)+ntl is sufficiently small then a 

procedure conditioned on subsets of three or less could be used 

resulting in a generally higher expected overlap. Conversely, 

if (~)+(,~I)+... +n+l is too large, the new selection 

probabilities could be conditioned on subsets of I of size m' or 

less where m'<m, although with resulting a smaller expected 

overlap. 

3.2 An Overlap Procedure That Preserves Independence from 

Stratum to Stratum 

The key to a modified overlap procedure that preserves the 

independence of the selection of sample PSUs from stratum to 

stratum in the new design if such independence existed in the 

selection of sample PSUs in the initial design is as follows. 

a. 
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Let F I,...,F, and SI ,...,St denote the set of strata in the 

initial and new designs respectively, and let I denote the set of 

initial sample PSUs across all initial design strata. With each 

sj, j=l, . . ..t. a subset S: of S. is associated such that each 
J J 

distinct pair S', 
3 

Sk' of such sets have no initial stratum in 

common, that is for each i=l 
, l � l , 

r either S;nFi = fl 

or Sin Fi = $3. Therefore, the set of PSUs in Ins: and InSi , 
J 

were selected independently into the initial sample, even though 

this is not necessarily trtie for Ins j and I n Sk. Consequently, 

a modified overlap procedure which conditions the selection of 

new design sample PSUs for S. on Ins: instead of Ins., as in 
J J J 

the original procedure of Causey, Cox and Ernst, would result in 

* an independent selection from stratum to stratum of the new 

design sample PSUs. 
I 

A simple method of obtaining S;, j=l t ,***,,, satisfying the 

required condition is to associate to each initial stratum Fi a - 

unique new stratum S 
f(i)' 

by means of a mapping 

f: (1 ,*.-, r)-+{l ,...,t), and let 

s: = ‘j” u -1 Fi , j=l ,***, t. 
J id C(j)) 

Appropriate choices for f will be discussed latter in this 

subsection. 

The transportation problem to be solved for this modified 

overlap procedure can now be stated. As in the procedure 

presented in Causey, Cox and Ernst, each stratum in the new 

design requires the solution of a separate transportation 

problem. Dropping the subscript j, let S be a stratum in the new 

design with S' the corresponding subset as described above. Let 

I1 ,.“, I, denote all possibilities for the subset 

of S' consisting of all PSUs in S' that were in the initial 

sample and let NI, . . . , Nn denote all possibilities for the subset 

of S consisting of all new sample PSUs in S. For i=l ,...,w 

j=l ,***, n, let pi denote the probability that Ii was the set of 

initial sample PSUs in S', 71. the probability that Nj is the set 
J 
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of new sample PSUs in S, Xij the joint probability that both of 

these events occur, and Cij the expected number of PSUs 

in InN j given Ii' Again it is the Xij 's that are the variables 

whose optimal values are to be determined. 

Now proceed exactly as in Causey, Cox and Ernst, that is 

determine x.. >O that maximize 
1J 

y ; cij Xij 

i=l j-1 

subject to 

. 3 j;l 'ij = Pi 9 

*m 
C Xij = "i) j=l 

9 l l l , 
n. 

i=l 

Then, once the optimal Xij 's have been obtained, the 

conditional new selection probabilities for N., j=l 
J 

,***, b given 

Ii 3 are xij/pi. 

It remains to explain how to compute Cij. Let N 
jl 

,"",Njk 

denote the PSUs in Nj, and for a=l,..*,k let 

C: 
ija. 

=l if N 
ja. 

E Iins’, 

= 0 if N. E S' - Ii, 
JE 

= P(N. 
Ja 

E I) if N 

Then 

C = 
ij 

i Cij2 . 
&=l 

Although the procedure just described can be used with any 

mapping f, some mappings result in a larger expected number of 

PSUs retained in sample for the entire new design than other 
-. 
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mappings. A mapping that generally yields a relatively high 

overlap is obtained by choosing for each i=l,...,r an f(i) 

satisfying 

:j=l ,*..,t), (3. 1 P(A E I) = max { 1 P(A c I) 
AcFinSf(i) Ai'FinS. 

