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ABSTRACT 

..\ substantial revision of the Census Bureau’s X-11 seasonal adjustment program is underway. The partially 
completed version of the new program presently being evaluated contains important new diagnostics and the 
capability of fitting ARIMA models or regressions with ARIMA errors by “nearly” exact maximum likelihood 
estimation. The “sliding spans” diagnostics represent a particularly valuable addition to the program’s 
diagnostics. This paper illustrates the application of these to questions of seasonal and trading day 
adjustability, seasonal filter length choice, direct versus indirect adjustment, and seasonal adjustments versus 
trends. Some of the inadequacies in X-11’s F-statistics revealed by these analyses are confirmed by using the 
minimum AIC procedure to compare regression-with-ARIMA-errors models. Such comparisons, which the 
program facilitates, also reveal the importance of outlier models. The use of outlier models reveals that the 
S-11 procedure is less outlier resistant than might have been expected. 
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1. SLIDING SPANS DIAGNOSTICS 

* The sliding spans techniaue, as it is called, involves the comparison of the “somewhat independent” 
adjustments of a given month’s datum obtained by applying the adjustment procedure to a sequence of three 
or four overlapping spans of data, all of which contain the month. Seasonally adjusted month-to-month 
changegstimates, year-to-year change estimates, and other related quantities can be examined similarly. 
Excessive variability among such estimates indicates unreliability. Conversely, if there is no evidence of 
residual seasonality in the adjusted series, then one can interpret stabilitv, meaning a lack of significant 
variability, as an indication that the estimates are reliable. This term is not a synonym for “accurate” in an 
objective sense. (It does not seem possible to give a completely objective definition of seasonality, see Bell 
and Hillmer (1984).) Our usage of the term represents an extrapolation into a less well-defined situation from 
our experience that, when a series has an adjustment which is qu& stable (and shows no residual 
seasonality), this adjustment has always turned out to be acceptable by all of the standards with which we are 
presently familiar. TWO adjustments of a series can be reliable, in this sense, and yet different, leaving room 
for other criteria to be used to make a final choice. In later sections, we will give examples demonstrating 
that the sliding spans technique provides insights not available from the traditional diagnostics about seasonal 
and trading day adjustments, seasonal filter length selection, and such questions as whether aggregated series 
and derived series should be adjusted indirectly or directly. 

To obtain sliding spans for a given series, an initial span is selected. (Its length will depend on the seasonal 
adjustment filters used.) Then a second span is obtained by deleting the earliest year of data from the first 
span and appending the year of data immediately following its final year. A third span is obtained from the 
second in like manner, and, data permitting, also a fourth. Figure 1.1 illustrates three consecutive spans, for 
X-11 adjustment with 3x51 seasonal filters, of a series which begins in January, 1974 and ends in December, 
1983. Three eight-year sliding spans can be formed; one using data from 1974 to 1981, another with data 
from 1975 to 1982, and a third with data from 1976 to 1983. Usually, there is a strong interest in having the 
analysis be based on data which are as close to contemporary as possible, which is an incentive to limit the 
number of spans. The investigations a.& suggested interpretations described in the remainder of the uaper 

The use of more spans would tend to increase the range of the observed are based on the use of four spans. 
adjustments and therefore make it necessary to modify our procedure for interpreting the sliding spans 
statistics. The number and length of the sliding spans chosen for a given series will depend upon the length 
of the series and on the length of the seasonal adjustment filter chosen by the analyst, as we will explain in 
section 2 below. Each span is seasonally adjusted as though it were a complete series, and each month 
common to more than one span is examined to see if its seasonal adjustments vary excessively from span to 
span. In Figure 1.1, for the seasonal factor of the observation occurring in January of 1981, X 

three estimates, Sllsl(l), Slls1(2), and Sllsl 
l/81’ we have 

(3), obtained from consecutive spans which overlap in the 

manner indicated. By comparing these three estimates, we can get a sense of how reliable the seasonal factor 
estimate for Xl,81 is. 

