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1. Introduction 

Papers by Scott and Smith (1974), and Scott, Smith, and Jones (1977) 

suggested the use of signal extraction results from time series analysis to 

improve estimates in periodic surveys. Given models for the true 

unobserved time series (population quantities) and the sampling errors, 

these results produce estimates of the population quantities that have 

minimum mean squared error among estimates that are linear functions of the 

observed time series of survey estimates. To apply these results in 

practice one must model the time series structure of both the population 

'quantities and the sampling errors. This presents certain difficulties, 

which have impeded the adoption of signal extraction techniques by 

goveient agencies doing periodic surveys. Research efforts have expanded 

in recent years to attempt to address some of the problems involved. See, 

e.g., Hausman and Watson (19851, Miazaki (19851, Rao, Srinath, and 

Quenneville (19861, Bell and Hillmer (19871, Tam (19871, and Binder and 

Dick (1986). 

This paper expands on our previous work (Bell and Hillmer 1987) to 

address some of the modeling and computational issues involved in applying 

signal extraction techniques to periodic surveys. Section 2 reviews some 

theoretical results obtained in Bell and Hillmer (1987). Section 3 briefly 

discusses modeling of the signal (population quantities) and noise 

(sampling error) components. Section 4 discusses the use of the Kalman 

filter and smoother for doing the computations needed for model estimation 

and signal extraction. Finally, in section 5 we apply these ideas and 

results to two Census Bureau time series. 



2. Theoretical Results 

We let Y, denote the time series of the usual survey estimates, St 

denote the population quantities being estimated, and Nt denote the 

sampling error in Yt as an estimate of St. The basic decomposition is 

Yt 
= St + Nt . (2.1) 

This differs from the notation originally used by Scott and Smith (19741, 

Scott, Smith, and Jones (1977), and in Bell and Hillmer (19871, where 8, 

and et are used instead of St and N+,. Our choice of notation here is made 

to c&form to the time series signal extraction literature, where St 

denotes the signal and Nt the noise. We will also want to use the 

multiplicative decomposition 

Y, = St ’ ut = sp + tit' (2.2) 

where U 
t 

= Nt/St and U+, = 1 + fit. Taking logs transforms (2.2) into an 

additive decomposition for ln(Y$: 

ln(Yt) = ln(St> + ln(Ut> (2.3). 

Working with ln(Yt) is often useful, as will be discussed in section 3. 

The theoretical results that follow are obtained under fairly general 

conditions in Bell and Hillmer (1987), where the assumptions are stated 

explicitly and proofs are given. Here we briefly state the results and 

review their implications. 
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Result 2.1: If Yt is design unbiased for all t, then St and It are 

uncorrelated time series. 

Result 2.2: If Y, is design unbiased for all t, then ln(St) and ln(U+,> are 

approximately uncorrelated time series. 

These results are useful since time series signal extraction results (see 

Section 4) typically assume St and Nt are uncorrelated time series. 

Design consistency of signal extraction estimates is established under 

the s<perpopulation framework of Fuller and Isaki (1981). Let Yf (from the 

Ph sample at time t) be a sequence of estimators of the characteristic Sf 

of the Cth population at time t, where the populations and samples for 

t = 1,2,... are nested. (See their paper for details.) Let Sf be the 

signal extraction estimate of Sf using the time series Yf -- see section 4 

for formulas. We have the following results: 

Result 2.3: If Yf + Sf in mean square as L + m, then Sf + Sf in mean 

square as L + m. 

Result 2.4: If Y; -) St" in probability as .4! + m and there exist random 

variables ct with finite variance such that IBE1 5 ct (almost surely) 

uniformly in L, then Sf -I Sf in probability as .! + m. 

If we take logarithms, we similarly define ln($) as a signal 

extraction estimate of ln(S$ using the time series ln(Yf). We have, 
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Result 2.5: If Yf + Sf 
t 

in mean square as II + co, then ln(Yt) + In(Sf) and 

-.! c 
ln(St> + ln(St> in mean square as e + m. 

As before, a convergence in probability result can be obtained by imposing 

a boundedness condition on the ln(Ut). We can use exp[ln($)l as an 

estimate of St" = expCln(S:)] and have the following corollary to Result 

2.5. 

,Corollarv: If Yi + St" 
-c c 

in mean square as L + m, then exp [lnGt>l + St in 

probability as ! -+ m. 

What these consistency results show is that if the errors in the 
a 

original estimates Yt of St are small then the errors St - St will be small 

as well. This is because when there is little error in the original 

estimates, Y t, the time series approach will not change them much. Binder 

and Dick (1986) have noted this phenomenon, and also pointed out that in 

this case it does not matter what time series model is used. Thus, the 

consistency results apply to the use of models with estimated parameters. 

While it is reassuring to know that the time series estimates behave 

sensibly in the situation of small error in the original estimates, the 

gains from the time series approach will come in the opposite case -- when 

Var(N+,) is large. 



3. Component Modeling 

Fundamental to our development of models for both the St and Nt 

components will be the use of ARIMA (autoregressive-integrated-moving 

average) models. Some familiarity with ARIMA models (as in Box and Jenkins 

1970) is assumed here. Since such models have often been used successfully 

for the analysis of observed series Yt from periodic surveys with little or 

no sampling error, it seems likely that they should also prove useful for 

modeling St. Using ARIMA models with the sampling error component, Nt, may 

,be thought of more as a useful approximation, though, in some cases, 

aspects of the survey design or the form of the estimates Y, may suggest 

some *use of ARIMA structure for N 
Ii' 

Use of ARIHA models facilitates model 

estimation and signal extraction, since techniques for these are 

well-developed for ARIHA models. In what follows we assume the Yt are 

design unbiased estimates of St, so that (Results 2.1 and 2.2) St and Nt 

are time series uncorrelated with each other. 

