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THE COMBINATORIAL COMPLEXITY OF POLYGON OVERLAY 

Alan Saalfeld 
Bureau of the Census 

ABSTRACT 

The number of elementary connected regions arising from polygon overlay of two or more 

map layers is an important value to have in planning for da.ta stora.ge and in making 

processing time estimates for overlay applica.tions. That number may be computed di- 

rectly from the line graphs of the two (or more) layers and from the intersect,ion graph(s) 

of t.hose line graphs. A formula for that computation is derived using tools of algebraic 

and combinatorial topology which relate the connectivity of a union of sets to the con- 

nectivity of the sets themselves a,nd t,heir intersection. The result and the formula ma) 

be stated as follo\vs: 

Suppose ax is the line graph (l-skeleton) of a map. Regard .X a.s embedded in the 

plane. Let r(S) be the number of regions of the plane separated by X. Then r(.Y) 

is the number of connected components in the pla.nar complement of -X: ~(-1~) is also 
one more t.lran the maximum number of independent cycles in t.he graplr .X: and ~(-1~) 

*is easily computed using st.andard gra.ph traversal t.echniques for courlting independent 

cycles. Let c( .Y ) be the number of connect.ed component,s of X. 

If .4 and R are the line graphs of maps to be overlaid, t,hen A U h’ is the line graplr 

of t,he overlay: and: 

All of tire values on t,he right hand side of the equat.ion can be readily computed 

using standard graph t.raversal and line intersection algorithms to obta.in the desired 

value: r( A U I?). the 1n11i11wr of regions a.ft.er overlaying. 

1. INTRODVCTION 

The funda.mental naive combinat.orial question rega.rding polygon overlay is the followirtg: 

If I overlay a map of 7) regions on anot.her ma.p of nx regions. how many regions are there 
in the composite map ? The possible answers are: a,ny number that, is not smaller t.han 

max{rn: n}. Hence. the answer t,hat we give cannot. be a number or even a bound. Llh 

relate the number, instead, by a.11 exact, formula. to the number a,nd kind of line imersec- 

t.ions that occur. In so doing, we t.ransform t.he problem indo one tha.t is more amenable 
t.o analysis and to establishing constraints. In this paper we present some met.hods a.nd 

results of algebra.ic topology that illustrate the nature and the methods of dimensional 

duality for a.ddressing some of the global questions in ma.t.hema.tical cartography. We do 

not pretend t,o develop bheorg of algebra.ic topology in any det.ail here-indeed. t,o arrive 

a.t our small result, we must skim over a grea.t deal of mathemat,ics. The interested rea.der 

is directed to Henle [l] f or more of the topological and combinat.oria.1 det.a.ils a.nd to Hu 

[2] for a more complet,e exposit.ion of algebra.ic concepts. 

This paper introduces and describes a limit,ed number of t.ools of algebraic topology-a 

sufficient number to derive the formula that relates intersections to the number of regions 

of t.he overlay. 



2. PRELIMINARIES: CHANGING TOPOLOGY TO ALGEBRA 

2.1. Basic Concepts in Algebraic Topology 

Algebraic topology is the area. of mathematics that examines algebraic properties of alge- 

braic objects derived from topological spaces. Spaces which are topologically equivalent 

have the same collection of algebra.ic objects associated with them; and mappings be- 

tween topo1ogica.l spa.ces have associat.ed with them mappings between the corresponding 

algebraic objects. Topological problems are converted to algebraic problems under the 

described association (formally t.his association is called the functor from the ca.tegory 

of t.opological spaces and continuous functions t.o t.he category of groups and group ho- 

momorphisms or the cat.egory of rings a.nd ring homomorphisms or some other Jgebraic 
cat.egory). 
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Figure I: A functor converts topological structure to algebraic structure 

Inevitably the algebraic invariants of topological spaces and topological frlnctiolls 

cannot retain all of tlrc topological infornratioli of the spares and functions t.liemsclves. 