J 

that is, Sf(i) is a stratum in the new design which contains a 

largest piece of Fi as measured by the initial probabilities of 

selection. This approach maximizes 

t 
. jL1 IsOP(A E 1). = 

j 

1) 

I An alternative f is obtained by rep lacing P( 4 E I) in (3.1) 

by the minimum of the probabilities of A being in sample for the 

initial and new designs, since the minimum of these two 

probabilities is the maximum probability with which A can be 

retained in the new sample. 

Neither of these mappings is necessarily optimal in terms of 

maximizing the expected number of PSUs retained. A drawback to 

both of them is that they can associate several of the Fi with 

the same Sj, while other S j may not be associated with any Fi. 

In theory, the selection of an optimal f could itself be made 

part of an optimization problem, but one which would involve all 

initial and new strata in a single problem, and thus tend to be 

unmanageably large. 

Remark 3.1 The relative effectiveness of this modified 

procedure in retaining PSUs in the new design in comparison with 

the original procedure of Causey, Cox and Ernst depends heavily 

on how much the stratification for the new design differs from 

that of the initial design. In general, when the stratification 

does not differ much, the Sj "s are a larger proportion of the the 

Sj’S, which results in a better overlap. 
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Remark 3.2 If there are only a few initial strata that map 

onto S', then the set of initial outcomes may be reasonably 

small. If not, the procedure of this subsection can itself be 

modified using the procedure of Section 3.2. For example if both 

the initial and new designs are two PSUs per stratum 

and S' consists of s PSUs, then applying the procedure of Section 

3.2 would reduce the number of possible initial outcomes used 

in the transportation problem to (g)+s+l from a maximum of 2'. 

4. LINEAR PRO6RAHMING AS AN ALTERNATIVE TO STRATIFICATION IN 

SELECTING SAMPLE PSlls 

Consider a survey with a multistage design for which the 

PSUs are contiguous geographic areas. A common design technique 

to reduce between PSU variance is to partition the sets of PSUs 

intc a collection of strata of approximately equal measures of 

size, with the PSUs in each stratum homogenous with respect to a* 

key characteristic or characteristics of interest. The sample 

PSUs are then selected independently in each stratum with 

probability proportional to size. Stratification is generally 

effective in reducing between PSU variances. However, there are 

some disadvantages to this procedure. A key problem is that the 

process of forming strata, which fits into the general category 

of clustering problems, is often not an easy task. Furthermore, 

sometimes the deviations from the goal of equal-sized strata are 

nontrivial which tends to increase variances. If two or more 

surveys are to be designed together from stratified designs with 

the sample PSUs for one survey required to be a subset of the 

sample PSUs for the other, then techniques such as collapsing of 

strata may be necessary, which may not be highly efficient. 

Linear programming is considered in this section as an 

alternative to stratification. This approach, as will be 

demonstrated, is conceptually very simple and extremely flexible, 

and software is readily available to solve linear programming 

problems. Unfortunately, there is a serious and, in many 

situations, fatal difficulty associated with the use of linear 
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programming in this context, namely that the size of the linear 

programming problem can readily get so large that it cannot be 

solved in practice even with powerful modern computers. However, 

as will be discussed, there are important situations where either 

this difficulty does not arise, or where some hybrid combination 

of linear programming and stratification may be feasible. 

To state the problem to be considered more specifically, 

consider a multistage sample design for which there are N PSUs 

from which n are to be selected without replacement with 

probability proportional to size. 