3.1 Modeling the Signal Comnonent (Population Quantities). S 

Since we shall assume the model for Nt is estimated using survey 

microdata and bowledge of the survey design, and not using the time series 

Yt' 
we can use Yt in developing and estimating the model for St. One 

approach to modeling St is to model Yt directly and deduce the model for St 

from those for Yt and N,. This would use the fact that since St and N, are 

time series uncorrelated with each other 

C”v(Yt’Yt+k) = cov(st,st+k) + cOV(Nt,Nt+k) . (3.1) 

Three potential problems can arise with this approach. One is that the 
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covariance function for St resulting from (3.1) may not be positive 

semi-definite. Another is that, especially with seasonal data, even 

relatively simple models for St and It can lead through (3.1) to a 

relatively complicated model for Yt of the sort that would not be developed 

when modeling Yt directly. Thus, taking a simple model for Yt, estimating 

it, and solving for the model for St, could miss important features of St 

and yield a bad approximation to the covariance structure of St. The third 

problem occurs if Nt exhibits known nonstationarities such as a variance 

shanging over time. It is difficult to account for such nonstationarities 

in Nt when modeling Y, directly, which can lead to an inferior model for St 

as well. 

(3.1) might be more useful in model identification. One could use it 

to obtain autocovariance estimates for St given those for Nt and sample 

autocovariances for Y, (the same could be done for differenced St using 

differenced Y,>, and the resulting autocorrelation estimates could be used 

in model identification for S 
t' 

Partial autocorrelations could also be 

computed. The problem of COV(S,,S,+~ ) not being positive semi-definite can 

arise here as well, though it may not be important in identification. 

Experience with modeling time series Yt suggests that dealing with 

nonstationarity in St will be very important. Nonlinear transformations, 

differencing, and use of regression mean functions can be quite useful 

methods for dealing with the usual types of nonstationarity in St. 

The logarithm is a common transformation used in time series analysis. 

It is particularly convenient here because of the decomposition (2.3). 

Fortunately, it often makes sense to work with ln(Ut) as well as ln(St>, as 

we shall discuss in section 3.2. Other transformations than the logarithm 

could be used, though they will not generally lead to an additive 
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decomposition for transformed Yt in terms of transformed St and sampling 

error that can easily be used to produce an estimate of St. It seems 

likely that a choice of either taking logarithms or not transforming will 

be sufficient to deal with many cases. 

Most observed time series appear to require differencing to produce a 

stationary series. We shall assume here that the model for Nt does not 

involve differencing, so that Y, and St will then require the same 

differencing operator. Common choices of differencing operator are l-B, 

j-B12 3 and (l-B>(1-B12), the latt er two for monthly seasonal data. (B is 

the backshift operator, BYt = Y 
t-1). 

If N, does not require differencing 

then C&r(Nt,Nt+k) should di e out with increasing k while CO~~(S,,S,+~) and 

Corr(Y Y t, t+k) do not. Thus, sample correlations of Yt could be used to 

identify the differencing operator for Yt and S 
t' Or we 

could construct 

estimates of autocorrelations for St as suggested earlier and use these to 

identify differencing for St. 

If Yt is design unbiased, then E(Yt) = E(St) and E(Nt) = 0. It is 

often useful to allow E(Yt) = E(St) = p,, say, to vary over time. This is 

conveniently done with a parametric form for p,, such as the linear 

regression function pLt = plXit + . . . + p,xmt. Examples of useful 

regression variables are trading-day and holiday variables for modeling 

calendar variation (Bell and Hillmer 19831, seasonal indicator variables 

for a stable seasonal pattern, and intervention and outlier variables to 

model unusual behavior of the series due to known or unknown causes (see 

Hillmer, Bell, and Tiao 1983). Other types of regression variables may be 

suggested in particular applications. We recommend against the use of 

polynomial functions of time for the Xit since differencing seems generally 

more appropriate, and use of polynomial regression on time can have bad 
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consequences in this case. (See Nelson and Kang 1984 and the references 

given there.) 

The models we shall use for St can be written in the form 

m 
St = ' Bixit + 

fls(B) 

i-l &(B)6(B) bt 
(3.2) 

where 6(B), #S(B), es(B) are the (possibly multiplicative) differencing, 

autoregressive (AR), 
. 

and moving average (MA) operators, and b, is a white 

noise series (iid N(0, 

for = 

This can be thought of as convenient notation 

b(B) CS, - i pixitl = 
t&(B) 

i=l 4s (B) 
bt (3.3) 

showing that the Xit must be differenced in the same way as St. We can 

also substitute ln(St) for St in (3.2) and (3.3). Several approaches can 

be used to specify the AR and MA operators in (3.2). We could use 

estimated autocorrelations and partial autocorrelations for St, and follow 

the scheme in Box and Jenkins (1970). We could just pick simple AR and MA 

operators, and (1) estimate and diagnostic check the resulting model, 

modifying the model if it seems inadequate, or (2) try several different 

models and use a model selection criterion, such as AIC (Akaike 1973) to 

choose among them. An approach we have found useful is to first model Y, 

directly, and then use the resulting form of this model for St, but 

reestimating the parameters taking the sampling error component into 

account. If there is not an excessive amount of sampling error present, 
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the model for Yt should at least provide a useful starting point in 

modeling St. Details of the modeling are best illustrated in the examples 

of section 5. 

3.2 Modeling the Sampling Errors, N. 

The first step in modeling It is to estimate the sampling error 

covariances over time, Cov (IJt, Nt+k) . In principle, this is the same 

problem as estimation of sampling variances (k=O), which is routinely done 

for periodic surveys and for which many methods are available (Walter 

J985). In practice, there may be difficulties in linking survey microdata 

over time to do this. We shall not address these problems here, but will 

assum~estimates cN(t,t+k) and rN(t,t+k) of COV(N~,N~+~) and Corr(Nt,Nt+k) 

are available. 