Often, for example: the algebraic 0bject.s are finite, or finitel? generated and cnumer- 

able, while the interesting topological objects are uncountably infinite. Nonetlrc4tass. the 

reduction of information content t.o finit.e or finitely generated sets is precisely the trans- 

forma.tion we need to operate wit.h our mathematical model of a-maI’-as-a-continllnnl on 

a computer, which is a finite machilre. The map, which has iIkfinitely many poilit s, is 

pa.rtitioned into finitely many cells, which we call O-cells, I-cells, and 2-cells depending 
on t.heir dimension. Those finitely many cells are used to build algebraic structures called 

chain groups, one group for each relevant dimension; and algebraic boundary operators 

(llomornorphislns) are defined between those groups \rhiclt capt ure tire essential topo- 

logical boundary relations among the O-cells. l-cells. ant1 2-cdls. Each element of the 

n-dimensior1a.l chain group is a formal linear combilratioll of jntlcpelldent s~ml~ols. one 

symbol for each difkrent n-cell. 
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2.2. Building Elementary Algebraic Structures From Topological Spaces 

O-cells: a, b, c, d 
l-cells: 4 B, C, D, E, F 
2-cells: a, P 

Boundary Operators: 

ila=D+F-C-A 
@&-E-D-B 

aA=a-d llB=d-a X=b-a 
iID=c-d aE=b-c ilF=b-c 

ila=ilb=ac=ild=O : 

Figure 2: Cell decomposition of a.nnular region, associated group generators. boundar) 

operators. and typical elements 

The cha.in groups and boundary homomorphisms depend on the choice of cell decompo- 

sition of the space; and a map may usually be decomposed into cells in various ways. 

Figure 3: Two different cell decompositions of a region 

2.3. Building Composite Algebraic Structures From 

Elementary Algebraic Structures on Topological Spaces 

Kew groups: called homology groups, may, in turlr. be derived frown the chain groups 1)~ 
forming quot.ient. groups of distiugujshetl subgroups of cycles and boundaries of t.he chain 



groups. These homology groups surprisingly do not depend on the cell decomposition of 
the topological space, but on t.he space itself! That is, two different cell decompositions of 

the same space will produce two different chain groups, but the distinguished subgroups 

of the two chain groups will always, in turn, produce the same (up to isomorphism) 

collection of homology groups. 

O-cells: a,b,c,d a,b,c,d,e,f 
l-cells: A,B,C,D,E,F A,C,D,F,G,H,I,J,K 
2-cells: a$ a&y 

Generator of l-dimensional homology group: 

[A+B]=[F-E] 
because 

A+B=F-E-d{a+P} 

[A+G-H]=[F+J-K] 
because 

A+G-H=F+J-K-a{a+&q} 

Figure 4: Different cell decompositions yield same homolog! 

Kow let’s look at the untlcrl~jrig significance of Iton~olog~ groups, a.nd \ve Ivjll describe 

witlrout proof tlkc struct.ure of hor~~olog~ for niany t,opological spares. including plane 

graphs (i.e. the linework of our cartographic objects). 

2.4. Some Examples of Homology Groups 

Homology groups describe the connectivity structure of the topological space. For maps 

represented by a full complement of O-cells. l-cells a.nd 2-cells, the homology groups 

a.re uninterestingly trivial because the full cell structure adds up t.o a space \vhjch is 

topologically trivial-i.e. equivaknt to a rectangle or (if it is a world map) equivalent t.0 a 

sphere. All homology groups of a rcct angle are 0 except the O-dimensional group, \vlljch 

is Z, a single copy of the integers. \I’e write Ilo = Z. 

For the sphere. we have Ho(S) = Hz(S) = 2. and for all i different from 0 and 2. 

Hi(S) = 0. 
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The somewhat more useful homology groups are those of the line network (sometimes 

called the l-skeleton) of the map. The I-dimensi0na.l homology group measures simple 

connectivity (or la.ck thereof) of the topological space; and the graph network has many 

cycles and thus is not simply connected (“Simply connected” means that any loop can 

be shrunk continuously to a point without leaving the space.) The plane and the sphere 

are both simply connect.ed. The annu1a.r region of figures 2 to 4 is not simply connected, 

hence HI of t,hat region is not 0. 