Let 'II.. 
1J 

be the probability that the i-th PSU is in the 

- sample of n PSUs and let 'II.. 
1J 

be the probability that both the 

i-th and j-th PSUs are in sample. Let ii be an unbiased 

estimator of the i-th PSU total, Yi, based on sampling at the 

second and subsequent stages. Then (Raj 1968) an unbiased 

estimator, ?, of the population total Y is given by 

ii 

II. ' 
1 

with variance 

N 
'i 

2 

V(i) = 1 (lri71j - llij) (- - LL) + y s-. (4.1) 
i ,j 

II. Il. 
1 J i=l “i 

i<j 

Typically, in determining the sample design, the values of 

the ai 's and Y. 's are fixed beforehand from census data, for 

example. Then'the between PSU variance component of V(F) , which 

is 

N 'i 
2 

1 (‘i”j - “ij) (7 - +J 3 
i ,j 1 

i <j 

(4.2) 

would be minimized by the optimal choice for the ~r..'s 
1J 

-. 
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. 

independently of the only other variables in (4.1), the ~f's. 

This will be the focus of the work in this section, the 

minimization of (4.2) by optimal choice of the n..'s. 
‘3 

For an optimal set of II..'s, 
‘J 

because of the minus sign 

preceding "ij in (4.2), the quantity (Yi/vi-Yj/n. 
J) 

2 
would tend to 

be large for those i,j for which 71.. is large and, likewise, 
‘J 

these two quantities would also tend to be small together. 

The IT 
ij 

's resulting from a stratification typically yield 

such a relationship. For example, if the n sample PSUs are 

selected by partitioning the N PSUs into n equal-sized strata, 

with PSUs in the same stratum having values of Yi/ni as close 

together as possible, and selectiny one PSU per stratum with 

probability proportional to size, then rr..=O if the i-th and j-th 
‘J 

PSLk are in the same stratum and n..=n.n. otherwise. 
1J ‘J 

Likewise, 

if two PSUs per stratum are selected using the Brewer-Durbin 

procedure, for example, or three or more using its generalization 

by Sampford (Cochran, 1977)) then rij<ninj if the pair of PSUs 

are in the same stratum and T..=~.'R. 
‘J ‘J 

otherwise. 

However, linear programming can attack the problem of 

minimizing (4.2) more directly than stratification. (4.2) is 

linear in the only variables, the nij's, so it is only necessary 

to minimize this objective function with respect to these 

variables subject to appropriate linear constraints on 

the n..'s. 
13 

In order to insure that the i-th PSU is selected with 

the required probability, ni, for each i, the following set of 

constraints must be satisfied: 

j=l 
nij=(n-l)ri, i=l,...,N. 

jfi 

(4.3) 

If selecting PSUs with predetermined probabilities is the only 

design requirement, then this would be the only set of 

constraints needed. However, other requirements, such as the 

ability to obtain variance estimates with desirable properties 

would lead to additional constraints as will be described later. 
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A set of II.. 
‘J 

's satisfying (4.3) always exists, since 

the 7.. 
1J 

's arising from the use of Sampford's method yields one 

solution. Unfortunately, for n>2, there does not necessarily 

exist a set of selection probabilities attached to the set of 

distinct n-tuples of PSUs which satisfies an optimal solution to 

the problem of minimizing (4.2) subject to (4.3), that is there 

may be no sampling procedure which actually yields the 

optimal n..'s. 
1J 

For example, if N=4, n=3, Y1/rl = Y2/~2 and 

y3’“3 = Y4/n4, then the following set of II ij's minimize (4.2) 

subject to (4.3). 

92 = ‘734 = 0, 

I 93 = “14 = ‘Rz3 = lrz4 = 314. 

(4.4) 

(4.5) 

However, if 1 
ijk 

denotes the probability that the sample consists 

of the i-th, j-th and k-th PSUs, then nijk must be 0 for all four 

distinct triples in order for (4.4) to be satisfied, in which 

case (4.5) is not satisfied and thus there is no set of T. 
ijk 

's 

satisfying (4.4) and (4.5) simultaneously. 