We could attempt to use the c8(t,t+k) directly in signal extraction, 

but this runs into two problems. The first is that cN(t ,t+k) may not be 

positive semi-definite. The second is that the estimates cN(t,t+k) and 

rN(t,t+k) are likely to be highly variable if Var(N+,) is large. This is 

the situation where signal extraction can make substantial difference in 

the estimates of St (see section 2). If we can assume stationarity of Nt, 

so that its covariances and correlations depend only on the lag so that 

COV(N~,N~+~) = TN(k) for all t, then we can average the estimates of 

covariances or correlations over time to improve them. For example, with 

estimates rN(t,t+k) for t = l,...,T-k (k > 0) of Corr(N t, t+k) N = pN(k) , we 

could use 

T-k 
jjN(k) = & z rN(t,t+k) . 

t=1 
(3.4) 
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We can do this averaging over segments of the time series if Nt is not 

stationary over the full length of the series, as discussed later. 

In order to parsimoniously represent the correlation structure of Nt, 

we shall make use of ARMA models. We could pick the parameters of the ARMA 

model so the correlations from the model reasonably approximate the jjN(k) 

(possibly to minimize some measure of the discrepancy), or we could solve 

for the model parameters to exactly produce some of the j,(k). We should 

also use any relevant knowledge we have regarding the survey design or 

estimators Yt in developing the ARMA model for Nt. One important fact is 

that PN(k) = 0 at any lags k where the samples do not overlap and are drawn 

indepezdently. Miazaki (1985) used such knowledge in modeling sampling 

errors in the National Crime Survey, and Hausman and Watson (1985) did so 

with the Current Population Survey (CPS). However, one must be careful in 

doing this. Train, Cahoon, and Makens (1978) estimated sampling error 

correlations in the CPS and obtained apparently nonzero correlations at 

lags with no sample overlap. These seemed due to the fact that when a 

housing unit leaves CPS it is generally replaced with one from the same 

neighborhood. D. G. Steel and R. G. De Mel of the Australian Bureau of 

Statistics, in unpublished work, developed sampling error models that 

attempt to account for this phenomenon in the Australian Labor Force 

Survey. 

We will often need to allow Nt to have a variance that changes over 

time. In some cases it may be appropriate to assume that the relative 

variance, R 
t 
= Var(Nt)/Sg (where Var is taken with respect to the sampling 

distribution), is stable over time. Consider the decomposition (2.3). A 

simple Taylor expansion argument suggests that 
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Var[ln(Ut)l x Var(Ut) = E(Rt) 

if fit is not too large. If E(Rt) can be assumed constant over time, and if 

it makes sense to model ln(St>, then we take ln(Yt) and use (2.3) with 

models for ln(St) and ln(Ut>. In modeling ln(Ut> we use the fact that 

correlations are approximately unchanged by transformations such as the 

logarithm. (This again follows by approximating the transformation with a 

first order Taylor series.) 

- If neither the original nor relative variance of Nt is constant over 

time, or if the same transformation is not appropriate for both St and It, 

then v'e need to let Var(N$ change over time. This could occur, for 

example, if the population variance (over the individual units) was 

constant over time but the sample size changed. We shall then use a model 

for Nt of the form 

Nt 
= h(t) i$ (N(B)fit = BN(B)ct (3.5) 

where ct is white noise (iid N(O,C~)), a, has constant variance over time, 

and h(t) 2 0 is such that Var(Nt> = h(t)* Var($). If Var(Nt) does not 

change over time we use h(t) E 1. 

Another problem that can occur is that of modeling the effect of 

sample redesigns. For example, suppose we are modeling data at times 

t=l,...,T , and att= Tl+l the sample is independently redrawn, with the 

first sample in effect from t = l,...,T1 and the second from 

t = Tl+l,...,T. We handle this by generalizing (3.5) to 
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Nt = hl(t)Nlt + h2(t)N2t /N(B)Nit = BN(B)cit i = 1,2 

h(t) t 5 T1 0 
hi(t) = 

t 5 T1 
o 

t > T1 h2(t) = h(t) t > T1 ' (3.6) 

C it iid N(0, (1 i = 1,2 

Here Nit is assumed independent of N 
?i 

for all t,j. Thus, Nit is the 

sampling error fromt = l,...,T 
1 
and N 2t is the sampling error from 

i = Tl+l,...,T. We have assumed the same ARMA model for Nit and N2t though 

this zould be generalized. We can also obviously generalize (3.6) to 

handle more than two segments of the series (more than one redrawing of the 

sample.) 

We do not mean to imply that the techniques described here can 

perfectly represent the covariance structure of Nt. We are merely 

suggesting these as useful tools for first approximations. Much 

fundamental work still remains in developing time series models for 

sampling errors. 

4. Comnutations for Model Estimation and Signal Extraction 

Three general approaches to deriving time series results and doing 

computations might be called the classical approach, the matrix approach, 

and the Kalman filter approach. Each has its relative advantages and 

disadvantages. We shall use the Kalman filter approach here (see Anderson 

and Moore 1979 for a general discussion) because it is particularly 

convenient for handling component models with such features as changing 



13 

variances over time. The classical approach, which works directly with 

linear filters and difference equation forms of models, is not well suited 

to estimation of component models, nor to signal extraction with changing 

variances. The matrix approach can be readily used for component model 

estimation and signal extraction, as discussed in Bell and Hillmer (19881, 

though dealing with variances changing over time presents some problems not 

considered there. 

Before developing the Kalman filter approach we give classical and 

matrix signal extraction results for the case where Nt is stationary. This 

shows what is being calculated by the Kalman smoother recursions for this 

case. * The classical results are most easily expressed for the case where 

the entire doubly infinite realization {Yt: t=O,fl,*2,...) is available. 
. 