To describe how we make such a comparison for multiplicative adjustments, let 

We remind the reader that this refers to the simple centered average of three simple centered averages of five 
consecutive same-calendar-month-values. Such filters are applied to a detrended version of the series (the SI 
ratios). 
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Figure 1.1 Illustration of Sliding Spans 



St(k) = the seasonal factor estimated from span k for month t; 

At(k) = the seasonally (and, often also, trading day) adjusted value from span k 

for month t; 

Nt = {k: month t is in the k-th span}; 

N1t 
= {k: months t and t-l are in the k-th span} . 

The Census Bureau’s X-11.2 identifies or “flags” (the time series value associated with) month t as having an 
unreliable seasonal factor if 

Maxk cNt St(k) - MinkEN 
t 

s, 0) 

- 
RinkEN S Tk) > 0.03. (1.1) 

t t 

An estimate of seasonally adjusted percentage change from month t-l to t is considered unreliable if 

At(k) - A&l(k) 
‘IaxkeNlt A - MinkLNlt 

At(k) - At&k> 

t-l(k) A t-l(k) 

> 0.03. (1.2) 

Equation (1.1) tests whether the maximum percentage difference in the seasonal factors for month t is greater 
than 3 percent. When no trading day adjustment is done, this can be interpreted as testing whether the 
estimates of the level of the seasonally adjusted data vary substantially. Equation (1.2) tests whether the 
largest afference in the month-to-month percentage change in the seasonally (and trading day) adjusted data 
is greater than three percent for a month t. Often, users will seasonally adjust series mainly to get a 
“seasonally adjusted” value of the month-to-month percentage change. With this second test., we assess the 
reliability of the estimate of month-to-month percentage change obtained from the seasonal adjustment 
method employed. Note that an unreliable estimate of a month’s seasonal factor can give rise to unreliable 
estimates of the two associated month-to-month changes. For this reason, there are almost always more 
months flagged for unreliable month-to-month changes than for the unreliable seasonal factors. 

One should look to see if the unreliable adjustments cluster in certain calendar months or years. For example, 
problems with early years can sometimes be a sign that seasonal adjustments should be calculated from a 
segment of the series which does not include these years. In the sliding spans output of the Census Bureau’s 
X-11.2 seasonal adjustment program (see the Appendix for an example) summary tables are given in which 
the months flagged are broken down by year, by month and by magnitude. 

Since consumers of seasonally adjusted data frequently compare a month’s adjusted value with the adjusted 
value for the same calendar month a year earlier, we also analyze the stability of seasonal adjustments from 
this point of view. With 

N12t = {k : months t and t-12 are in span k}, 

we define the estimation of year-to-year percent change for month t to be unreliable if 

At(k) - At(k-12) At(k) - At(k-12) 

hIaxkcN12t 

(1.3) 

A t ( k-l 2-j-- - MinktN12t At(k-12) > 0.03. 

As we will show later by example, difficulties with trading day effect estimation can result in unreliable 
estimates of year-to-year percent change. In fact, our principal use for (1.3) is to help detect such difficulties. 

We sometimes analyze estimated trading day factors in a similar manner. Let 

TDt(k) = the trading day factor estimated from span k for month t. 

We will flag a month t as having an unreliable trading day factor if 
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Maxk 6Nt TDt(k) - MinkEN TDt(k) 
t 

- 
minkCN Tnt(k) 

t 

> 0.02 (1.4) 

The left-hand side of (1.4) is always 0 for non-leap-year Februaries, so these Februaries are not counted in an 
analysis. 