To avoid this problem in the case n=3, the nijk's could be 

used as variables in (4.2) and (4.3) in place of the 'ir ij's by 

N 
replacing II.. by 1 

IJ k 
nijk in (4.2) and (4.3). This substitution 

W J 
in (4.3) would reduce to 

N 

c ‘ijk = 9 
i=l ,***, N. 

j,k 
j<k 

Similarly for general n, if S denotes the set of distinct 

n-tuples of PSUs and for each SCS, m; denotes the probability 

that s is selected, then if 1 
slzs 

m; is substituted for II.. in 
‘J 

i,jes 
(4.2) and (4.3), these expressions become respectively 

MN 
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N Yi Y. 2 
C Cninj - C ';I (~ - 

i J ses 1 
+-) ' 

J 
i<j i,jes 

and 

c =I; = 'II., i=l 1 ,***, N. 
SES 

(4.6) 

(4.7) 

Since a solution to the optimization problem (4.6), (4.7) 

immediately yields selection probabilities for each possible 

n-tuple of PSUs, the difficulty described with the formulation 

(4.2) and (4.3) cannot occur. Furthermore, Sampford's method 

alffays provides a feasible solution to (4.7). However, in 

practice, a possibly insurmountable operational problem can . 

occur. The number of variables in (4.6) and (4.7) is (:), which 

can be impractically large. Thus the use of this procedure 

appears to be limited to cases where (i) does not exceed the 

software and hardware limitations of the available equipment. 

This method could be potentially applicable to the Current 

Population Survey, which has a state based design, and hence a 

separate linear programming problem for each state. For the 

smaller states at least, (t) may be sufficiently small. 

If (:) is too large to use the linear programming 

formulation directly, a hybrid of statification and linear 

programming could be used. With this approach, stratification 

would first be used to partition the population of PSUs into a 

number of super-strata and linear programming then used to select 

the sample PSUs from each super-stratum. The number of 

super-strata would be smaller than if stratification were used 

alone but there would have to be enough super-strata to insure 

that the linear programming problem corresponding to each 

super-stratum was sufficiently small. 
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When the problem of minimizing (4.6) subject to (4.7) is 

sufficiently small to solve, there are at least two additional 

set of constraints that might be added to the problem in order to 

be able to produce variance estimates with desirable 

properties. They are 

c ? 
’ < lT.H 

i j' 
i,j=l ,***, N, ifj, 

ses 
i,jas 

c =S 
’ > Cn.n 

1 j' 
i,j=l ,..-A ifj, 

SES 
. i,jes 

(4.8) 

(4.9) 

where ccl is a constant. (4.8) and (4.9) are equivalent 

to Yl 
ij 

<a. II 
1 j 

and n..>cn.n 
1J 1 j 

respectively. The reasons for 

requiring these sets of constraints are as follows. If (Raj . 

1968) 7, and k: 
2 

are unbiased estimators of Yi 

and u i respectively, i =l ,...,N, then provided nij>O for all 

i,j=l ,...A ifj, an unbiased estimator of (4.1) is 

v(i) = 
? 

i (ninj-nij ) (+ _ 
?. 

2 *2 

i ,j 'ij 1 
73 i1 

J 

+ "r &. (4.10) 
= 1 

icj 

(4.8) is needed to insure that v(c) is always nonnegative. 

Without (4.9), miii could be 0 for some i,j, in which case v(t) is 

not unbiased. Fuithermore, (4.9) f orces an upper bound of l/c-l 

on (,.,.-,..)/r. 
1 J 1J lj ’ 

The variance of v(F), for a solution to the 

optimization problem that includes (4.9), generally decreases as 

c increases, since l/c-l decreases with increasing c. On the 

other hand V(?) increases with increasing c since the set of 

feasible solutions to (4.9) becomes smaller with increasing c. 

If c becomes too large there are no feasible solutions to the 

optimization problem. Thus the selection of a value for c in 

(4.9) involves a tradeoff between decreasing V(q) and the 

variance of v(V). The determination of a c which optimally 
-. 
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balances these two goals would have to be obtained by trial and 

error or through the solution of a nonlinear programming problem. 