Then the signal extraction estimate S 
Ii' 

and autocovariance generating 

function (ACGF) of the error St - St, are given by 

rp it = pt + - 
7, (B) (yt - Pt) 

(4.1) 

In (4.1) pt = z biXit is the mean function, 7,(B) = !! Tu(k)Bk is the ACGF 
i -m 

of u 
t = 6(B)(St - pt>, rw(B) is the ACGF of wt = 6(B) (Y, - /.J,>, rN(B) is 

the ACGF of Nt, 6(B) is the differencing operator needed for St and Yt, and 

F = B-l. We can alternatively express St as 

it = Yt - iit, it = 
TN(B) J(B) b(F) 

(yt - Pt) (4.2) 
rw (B) 
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St has long been known to be the "optimal" (minimum mean squared error 

(MMSE) linear) estimator when St and Nt are both stationary, i.e. 6(B) = 1 

(see, e.g. Whittle 1963). Bell (1984) notes it is also optimal when St 

requires differencing under certain assumptions about starting values for 

St and Yt, the series that need to be differenced. The results can be 

modified to deal with semi-infinite data (Yt for t = T, T-l, T-2,...) or 

finite data. The classical results were used by Scott and Smith (1974), 

and Scott, Smith, and Jones (1977). 

Now assume Yt is available for t = l,...,T and let Y = (Y,,...,Y,)'. 

* 

Similarly define S, N, and p, let w = (w~+~,...,w~) be the differences of 
- a# 

the Yt data with means removed, (where d is the degree of the differencing 

operator S(B)), and let Xw = Var(w) and EN = Var(N). Define the (n-d) x n 

matrix A by 

-6, . . . 4, 1 

A = I *. . . ‘.. . . . 
*_ s, ..:-6, 1 

so w = A0 - /.d ” s. 

i =y-i 
s.. .., .., 

Then (Bell and Hillmer 1988) 

i = B,A 3;‘A (Y - k> = X,A f X;‘w .., . 

(4.3) 

var(s - i> = ZEN - ENA2;1AxN . .., .., 

Notice the analogy with (4.1) and (4.2). However, this S is obtained using 
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the "transformation approach" of Ansley and Kohn (1985); it is optimal 

among linear estimators of S such that the error S - S does not depend on 
". m 

starting values for the St series (Kohn and Ansley 1987). It is globally 

optimal under the same assumptions about starting values referred to above 

(Bell and Hillmer 1988). The results in (4.3) were given without a sound 

justification in R. G. Jones (1980). If no differencing is required A = I 

and (4.3) reduces to the usual linear projection results. 

1.1 State Space Form and the Kalman Filter 

An ARIMA model can be put in state space form (see, e.g. Ansley and 

Kohn li85), which we illustrate as follows. For the moment let Zt be a 

zero mean time series following the ARIMA model G(B)((B)Zt = B(B>at. First 

let a(B) = 6(B)#(B) = l-&B - . . . - &Br and B(B) = l+B . . . - tiqBq. 

Define the f x 1 "state vector" X(t) = (Xl(t>,...,Xf(t>)' , where 

f = max(r,q+l), by X,(t) = Zt and 

Xi&> = 
j=i J t-l+i-j 

i=2,...,f . 

k 
(C isOifi>k.) LetthefxlvectorH= (l,O,...,O>', the f x 1 
j=i 

vector G = (1,-e,,..., -flo-,)', and the f x f matrix 

F= 

if1 1. . . . 

: 1 

. 
'1 

j, . . . . 0 
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Then we can write the state space form of the model for Zt as 

X(t+l) = F X(t) + G at+1 
. - 

(4.4) 

Z 
t+1 

= H' X(t+l) . 
.., - 

Returning now to our component set up with Yt = St + N, = St + h(t)$, 

we now let Z, = Y, - ,%,, S, = S, - p,, and define state space 
1. L 

. 

representations analogous 

X,(t+l> = FS X,(t) + 

L ‘9 L L 

to (4.4) for the models for 5, and I$: 

Gs bt+l X,(t+l) = FN X,(t) + GN ct+l 

5 
. 

t+1 
= II6 yt+11 = Xsl(t+l) 

It+1 .., 
= Hi XN(t+l) = XNl(t+l> 

where X (t) has dimension fs = 
3 

max(rs,qs+l) and XN(t) has dimension 

fn = max(pn,qn+l). Now let X(t) = (X,(t)', X,(t)')' be f x 1 with 

f = fs+fn, let 

F=[;' ;,I G= ['G;] 

and let H(t) = Cl,O,...,O,h(t),O,..., 01' where h(t) is the fs+l element of 

H(t). Then we have the state space form of the model for Zt = Yt - pt: 



(4.5) 
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b 
X(t+l) = F X(t) + G 

t+1 -[ 1 Ct+l 

Z = H(t+l) X(t+l> 
t+1 " " 

The Kalman filter is a recursive scheme for producing "optimal" 

estimates of the state vectors X(t) and X(t+l) using data Zl,...,Z,, along 

with covariance matrices of the errors in these estimates. Let X(tlt) and 

i(t+llt) be the estimates, and let P(tlt> = Var(X(t) - X(tlt)> and 

P(t+llt) = Var(X(t+l) - X(t+llt)>. The Kalman filter recursive equations 

(Ander:on and Moore 1979, p. 40) can be written for our problem as 

X(t+1 

P(t+l 

Vt+l = Var(c t+l> = ;(t+l)' P(t+llt) H(t+l) 

It+11 = X<t+1 It> + P(t+ljt> H(t+l) ~~+l/v~+l 

It> - P(t+ljt> H(t+l) H(t+l)' P(t+l It+11 = P(t+l 

X(t+llt> = F ir(tlt) 

P(t+llt> = F P(tjt)F' + 

%+l = 
Z t+1 - IJ(t+W i(t+llt> 

(4.6) 

wvt+i 
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Another way to look at the Kalman filter is that it linearly transforms the 

sequence Zt into the uncorrelated sequence of innovations E t' 
If some data 

points Zt are missing, the Kalman filter can handle this as discussed in R. 