The following are useful summaries of how homology groups behave for the line gra.ph 

network of a map and what they show about that network: 

5A 5B 

Figure .5: A map (A) and its line graph network (B). 

For a topological spare consisting of the linework of a planar graph (such as shown 

in figure 5B). the lioniolog~ groups have tile following structure: 

H]o(S)= zcy:z+z+... 8 Z G Z. n copies of Z. the integers, where n is the number 
of connecr.4 components of X. In the case sho\vn in figure .5B, n = 4. 

II,(X) = z ;3- 7, $ z q- . . . * Z + Z. nl copies of Z, the integers. where m js t.lle 
maxjmurn nunlher of iridepclident cycles of 1he graph X (“cycles” in the graph-theoretic 

sense. “independent” in the algebraic sense-no non-trivial linear combinations of t.hese 
elements are zero.) In the casv shown in figure 5B. 7)) = IO, and a coll~~ction of generators 

for tllose cycles (in the graph sense) \voultl be sums of the appropriateI>, signed edges 

making up the outer boundaries of the ten regions sho\vIl in figure 5A. Notice that there 

are far more than IO different cycles on the graph. \l’hat the lio~~iolog~ group cap1 ures 

with its algebraic structure is the dependence relations of all of those infinitely man) 

cycles. The homology group is more t.han just a rount of 1101~ many independent cycles 

there a.re! 

Hi(X) = 0 for all i > 3 since the line graph ,X has no 2-dimensional or higher 

dimensional elements which might. generate cycles in t.he homology sense. 

Loosely speaking. then. Ilo counls connected components of the line netivork. and 

HI. though it is the- homology group of t.he line net\vork itself. also ~011111s fundanlental 

(interior) regions delimited by the line network. 

.- 
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3. ALGEBRAIC TOOLS 

3.1. Semi-exa.ct Sequences a.nd Exact Sequences 

Algebraists have developed a, standa.rdized shorthand notation to describe essential struc- 

ture of int.erest.ing subgroups and quotient groups: They have converted 0bject.s into 

homomorphisms and into sequences of homomorphisms in order to treat objects a.nd 

homomorphisms wit,h the same tools a.nd operators. The tools focus on two import,ant 

subgroups of a homomorphism, the kernel (ker) a.nd t.he image (Im). 

If 9 : C; - Ii is a homomorphisms of groups t.hen: 

ker(Q) = {g E G’/@(g) = ch, the idenlitg of Ii} 

and 
Im(@) = {k E I<lk = Q(y)for some g E G’}. 

If a sequence of two or more homomorphisms may be composed with each other because 

the appropriate domains and ra.nges match, then we may examine the relation of the 
image of a honiomorphisms to t.he kernel of jts successor: 

If the image Im( @i-l;) is contained in the kernel ker( @?-A.-] ) for all meaningful values of 

k. then we say that t hc above sequence is semi-exact.. 

If the image Im(@i-k) is equal to the kernel ker(@i-l;-, ) for all nleanjngful values of 

X.: then the sequence is exact. 

The two fundamental results on sequences of clra.in groups and induced groups. given 

without proof. are the follo\ving: 

1. The boundary operators for chain groups always yield semi-exact sequences. 

Elemcnbs that lie in the kernel of a boundary operator have zero boundary; and we 

call them cycles. Elements that lie in the image of the bounda.ry operator are called 

boundaries (because they are boundaries of somet.hing!) Cycles tha.t are not bound- 

aries generate the homology groups. which describe the exf.ent to \vhjclr t,lre semi-esact 

sequences indnccd by the boundary operators fail to be esact. 

2. Homology groups may be embedded in natural exact sequences whose homornor- 

plrjsrns are indllced by the boundary operators and illclusiolr maps. 

One such exact homology sequence is the illayer-Viet.oris Exact Homology Sequence 

described in the Jlf?Xt section. 

3.2. The Mayer-vjetoris Exact Homology Sequence 

The Mayer-Vietorjs Exact Homology Sequence relates the homology groups of the union 

and intersection of two “nice” topological spaces to the homology groups of t.he spaces 

t.hemselves by embedding all the groups in an exact. sequence: 

. ..- n;(AnL3)--~i(A)~~~i(U)--11,(.4un)~a;_,(Ann)--.. 