We have not found (1.4) to be very informative, perhaps due to the effect of the complexity of trading day 
patterns on estimation and the fact that trading day factors are usually in the range from 97(0.97) to 
103(1.03). In our experience, a more useful indication of a troublesome trading day adjustment is a high 
number of unacceptable month-to-month changes relative to the number of unacceptable seasonal factors. 
This is because the trading day factors are used to obtain the (seasonally and trading day) adjusted data, and 
their instabilities will usually be reflected in unstable estimates of month-to-month change, and, to a lesser 
extent, year-to-year change, in the adjusted data. See section 3. 

In our investigations, the earliest of which are summarized in Findley and Monsell (1986), we have found that 
a series which seems to have a good seasonal adjustment according to a variety of criteria, including those of 
Lothian and Morry (1978), BLS (1977) and the subjective opinions of subject matter experts, usually has 
fewer than fifteen percent of the adjusted months flagged for erratic seasonal factors. Series with more than 
bwentv-& percent of the months flagged almost never have acceptable adjustments. We found a “gray 
area” between 15 and 25 percent; a small proportion of the series whose percentage of months flagged falls in 
this range can probably be adequately adjusted. We recommend that seasonal adjustment not be performed, 
however, if more than fortv nercent of the estimates of month-to-month change are flagged. 

The thrzhold 0.03 in (1.1) - (1.3) will be too large if all the seasonal factors are close to 100, but a 
comparison of the v?&res themselves across the different span will probably be informative in such cases. The 
adjustor may also decide to change this threshold according to his or her own sense of how much variability 
can be tolerated in the adjustment, but we caution a 
mentioned above without careful study of the type o f 

ainst raising the threshold value or upper percent limits 
series being adjusted. We do not have a recommended 

upper limit for the acceptable percentage of unstable year-to-year changes. Values around 2% are common 
with good series; 10% is very high. 

In our subsequent discussion, we will refer to the following summary statistics: 

S(%) = percentage of months with unreliable 
seasonal factor estimates, 

M-M(%) = percentage of months with unreliable 
month-to-month percent change estimates, 

Y-Y(%) = percentage of months with unreliable 
year-to-year percentage change estimates 

TD(%) = percentage of months with unreliable 
trading day factor estimates 

The term “unreliable” is used in the sense discussed above, and “percentage” in each case is relative to the 
number of candidate months: This is the number of values in {t : Nt is nonempty} for S(%), {t : Nit is 

nonempty} for M-M(%), etc. With this notation, our recommendations are summarized in Table 1.1. 

In the examples discussed in the sections 24, the adjustments which are analyzed and compared are all 
plausible in the weak sense that the seasonally adjusted series do not evidence residual seasonality, according 
to the F-statisti=tableD-11 of X-11.2 and X-ll-ARIMA, and to an examination of X-11.2’s calculated 
spectrum of the differenced adjusted series. Onlv after such tests for residual seasonalitv have been performed 
L it anurouriate to & concerned with the stabilitv uronerties measured bv the sliding snans statistics. 



Table 1.1 Summary of Adjustment Recommendations for Series 
Whose Maximum and Minimum Seasonal 

Factors Differ by at Least 10. 

S(%) and M-M(%) ADJUSTABLE? 