H. Jones (1980). 

4.2 Initializing the Kalman Filter 

To start the recursive equations (4.6) we need X(tlt> and P(tlt> for 

some t (the initialization problem). For stationary models the 

initialization is typically at t = 0 with the unconditional mean of X(t) 

(0 whe,n using the mean corrected series Z,) and unconditional variance. 

Computation of the latter is relatively straightforward, and is discussed 

by R. H. Jones (19801, though for a different choice of state vector than 

we use here. The problem is much more difficult in the nonstationary 

(6(B)#l) case. 

For the nonstationary case Ansley and Kohn (1986) define a "modified 

Kalman filter", involving some auxiliary recursions to (4.6). This is 

initialized at time zero and produces "transformation approach" estimates 

of X(t) using Z1,...,Zt for t = d, d+l,..., T (assuming none of Z1,..., Zd 

are missing -- if they are, the situation is more complex). These 

transformation approach estimates are analogous to those for the signal 

extraction problem mentioned earlier. Bell and Hillmer (1989) show that an 

alternative approach that produces the same results is to initialize at t = 

d with the transformation approach estimate of X(d) using Zl,...,Zd (let 

this be X(dld>), and with P(dld) = Var(X(d) - X(dld)). This initialization 

is actually closely related to the initialization of the 
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modified Kalman filter at t = 0, but this approach avoids the need to do 

recursions for t=l,..., d and avoids the need to use the modified Kalman 

filter. 

We do not have space to derive the initialization at t=d here, but 

refer the reader to Bell and Hillmer (1989) for this. We shall just state 

the results for our particular problem that incorporate some 

simplifications and one generalization (for Var(Nt) changing over time> 

relative to the results given in Bell and Hillmer (1989). First, define 

$he quantities for i=l,...,d * 1 i=t 
0 i#t 

t=l,...,d 

A 
it 

= SlAi t-l ' ... ' ~dAi t-d t>d 

and let At = (Ai+,,...,Adt)'. Assume for now rs > 0 and pn > 0. Define the 

matrices 

Ai-ps 
. 

A = 
rs I I Aj I D = diag[h(i),... ,h(d)I 

rs x d 

Is = 

fs x rs 

3 0 . . . 0 1' 

f if 
l '. S,rs S,rs-1 %,a O 

$ . . 
S,rs . . 

. 
. 

* ;S,rs 0 

'(fs-rs) x rs 

, 
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☯o 0 l l � 0 11 

i I ". N,pn N,pn-1 +N,2 ' 

# 
. . 
. . 

IN = N,pn . 
. 

fn x pn ' (N,pn 0 ' 

'(fn-pn) x pn 

-0 . . . 0 

-0 
s,qs .** -*s,1 

8s . . = * = . ' 8, . 

fs x qs 

-8: 

s,qs fn x qn 
9 

O(fs-qs-1) x 4s 
L 

0 . . . 0 
1 

-8, qn . . . -ON 1 . # I 
. . . . . 

. 

-4 qn I 

'(fn-qn-1) x qn 

(0 ll -. * tps-l 
0 

C 
q) * - * lps4 

rs 
=(k) . . . 

. . . 
rs x ps 0 i, (, 

'd x Ps 

where ((B) = to + tlB + t2B2 + . . . = b(B) 
-1 , and (+> is chosen for Crs if 

1-B occurs an even number of times in 6(B) and (-1 is chosen otherwise. 

(We assume here all the zeros of 6(B) are on the unit circle, as is the 

case with differencing operators.) If rs = 0 or pn = 0 we redefine them to 

be max(rs,l) or max(pn,l), respectively, in the above. For i<j define the 

notation Zl = (Z.,...,Z.>', 
-J 1 J 

and similarly with any other of the time series 

involved. Then the initialization is given by 
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i(dld) = (4.7) 

where 

P(dld) = Pl + P2 + P3 + Pi (4.8) 

. 
Pl(l,l) = CrsVar($+l-ps)C;s + ArsD Var($, D Ais 

Pl(2,l) = - co 
Pn x (d-pn) 

Ipnl Var($, D A& 

Pp,2) = v&$+1-P”) 

+s O 
p3= o 

[ I[ 
P3(l,l) P3(l,2) Ok 0 

*N P3(2,1) P3(2,2) I[ 1 0 t9i 

P3(l,l) = crscOv$+-, $+-) 

P3(l,2) = - ArsD Cov($, c~$+'-~~) P3(2,1) = 0 
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The autocovariances of ut and N, needed for (4.8) can be computed using a 

method of McLeod (1975,1977) since u+, and N, follow the ARMA models 

4s (B)ut = flS(B)bt and (N(B)%t = BN(B)ct . Also, COV($~-~~, $+1-qs) is a 

Ps x qs matrix with (t,j)th element 

ifj >t 
Cov(ut,bj> = 

ifj It 

. 

where $(B) = @i + $sB + #gB2 + . . . = f?s(B>/&(B). We similarly obtain the 

Cov(%,tcj) needed. 

4.3 Model Estimation 

Model estimation proceeds by maximum likelihood assuming normality. 

Ignoring the regression terms for the moment and working with Zt = Yt - p,, 

the Kalman filter can be used to evaluate the likelihood as suggested by 

R. H. Jones (1980). This is done using the innovations et, which are 

independent with mean zero and variance v 
t' 

With initialization at t-d, 

the likelihood is the joint density of ~~+~,...,e~ so that, apart from 

constants, the log-likelihood is 

1T 
=-- 

L 2 
Z ln(v,> 

t-d+1 
(4.9) 

This can be numerically maximized over the parameters of the model for St, 

keeping those of the model for It fixed, since the latter are estimated 

elsewhere. 
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We can handle the regression terms as follows. Let X be the T x m 

matrix of regression variables, and /3' the m x 1 vector of regression 

parameters. For given values for the ARMA parameters, p can be estimated 

by generalized least squares (GLS). Following R. H. Jones (1985) this can 

be achieved by running the Kalman filter recursions with Y = (Yl,...,YT)' 

as the data vector to get the standardized innovations I,/ l/2 

for t = d+l,...,T. Call the (T-d) x 1 vector of these k. Similarly do 

,this with each column of the matrix X and collect the resulting "filtered" 

columns in the (T-d) x m matrix X. Then GLS results in 

jj = (jifjyl~,f var <a> = (i/i)-1 . (4.10) 

To estimate both p and the ARMA parameters, the likelihood may be 

efficiently maximized jointly by iterating between the GLS regression 

(4.10) for fixed values of the ARMA parameters, and maximization of (4.9) 

for given /3 using Zt = Yt - ii pixit as the data. This iterative GLS scheme 
1 

is investigated in Otto, Bell, and Burman (1987) for regression models with 

ARIMA errors. 