Iinowing that. a sequence is exact. and kno!vjng some of its groups, one may oftell deduce 

the missing groups. Tha,t is tlrc approa.ch t,hat this exposition will urilize. \Ve \vjlI no1 



worry about the way in which the exact sequence is defined. The interested reader is 

referred t.o Hu [2] f or a full explana.tion of t.he Mayer-Vietoris Sequence and sufficient 

conditions on the topological spa.ces A a.nd R to guarant,ee exactness of the sequence. 

4. USEFUL PROPERTIES OF HOMORPHISMS AND EXACTNESS 

4.1. Rank of a commutat,ive group 

All of our homology groups are commutat.ive and are finitely generated. Suppose that 

we have any commut.ative group that is finitely generat.ed. Then the theory of groups 

tells us that the commutative group may he regarded as a direct sum of a number n of 

copies of t.he integers Z, Z 6~ Z $I Z $1 . . . 5 Z + Z, plus 7’, the t,orsion or finite subgroup of 

the larger group consisting of all elements of finit.e period. 

The value n totally and uniquely dcterntines t.he algebraic structure of the torsion 

free part of this direct sum. The number R is called the rank of the group: and for an! 

group homomorphism @, the rank has the following nice additive property: 

rank(G’) = rank(ker(@)) + rank(lm(@)) 

\Ve Ivill use this property to prove an important letnma. 

4.2. Telescoping Lemma 

The next lemma is the key to constructing a missing group in au csact sequence of 

groups: 

Lemma: Suppose that the sequence given below is exact and tllat each group G’; ha.s 

rank R;. 

(-I)“rank(G’,) + (-I)“-‘rank(G’,-1) t .. .+ rank(G2) - rarrk(C;t) = e(-I)‘rank(G’;) 

i=l 

Then this sum is zero by the exactness of the sequence. 

Proof of the lemma: 

Call ra.nk( ker( Qz ))“k,‘. and call rank( Im( @i))“I;“. 

Let ku = rank(ker(@u)) = 1, = 0 to simplify notation. 

For i > 0, each rank(G’;) = rank(ker(@;)) + rank(fm(Q~)) 

= k, + J; 

= rank(kcr( @i)) + rank(ker(@;-1)) 

= k; + ki-* 



Thus: 2(--l)‘rank(G’;) = k( -1 );ni 
i=l i=l 

= &)‘(ki + k;J 
i=l 

But the alternating sum ca.uses a.ll t.erms to cancel except possibly: 

k, + I, = rank( ker(@,,)) - rank(Im( @I)) 

But, by exactness, ker(@,) = Im(+,+t) = 0, and Im(Qtt) = 0. For consistency, we let 

ra.nk(O) = 0. 

Next we see why rank is useful to know. 

5. APPLYING THE RESITLTS TO THE OVERLAY PROBLEM 

w 

Kow let’s put some of our results t.ogetIler. \Ve know SOIIIC homology groups. \2,‘e have 

seen one exact sequence, the Ma!er-Vietoris Sequence, which relates I-101110logy gr011ps 

Jor t,wo spaces. their union. and their intersection. Finally we have t,lre t.elcscoping lemnia 

which allows us to relate in a single equation the ranks of all of t,he homology groups that 

appear in an exact sequence. \Ve merely need toobserve how we cat] actually calculate the 
ra.nks of all but OIW of the homology groups that appear in the Ivfayer-\‘ietoris Sequence. 

a.nd then we xvi11 ~IIOW the rerna.ining group’s rank. 

Let A and B be two lir~c graphs of maps to be overlaid. Then tlte portion of the 

Mayer-Vietoris sequence that inay contain non-zero entries is the following: 

. ..i H2(A u B) - Hj(A n B) - H,(A)& N,(B) - H1(.4 U B) - 

--IJo(An13)-Ho(.4)~~Ho(L3)--HU(AuB)--H-1(.4n~)--.. 

where both H2( ,4 U R) and 11-r (-4 n II) are zero. 