S(%) 5 15.0 ; M-M(%) < 40.0 likely 

15.0(0/o) < S(%) I 25(%) ; M-M(%) < 40.0 less likely 

S(%) > 25.0 or M-M(%) > 40.0 unlikely 

- 2. SEASONAL ADJUSTABILITY: SLIDING SPANS VERSUS Q 

The X-ll-ARIMA program (Dagum, 1983b) helpfully provides a large number of diagnostics to determine if 
a series is amenable to adjustment b the X-11 method. Among these is a measure, Q, which summarizes the 
valuepf eleven diagnostic statistics Ml-Mll). Despite cautionary remarks against relying exclusively on this i 
summary measure in the X-ll-ARIMA manual and in the literature cited there, our experience is that many 
users base their decision on whether or not to adjust a series principally on whether or not the value of Q is 
less than the threshold value 1.0 utilized in X-ll-ARIMA. In this section, we first present a sliding spans 
analysis of a series, S75VS (Value of Shipments of Building Papers), which has a low Q-value (Q = 0.68) 
suggestive of good adjustability. Then a series with a “failing” value (Q = 1.14) is analyzed, FUOECD 
(Imports from OECD countries). In both cases our analysis contradicts the suggested interpretation of Q. 
The Q-statistic used is the modification of X-ll-ARIMA’s Q described in Findley and Monsell (1986) whose 
values are usually slightly larger than those of the original. When 3x5 (respectively, 3x3 or 3x9) seasonal 
filters are used, then four eight-year (respectively six- or eleven-year) spans are used to produce the sliding 
spans analysis. These span lengths are close to the smallest which can be used to adjust with the associated 
seasonal filters (a 3x5 filter spans seven years, etc.). 

Table 2.1 shows the January, 1974 - February, 1978 section of a month-by-month sliding spans analysis of 
the estimates of seasonal factors produced by the implementation of sliding spans analysis incorporated into 
the Census X-11.2 seasonal adjustment program. In addition to the seasonal factors, the maximum percent 
differences between factors are given, for months common to more than one span, along with symbols flagging 
months for which the maximum exceeds the 3% threshold selected to identify months with unreliable 
adjustments. The specific symbols correspond to the levels of excess which define the histogram cells of the 
breakdown table included in the summary sliding spans analysis by X-11.2, an example of which is given in 
the Appendix. 

Now let us examine the values of these statistics for the two series mentioned above. (See sections 3 and 12 
below for further discussion of FUOECD.) 

Series 

s75vs 
FUOECD 

Dates 

l/75-12/84 
l/74-12/83 

Q wd M-M(%) Y-Y(%) 

0.68 38.9 52.3 5.2 
l.i4 7.3 24.2 0.0 

According to the criteria presented for the sliding spans statistics in section 1, the series FUOECD is reliably 
adjustable, whereas S75VS is not, contradicting the conclusions drawn from the Q values. Which conclusion 
should one accept?. The sliding spans statistics have the advantage m Q and other traditional statistics of 

Stability of the estimates of the quantities of interest is a fundamental and being directlv interoretable. 
intelligible property. Not surprisingly, the sliding spans statistics often immediately reveal problem areas in 
the data. In the case of S75VS, the summary statistics of the sliding spans analysis given in the Appendix 
show that the more recent data for this series are especially troublesome, which a graph of the series also 
suggests (see Figure 2.1.) as do the Ml0 and Ml1 statistics of X-ll-ARIMA, which both have the value 1.4. 
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Two more series with low Q values but poor sliding spans statistics are discussed in section 4 (HSlF and 
S95NO directly adjusted); others can be found in section 5. 

The high value of Q for FUOECD is caused mainly by Ml, which measures the relative contribution of the 
irregular component, and which has the value 2.5 for this series. We occasionally encounter series in which a 
large irregular component does not seem to compromise the stability of the adjustments. 

3. SLIDING SPANS VERSUS X-11’s TRADING DAY REGRESSION F-STATISTIC 

Among X-11 and X-ll-ARIMA users, the most commonly applied criterion for deciding whether or not to 
adjust a series for trading day variation is the F-statistic from the program’s trading day regression. The 
“irregular” values to which this regression is ap 
some problems, see Cleveland and Devlin (1980 P 

lied are the output of a filtering operation, which leads to 
. 

correlated. 
One problem is that the “error” terms in the regression are 

As a consequence of this and perhaps other factors, too, the distribution of the regression 
“F’‘-statistic will differ from the F-distribution, and the program’s use of critical values from an 
F-distribution will sometimes result in misleading conclusions concerning the statistical significance of a 
trading day component. The sliding spans statistics for the eight series presented in Table 3.1 show that 
when the trading component of a series is poorly defined, the cost of applying X-11’s trading day adjustment, 
as measured by the percentage of unreliable estimates of seasonally adjusted month-to-month and 
year-to-year change, can be high. The series analyzed are: 

FUANEC - Imports from Certain Asian Countries 
FUASIA - Imports from Asia 
FUOECD - Imports from OECD Countries 
FUOEEC - Imports from European Common Market Countries 

FUWEUR - 
except the United Kingdom and West Germany 

FUWGER - 
Imports from Western Europe 

* FUWH - 
Imports from West Germany 

XUOECD - 
Imports from the Western Hemisphere 
Exports from OECD Countries. 