4.4 Signal Extraction Using the Fixed Point Smoother 

Anderson and Moore (1979) discuss three "smoothers" (fixed point, 

fixed lag, and fixed interval) that can be used in conjunction with the 

Kalman filter to produce estimates of the state vectors X(t) using all the 
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available data. These estimates are denoted X(t(T). We wish to estimate 

st using Yl,...,YT, which we do by estimating 5, using Z1,...,ZT and then 

adding back p, to the estimate of 8,. For simplicity in the notation here 

let us assume means are zero so we can work directly with St. Then St is 

simply the first element of X(t), i.e. St = [l 0 . . . 01X(t). 

Since we are only interested in one element of the state vector, the 

fixed point smoother seems best suited to our problem. The fixed point 

smoother results of Anderson and Moore (1979, pp. 172-173) can be 

&nplified by multiplying through by the vector Cl 0 . . . 01 as appropriate 

to produce estimates and variances for St alone. 
* 

The resulting recursive 

scheme goes as follows. 

We first run the Kalman filter to produce for t = d, d+l,...,T: 

(1) S tit = element of 

(2) T tit = (1,l) element of P(tlt) 

(3) vt and &t as defined in (4.6) (not needed for t=d) 

(4) IfI = P(t(t-1) H(t)/& (not needed for t=d or t=T) 

(5) Ptlt = first column of F P(tlt> (not needed for t=T). 

Then to apply the fixed point smoother at each of t=d,...,n-1: 

(0) Start with itIt, rtlt, and pt+llt = 
Ptlt 
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Compute recursively for k = t+l,...,T as follows: 

(1) Compute jk = H(k)’ &lkB1 /I& 

"tlk = 't Ik-1 - ': 

$+llk = F $k-1 - 'k!k' 
(not needed for k=T). 

5. Examnle: Retail Trade Survev -- Sales of Eating and Drinking Places 

A% an illustrative example we analyze time series of sales (in 

millions of dollars) of Eating Places and of Drinking Places which are 

estimated in the monthly Retail Trade Survey. The Retail Trade Survey has 

a panel of large businesses that are selected into the sample with 

certainty and report sales every month, and 3 rotating panels of smaller 

businesses that are selected into the sample by stratified simple random 

sampling. Each rotating panel reports current month and previous month 

sales at intervals of three months. Horvitz-Thompson (HT) estimates of 

current and previous months sales are constructed; the resulting time 

series shall be denoted Yt and Yiwl. From these, composite estimators are 

constructed as described in Wolter (1979). The final composite estimates 

will make up our time series Y,. (While it might be interesting to instead 

analyze Y;. and YiB1 directly, these estimates are not saved for a long 

enough period of time for seasonal time series modeling.) Sampling 

variances are estimated by the random group method (Walter 1985) using 16 

random groups. Further information on the survey is given in Isaki, et. 

al. (19761, Wolter, et. al. (19761, and Wolter (1979). 
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There are several complicating factors in the survey. The sample is 

redesigned and independently redrawn every five years, with new samples 

having been introduced in January of 1972, 1977, 1982, and 1987. This 

could be handled as discussed in section 3.2, but this will not be done 

here as our software does not presently allow this. (We shall use data 

from January, 1977 through December, 1986, so there is one redrawing of the 

sample exactly in the middle of our series.) When a new sample is 

introduced there is a three month transition period where the composite 

sstimates are not used, which we shall also ignore. Finally, the monthly 

estimates are benchmarked to annual totals estimated from an annual survey 

and f'rom the economic census taken every five years. To avoid this 

complication we use data that are not benchmarked. The reader should be 

aware, however, that for this reason the data used here do not agree with 

published estimates. 

Development of Samnling Error Models 

Our first step will be to develop a model for the correlation 

structure of the sampling errors. Let us write Y{ = St + N; for the 

current month (t) HT estimate, and Yiwl = Stwl + NiBl for the previous 

month (t-l) HT estimate. We shall use the same models for N; and Niml. 

Estimates of Corr(Nt,NiBl) are extremely high -- typically .98 or higher. 

While this is partly artificial (due to businesses reporting the same 

figure for current and previous month sales, and possibly to the way 

missing values are imputed), in the absence of other information it is 

difficult to distinguish characeteristics of NC from those of N;l_l. 

Since the three rotating panels in the survey are drawn 

(approximately) independently (Wolter 19791, correlations for Nt and NFel 

will be nonzero only for lags that are multiples of 3. Estimates of such 
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1% correlations can be averaged over time (assuming correlation 

stationarity) and used to produce estimates of model parameters. While 

estimates of lag correlations are not regularly produced for the Retail 

Trade Survey, this was done as part of a special study using data from 

J=u=-y, 1973 through March, 1975, albeit at a time when the survey had 

four rotating panels. Lacking more recent data, we "averaged" the 

correlations at lags 4, 8, 12, 16, 20, and 24 for NC and NzW1 (this was 

done after applying Fisher's transformation .5 ln((l+r>/(l-r>> and then 

jxansforming the result back). The results are shown in Table 1. They 

show fairly strong positive correlation in the sampling errors, and 

evide$e of seasonality in the correlations at lag 12. A possible model 

given such data is 

(l-#mBm)(l-(12B12)N; = vlt (5.1) 

where m = 4 for the 4-panel survey, with the same model assumed for N;I l 

with v2 ,t-1 replacing vit. 