The t,erm in the sequence that we want to couipute is IJt( ,4 U B); arld \ve cat! find 

that term by examining AnB, t.he intersection graplt. Standard grapll traversal met llods 

allow us to detect all rommon components of .4 and fl and to find their intersect ioils. 

All that remains is to describe .4 n B in terms of its 11111111wr of disconriected coml)otictlt~s 

and its number of independent cycles. Again st.andard graph traversal techniques perniit 

us to derive t.hese numbers. 

‘I’IICII \vc know from t IIC Telescoping Lemma that: 

rank(llr(il n B)) - rank(Ht(.4) CF H,(a)) + rank(Hr(.4 u B))- 
rank( Ilu( A n B)) + rank(Hu( A) 4 EJc,( a)) - rank( Hu( .4 u B)) = 0. 

Furthermore, the rank of a direct sum is just the sum of the ranks: 

rank( H;(A) 6 H,( B)) = rank( H;( .4 )) -t- rank( H;( B)) 

Finally. recall that the ra.nk(Hr(.Y)) is just a count of the interior regions separated b> 

the line graph X: and rank(Hu( S)) is simply the number of components of-Y. Putting 

it all together. and using tlic notation: 

1.(.X) = rank(I1t(,?i))and c(S) = rank(1/u(,Y)). 
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we get: 

r(A fl B) - (r(A) + F(B)) + r(A U B) - c(A n B) + (c(A) + c(B)) - c(A u B) = 0 

Notice further tha.t if r’(X) represents the total number of regions of the map (not just 

the interior regions), then the equation still holds (because r’(X) = r(X) + 1, and r 

appears twice with a plus sign and twice with a negative sign): 

+‘(A n B) - (r’(A) + T’(B)) $ T’(A u B) - c(A n B) t (C(A) t c(B)) - c(A u B) = 0 

Isolating r(A U B) (or r’) we get: 

T(A u B) = T(A) - c(A) + T(B) - c(B) - (T(A n B) - c(A n B)) t C( A u R) 

We conclude wit,h the example in figure 6 to illustra.te our methods. 

AUB 

. 
. 

. 

I I I 
. . 

. 
. 

AnB 

Figure 6: Deriving the C’omplexity of Overlaying A and B 

In figure 6 we see that r(A) = 13. r(R) = 6, and ~(~4 n B) = 3. Moreover, because 

A? B, and A U B are all connect.ed, c( il) = c(n) = c(,4 u n) = 1. Finally: the number of 

components of A n B, c(.4 n B), is 9. Thus by our formula r(.4 U B) = 24. 

We see from our example t.ha.t a critical contribut.or to t,he sum on the right is the 
term c(A n B), the number of new components (usually isolated intersect.ions) of t,he 

intersect.ion graph. By our formula. every new intersection gives rise to a new region! This 

observation may be useful in estimating the number of new regions that arise in overlal 

operations. If. for example? we can place a bound on the number of new intersections 

t.hat will occur. t.hen we can conclude that t.he nunthar of new regions will be bounded 
accordingly. This is a nice duality relation t.hat we will develop in a later, longer paper. 
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6. CONCLUSIONS 

We ha.ve introduced a few useful idea.s from t,he realm of algebraic topology in order 

to illustrate one way of a.pplying important, duality rela.tions to a specific combinatorial 

problem. In effect we have converted the problem of det,ermining the number of regions 

arising from polygon overlay to a gra.ph traversal and intersection detection problem. 

Further resea.rch is planned along the following lines: 

1. Describe properties of the line segments in the line networks to be overlaid (such 

a.s ext,ent, density, etc.) that would produce a gua.ra,nteed bound on the number and type 

of int,ersections and a. corresponding bound on the number of new regions creat,ed. 

2. Integrate topological information into the computation of the intersection graph 

in order to prevent slivers, gaps, and other a.nomalies due to geometric imprecision. 

3. Develop rela.tive homology groups for a.nalysis of local combinatorial duality rela- 

tionships. 

I will write up new results and ela.boration of the results sket.ched here in a more ext,ensive 

resea.rch paper. 
* 
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