Table 3.1 TRADING DAY ADJUSTMENT/NO ADJUSTMENT: SLIDING SPANS ANALYSIS 

Series 

FUANEC 22.9110.4 45.3129.5 19.0/0.0 Ol- 4.7 

FUASIA 9.4/11.5 37.9 129.5 21.4/0.0 ll.l/-- 5.0 

FUOECD 12.517.3 42.1124.2 31.0/0.0 31.1/- 6.0 

FUOEEC 13.519.4 36.8125.3 17.9JO.O 4.4/- 3.8 

FUWEUR 12.519.4 35.8124.2 26.210.0 22.2/- 5.4 

FUWGER 6.3/0.0 29.5112.6 25.0/0.0 15.6/- 6.2 

FUWH 6.312.1 40.0/9.5 38.1/0.0 25.6/- 3.4 

XUOECD 8.312.8 28.0/10.5 2.510.0 o.o/- 5.9 

M-M(%) 

*F-TD: The trading day regression F-statistic 
The 5% critical values of the F-distribution with 
the Imports series) for (6,152) degrees of freedom 
approximately 2.15. 

Y-Y(%) TD(%) F-TD* 

from X-11.2 Table C15. 
either (6,124) degrees of freedom (for 
(for the Exports series) is 

For the Imports series, despite “significant” F-statistics favoring trading day adjustment, X-11.2’s spectrum 
plots of the outlier-modified irregulars of Table E3, from the run in which no trading day adjustment was 
performed, did not show peaks at the frequencies associated with trading day effects, see Cleveland and Devlin 
(1980) for a discussion of spectrum diagnostics. This affirms the conclusion, suggested by the sliding spans 
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analysis, that these series should not be trading day adjusted. (After this analysis was completed, it was 
determined that a much higher-than-expected percentage of Customs forms were arriving at the Census 
Bureau one or more months late and were being assigned, incorrectly, to the month of their arrival. Such 
errors would mask any trading day effects in the Imports series.) 

For the Exports series XUOECD, by contrast, there are well-defined spectral peaks at the trading day 
frequencies, see Figure 3.1, and the sliding spans statistics for the trading day adjusted series are acceptable, 
although somewhat worse than are obtained without trading day adjustment. 

One source of more reliable alternatives to X-11’s F-tests are regression models with ARIMA errors and the 
associated likelihood-ratio-based model comparison procedures, as we demonstrate in section 12. 

4. Direct Versus Indirect Adiustment: Sliding Suans Versus Smoothness 

Suppose the series to be seasonally adjusted, Xt, is the sum of component series which are also seasonally 

adjusted. Then, in addition to the adjusted series obtained by direct adjustment of the Xt, a second 

seasonally adjusted version of the series can be obtained by summing the adjusted component series. This 
second approach is called indirect adjustment and will, in general, yield a different series from the one 
obtained by direct adjustment, because of nonlinearities in the adjustment procedure arising from outlier 
adjustment and from multiplicative seasonal adjustment. An even larger discrepancy between direct and 
indirect adjustment is likely when the series to be adjusted is a more complicated function of other series, see 
subsection 4.2 below. 