A particularly convenient property of (5.1) is that if the sampling 

error in each panel would follow (5.1) with m = 1 if it were observed every 

month, then for any number m ((12) of independent panels reporting 

successively, Nt follous (5.1). This allows us to use the 4-panel survey 

results in Table 1 to estimate (4 and #12, and (assuming d > 0) convert 

these to estimates of $3 and d12, the parameters of the model for the 

current 3-panel survey. This was done by finding #4 and d12 to minimize 

the sum of squared deviations of the correlations from (5.1) with those of 

Table 1. (Lags 20 and 24 were dropped, and lag 16 given a weight of .5, 

due to the smaller number of correlation estimates that were averaged 

together at these higher lags.) The resulting estimates then produced 

-3 . 
4 = .685, i,, = .723 for Eating Places, and i3 = .664, d12 = .714 for 
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Drinking Places. The resulting correlations for m = 4 from (5.1) are shown 

in Table 1, and may be compared to the averaged correlations. 

If we make the further assumption that Corr(N; ,N;-i-k) = 

p Corr(Nt,NtVk) for all k, which seems reasonable given the high 

correlation for k = 0 (p>, then (5.1) leads to the following bivariate 

model for (Nt,N;j_i): 

33 
(1-B B >(l-(,2B 

12 Nt = 
> [ 1 q-1 

with p = COrr(Y 
. lt'"2,t-1) = 

vu [ :;J = c [: :I (5-2) 
Corr(NC,Ny-i >. Estimates of C~rr(Nt,Ni-~) are 

regularly produced and were available for l/82 - 12/86. Averaging these 

(with*Fisher's transformation) produced i = .985 for Eating Places and 
A 

P = .986 for Drinking Places. 

We can now use (5.2) to derive a model for the sampling error of the 

linear form of the composite estimator, which is given by 

Yc" = (l-p>Y; + /3cyy; + YC - Y;-i> (preliminary estimator) 

(5.3) 

Yt-l = (l-a)Y;~l + "Yyi (final estimator) 

(See Wolter 1979.) In the retail trade survey, vales of a = .8, p = .75 

are used. It is easily seen that (5.3) also holds for the sampling errors, 

i.e. with Y related by N. We can use the resulting relations to derive the 

following equation for Nt in terms of NC and Nf l: 

(l-.75B)Nt = .2 N; - .75 N;-l + .8 Nt (5.4) 

Using (5.2) and (5.4) we then get 

(1-.75B)(1-#3B3)(1-b,2B12) Nt = .2 u2t - -75 "2,t-1 + -8 qt (5.5) 

The right hand side is a first order moving average process whose 

parameters could be determined given estimates of ~2 and p. Thus, (5.5) 

would yield an ABMA model for Nt. 
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Rather than pursue this further, we shall instead make the rather 

strong assumption that a model of the same form holds for InCUt> in 

InUt) = ln(St> + InCUt>, thus 

(1-.75B)(l-$B3)(1-#,2B12) ln(Ut> = (1-7B) ct (5.6) 

We do this because estimates of sampling variance for these series are 

highly dependent on the level of the series; estimates of relative variance 

are much more stable over time. We also assume we can use estimates of 

relative variance and of p in determining 7 and (. Estimates Yt, Yi-l and 

YkN$, V&N;-l) were available for l/82 - 12/86. The resulting relative 

variance estimates were used in the spirit of maximum likelihood estimation 

for thz lognormal distribution -- taking the average of the logs of the 

relative variance estimates, adding one half of the sample variance of the 

logged estimates to this, and exponentiating the results. This was done 

separately for Rel Var(Yt) and Rel Var(Yi_i>, and these two results were 

then averaged, producing a common relative variance estimate that is 

constant over time. The results are shown in Table 2 under Horvitz- 
a 

Thompson. Using these and the p's given earlier, one can solve for 7 and 

F: for the right side of (5.6). The resulting sampling error models are 

(l-.75B>(1-.685B3)(1-.723B12) ln$> = (1+.130B$ (5.7a) 

(Eating Places) ii2 = 1.948 x 10 
-5 

C 

(l-.75B)(1-.664B3)(1-.714B12) l.n$> = (1+.134B)ct (5.7b) 

(Drinking Places) ii2 = 9.301 x 10 
-5 

C 

One can use the method of McLeod (1975,1977) to solve for Var(ln(V,)) in 

these models, which is an estimate of the relative variance of the final 

composite estimator. The results are shown in Table 2. The corresponding 

coefficients of variation, .025 for Eating Places and .052 for Drinking 

Places, are quite close to published estimates that are obtained more 
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directly. 

Time Series Modeling and Signal Extraction 

Figures la,b show plots of the time series of final composite 

estimates Yt for Eating Places and for Drinking Places, respectively. To 

develop models for St we shall begin by modeling the Yt series directly. 

Both series show trends and strong seasonality, with the magnitude of the 

seasonal fluctuations larger the higher the level of the series. This 

suggests taking logarithms and the need for differencing; both are typical 

#or economic time series. Examination of sample autocorrelations for 

ln(Yt) and its differences suggested the difference operator (1-B)(1-B12> 

for bc%h series. Retail trade series are lcnown to contain trading-day 

variation. This can be modeled by including seven regression variables in 

the model: Xlt = number of Mondays in month t, . . . , 
X7t 

= number of 

Sundays in month t. Following Bell and Hillmer (19831, a more convenient 

reparameterization is obtained by using instead the variables Tit = 

Xlt - X7t (number of Mondays - number of Sundays), . . . , Tgt = Xgt - X7t 

(number of Saturdays - number of Sundays), T7t =zx (length of month t>. 
1 

it 

To identify the ARMA structures, the ACFs and PACFs of the residuals from 

regressions of (1-B>(1-B12) ln(Y > t on (1-B)(1-B12) Tit i = l,... ,7 were 

examined. This suggested an ARIMA (0,1,2)(0,1,1),2 model for Eating 

Places, and an ARIMA (0,1,3)(0,1,1),2 model for Drinking Places. The 

resulting estimated models were 

(1-B>(1-B12) [ln(Y > - ~ 
ti 

(1-.22B-.28B2)(1-.77B12) 