Until now the problem of minimizing between PSU variance 

using linear programming has been considered with respect to only 

a single characteristic. However, a virtually identical approach 

can be used to minimize certain types of averages of the between 

PSU variances for several characteristics. For example, to 

minimize an average of the variances for r characteristics, 

(Yi/'i - ‘j/~j) 
2 

in (4.2) might be replaced by 

i ‘k lYikini 

k=l 
- ‘ik/“j)‘, 

(4.11) 

. 

where Yik is the total for the k-th characteristic in the i-th 

PSU, wk would be either a scaling factor or a preference factor 

or some combination of the two types of factors (see Kostanich et 

al. 1981). Since all the quantities in (4.11) are assumed known,' 

substitution of (4.11) into (4.2) as described does not change 

the form of the optimization problem. 

Linear proyramming is also applicable to the selection of 

sample PSUs for two or more designs when the samples are not 

selected independently from design to design, again assuming that 

the resulting problem is not unmanageably large. For example, 

suppose two samples s1 and s2 are to be chosen for designs 1 and 

2 respectively with the requirement that s2cs1 . One approach 

to this task, not involving linear programming, is to select the 

sample PSUs for design 1 first from a stratification and then to 

collapse the design 1 strata together to form the design 2 

strata, from each of which a subsample of the design 1 sample 

PSUs is chosen. The design 2 strata formed in this way may 

neither be as homogenous nor as nearly equal-sized as they would 

be if designs 1 and 2 were independent, resulting in larger 

between PSU variances. This may be particularly true when the 

number of design 1 strata are small. Similar problems would 
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arise if the design 2 sample was selected first and the design 1 

sample obtained by adding PSUs. 

A linear programming approach can avoid these 

difficulties. Consider the following formulation. For designs 1 

and 2, n1 and n2 PSUs are to be selected respectively without 

replacement, 
(1) (2) from the same population of N PSUs, with mi , 7i 

the probability that the i-th PSU is in the sample for designs 1 

and 2 respectively. Note that if the same measure of size is 

used for both designs then lt)/i?)= n 
l'"2' 

Let S" denote the set 

of al 1 possible joint sample: of'PSUs for the two designs, that 

is al 1 ordered pairs (sl, s2) of dist inct n1 -tuples and n2-tuples 

. respectively with s2cs1, and let 1; 
VS2 

denote the probability 

that s1 and s2 are the set of sample PSUs for designs 1 and 2 

rescectively. The n* 's are the variables in the linear 
s1's2 

programming problem. A two design analogue of objective function 

(4.6) is then 

2 
1 Wk ; (u\kLSk)_ 1 

=4,s2 
> $+ - +I'* (4.12) 

k=l i J 
i<j 

bpS2)ES’ 

i,jesk 

where Yik is the population total for the design k characteristic 

and Wk is a weighting factor that can serve as a combination of 

scaling factor and preference factor for design k. (4.12) is 

easily generalized to situations where there is more than one 

characteristic in the optimization problem for each design. 

The two design analogue of constraints (4.7), (4.8) and 

(4.9) are respectively 

c = 1 ) 
k 
i ' 

i=l ,***, N, k=l,Z, 

bpS2)ES’ 

i ES~ 



1 
(s1+)ES 
i,jesk 

c 
(sp2)ES 

i,jfsk 

“;1’S2 
< T(k)u!k), i,j=l,...,N, ifj 

i J 
, k=l,Z, 

1+2 
> c,(k),!k) 

i J ’ 
i,j=l ,***, N, i#j, k=l,Z. 

In this formulation the selection probabilities for each PSU 

in each design are exactly proportional to the measure of size, 

avoiding the problems arising from collapsing of strata. 
. 
Furthermore, the weights WI, W2 can be used to balance the 

optimality of the two design in a simple manner. The effect on 

the-problem of modification of requirements can also be easily 

ascertained with the linear programming formulation. For 

example, the effect on variances of the requirement that s2cs1 

can be determined by computing the minimal values of the 

objective function with and without this requirement. 

The planned CPS expansion is a potential application of the 

two design, linear programming formulation. Under the current 

proposal sometime after the new CPS design is phased in, 

beginning in 1994, an expansion will take place that will enable 

monthly estimates to be published for all 50 states and the 

District of Columbia. Currently only annual average estimates 

are produced for all but the eleven largest states. For each 

state, s2 and s1 can be considered the design before and after 

the expansion respectively. 
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