How does one choose between plausible adjustments of a series obtained from different adjustment 
procedures? In statistical agencies, the decision concerning which procedure to use is commonly based on one 

. or more properties of the adjusted series which can be expected to be found desirable by a substantial number 
of data users. For comparing direct and indirect adjustments, the property most often employed is 
“smoothness”, as measured by one or more “smoothness” measures, The smoothness measures calculated by 
X-ll-ARIMA to facilitate the comparison of direct and indirect adjustments, Rl and R2, are defined as 
follows: If At, l<t<N is the seasonally adjusted series (direct or indirect) and Ht, l<t,<N is the associated 

trend obtained via the Henderson weights, then 

Rl = (N-l)-’ C;=2(At - AtJ2 

and 

R2 = N-l CyEl(At - HJ2 

Analogous quantities are also calculated for just the last three years of adjustments. There do not appear to 
be any theoretical models of seasonality for which the ideal seasonal adjustment minimizes a quantity 
estimated by Rl or R2, so that the use of such measures to compare adjustments (“smoother” is “better”) is 
unsatisfactory in a fundamental way. It seems considerably more appealing to corn are the reliability of the 
adjustments as measured by directly interpretable sliding spans statistics such as S %) (calculated from P 
implied seasonal factors St ind = Xt,Atind for the indirect adjustment), M-M(%) and Y-Y(%). In fact, the 

smoothness and reliability criteria often agree, as the examples of subsection 4.2 below suggest, but we will 
begin in subsection 4.1 with an example where indirect adjustments are more reliable but less “smooth” in the 
sense of Rl and R2. Rather than give individual R-values, we will follow X-ll-ARIMA in giving percentage 
difference values, 

. 
A = 100,(Rdirect _ Rmdirect),Rdirect , 

SO that, according to the traditional use of these statistics, negative values of Al u A2 favor direct 
adiustment. 

-- -- 

4.1 An Aggregate Series 

The series HSlF of total U.S. single family house construction starts is the sum of four regional series 
associated with totals from the northeastern, north central, southern and western states. Each regional series 
is seasonally adjusted so that an indirect adjustment of HSlF is available, as well as a direct adjustment. 
According to the standard diagnostic statistics, the adjustments of the regional series are of good quality. 
The estimated seasonal patterns differ substantially among the regions, as would be expected from the 
differences in climate. These facts suggest that seasonality is better removed at the regional level; that is, an 
indirect adjustment should be more satisfactory, which is the conclusion suggested by the sliding spans 
diagnostics. However, the smoothness statistics favor direct adjustment rather strongly. The A- and sliding 
spans statistics for the direct and indirect adiustments are given below, along with the Q-statistics calculated 
by X-11-ARIMA. 
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Full Series Last 3 years 

Al A2 Al A2 

43.9 -32.4 -55.1 -68.4 

Adjustment 
direct 
indirect 13.6 

Indirect adjustment of HSlF is also favored by the statistics CONRAT and CPREV of Findley and Monsell 
(1986), which measure the total absolute revision experienced by each month’s seasonal adjustment, from its 
initial to final seasonal adjustments, and the rate of convergence to the final adjustment, respectively. In our 
experience, this is strong evidence in favor of indirect adjustment. Moreover, the sliding spans results suggest 
that direct adjustment is unacceptable. Thus this example reveals the inadeouacv of the R- and Q-statistics 

-for determining the choice between direct and indirect adjustment,. (Lothian and Morry (1978) warn against 
such a use of Q-statistics.) 

4.2 Derived Series 

The vazous New Orders series published by the M3 Branch of the Census Bureau’s Industry Division are not 
measured directly but are obtained as the sum of the reported Value-of-Shipments series and the monthly 
change in the reported Unfilled Orders, 

NO, = VSt + (UOt - UOtel) , 

in a self-explanatory notation. The observed series VS, and UO, are seasonally adjusted, so both direct and 

indirect adjustments of Not can be considered. 