(Eating ii2 = (5.8a) 
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(1-B>(l-B12) [ln(Y > - I: BiTitI 
ti 

= (1-.23B-.17B2+.004B3>(1-.59B12) at 

(Drinking Places) i2 = .000577 
a 

(5.8b) 

For brevity, we omit the estimates of the trading-day parameters. While 

neither the lag 2 nor lag 3 moving average parameters in (5.8b) is 

statistically significant, we shall retain them since we shall only use 

(5.8a,b) as starting points for modeling ln(St> for both series. 

Taking models of the form of (5.8a,b) for ln(St> with models (5.7a,b) 

for ln(Ut>, the parameters of the models for ln(St> were reestimated. For 

both series the seasonal moving average parameters were reestimated to be 

1, implying deterministic seasonality that can be modeled by cancelling a 
* 

(1-B12) from both sides of the model and instead including a regression 

11 
function of the form x riMit , where Mlt is 1 in January, -1 in December, 

1 

and 0 otherwise, . . . 
' Mllt 

is 1 in November, -1 in December, and 0 

otherwise. Estimation of the resulting models produced the following: 

(1-B) [ln$> - E siTit - x jiMit] = .00769 + (l-.26B-.28B2> bt 
i i 

(Eating Places) 
-2 
'b 

= .000160 (5.9a) 

(1-B) [ln(St> - X BiTit - c yiMit] = .00330 + (l-.18B-.36B3> bt 
i i 

(Drinking Places) 
-2 
'b 

= .000261 (5.9b) 

The lag 2 moving average parameter for drinking places was insignificant 

and so was dropped. We again omit the estimates of the trading-day 

parameters (which did not change much from the estimation of (5.8)) and 

also of the seasonal parameters. The trend constants were included when 

the seasonal difference was dropped. Examination of standardized residuals 

produced by the Kalman filter, and of their autocorrelations, suggested no 

major inadequacies with the models for either series. 
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The estimated models, (5.7a,b) with (5.9a,b), were used to produce 

signal extraction estimates of ln(St>, which were then exponentiated to 

produce estimates of St. The results are shown in Figures 2a,b for the 

series with the estimated seasonal and trading-day effects removed. Notice 

that signal extraction makes only slight differences in the estimates for 

Eating Places, which contained relatively little sampling error, but it 

makes a considerable difference in the estimates for Drinking Places, which 

contained much more sampling error. Signal extraction variances for ln(St> 

were also produced; these are relative variances for the estimates of St. 

These results are summarized in Table 2. They show signal extraction 

produczs about an 8% improvement in CV over the final composite estimates 

for Eating Places, and nearly a 20% improvement in CV for Drinking Places. 

These results are somewhat optimistic, since they assume the true component 

models are those that were estimated. 

Conclusions 

The results for Eating and Drinking Places depend on several 

assumptions and approximations, and should be regarded as preliminary. 

More confidence could be placed in results that used more recent data for 

estimates of sampling error correlations. The examples are intended 

primarily to illustrate the application of time series models that allow 

for sampling error, and the potential for signal extraction to improve 

survey estimates. An interesting result in these examples is that when 

sampling error is allowed for, the seasonality in both series appears to be 

deteministic (a fixed pattern over time), rather than the stochastically 

varying seasonality implicit with models (5.8a,b). If similar results 

could be found for other retail sales series or other economic time series, 

this could have important implications for seasonal adjustment. 
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Table 1 

Sampling Error Correlations for Horvitz-Thompson Estimates 

Eating Places 

Averaged' 

* From (5.1j2 

Drinkifrng Places 

Averaged' 

From (5.1j2 

Number of Corre- 
lations Averaged 

Weights Used in 
a 

Determining 4's 

1 

Lag 

4 8 12 16 20 24 

.72 .71 .79 .63 .65 .77 

.75 .69 .81 .60 .53 .61 

.70 .67 .78 .60 .60 .61 

.72 .66 .80 .56 .50 .59 

23 19 15 11 7 3 

1 1 1 .5 0 0 

'Raw estimates of Corr(Ni, Nj) and Corr(Ni l, N'! 
J-1 

) were available for all 

pairs of months from January, 1973 through March, 1975. Averages of the 
correlations for the lags shown were taken after applying Fisher's 
transformation, and the results then transformed back. 

2 
Correlations are shown from model (5.1) for m=4 with parameters i4 = .604, 

4, = .723 (Eating Places) and i4 = .580, j,, = .714 (Drinking Places). 

These parameter values were determined to minimize the weighted sum of 
squared deviations of the correlations from model (5.1) and the averaged 
correlations using the weights shown. Lags 20 and 24 were not used because 
of the small number of correlation estimates available at these lags. 
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Table 2 

Relative Variances (Rel Var) and Coefficients of Variation (CV)l 
for Retail Sales Estimates 

Horvitz-Thompson Final Composite2 Signal Extraction3 
Rel Var cv Rel Var cv Rel Var a! 

Eating Places .00180 .042 .000638 .025 .000508 .023 

Drinking Places .00776 .088 .00267 .052 .00178 ,042 
. 

'CV = tRe1 Var)" . 

2 
The values for the final composite estimator are obtained using models 
(5.7a,b). 

3 
The values for signal extraction actually vary over time, being highest at 
the end of the series and lowest in the middle. We show the midpoint of the 
range of values. CV's range from .022 - .023 for Eating Places (Rel Var from 
.000483 - .000532) and from .041 - 
.00167 - .00189). 

.0435 for Drinking Places (Rel Var from 
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