We present below the A-, Q- and sliding spans statistics for three New Orders series, 

S13NO - Nonferrous and Other Primary Metals 
S67NO - Broadwoven Fabrics and Other Textiles 
S95NO - Other Leather Products 

Full Series Last 3 yrs. 

Series Al A2 Al A2 

S13NO -10.1 - 1.1 - 1.4 - 3.5 
S67NO - 5.5 + 0.4 - 1.5 - 2.1 
S95NO -13.3 -19.1 -16.8 -21.0 

Series Adiustment sr%) M-M(%) Q Y-Y(%) 

S13NO direct 14.2 32.4 0.0 0.03 
indirect 17.0 36.2 1.1 1.00 

S67NO direct 10.4 22.9 0.0 0.73 
indirect 11.3 29.5 0.0 0.86 

SY5NO direct 23.6 33.3 0.0 0.64 
indirect 27.4 44 8 3.2 0.81 



Thus, the indirect adjustment of S95NO seems unacceptable and caution seems called for with its direct 
adjustment. For the other series, direct adjustment seems preferable. 

Sometimes, for reasons of consistency, the seasonally adjusted component series are modified to force them to 
have the same annual totals as the direct adjustment or some other adjustment of the aggregate. This is 
usually done by proportionally redistributing the difference between the indirect and the other adjustments, a 
procedure known as rakine;, see Ireland and Kullback (1968) and Fagan and Greenberg (1985 

2 
for example. 

Although we will not give an illustrative example here, it is worth mentioning that we have ound sliding 
spans analysis to be a useful way to assess the effect of these modifications on the quality of the seasonal 
adjustments of the benchmarked components. 

5. ON THE USE OF SLIDING SPANS DIAGNOSTICS TO ASSIST IN THE SELECTION OF SEASONAL 
FILTERS IN X-ll(-ARIMA) 

How sensitive is the stability/reliability of an X-11 seasonal adjustment to the choice of seasonal filter? We 
will now give examples to show that different choices of filters can lead to dramatically different values of the 
sliding spans statistics. The results for two industrial series from the M3 survey and for the total U.S. 
imports series, including freight and insurance, will be presented. 

EDMISC - Total Consumption of Non-categorized Edible Products, 
S49UO - Unfilled Orders of Ophthalmic Goods, Watches and Watch Cases. 
CUT - Total U.S. Imports, including Freight and Insurance. 

- Series Seasonal Filter sl%l M-M(%) Y-Y@] 

EDMISC 3x5 35.3 42.6 
* 3x9 15.1 29.8 i:: 

s49uo 3x3 41.7 32.5 8.3 
3x5 37.0 28.1 4.2 
3x9 10.4 9.1 0.0 

CUT 3x3 8.5 28.6 10.6 
3x5 11.0 41.9 21.7 

These results strongly su gest the use of 3x9 seasonal filters for EDMISC and S49UO. The most carefully 
analyzed X-ll-seasonal ilter length selection criterion with which we are familiar is the Global hloving P 
Seasonality Ratio (GMSR, also called I/S-ratio) analyzed by Lothian (1984), which is printed out in Table 
D9A of X-11.2 and Table F2.H of X-ll-ARIT\IIA. For series of the length we are considering, Lothian’s 
recommendation is that 3x3, 3x5 or 3x9 filters can be used, depending on whether the value of GMSR is 
between 2.3 and 4.1, 4.1 and 5.2, or 5.2 and 6.5. For EDMISC, the value of GMSR is 6.47, favoring the same 
filter as the sliding spans statistics. For S49U0, GMSR’s value is 3.75, so there is disagreement. The 
graphical methods used in Lothian 1984) in support of GhISR do not clearly favor either filter. Their 

6 interpretation is made difficult by t e fact that the different filters lead to rather different outlier 
modification factors which exaggerate the differences between the SI ratios to which the seasonal filters are 
applied. We refer the reader to Figures 5.1 and 5.2 for the December SI ratios (from X-11 Table D8), their 
modifications (via D9) and the seasonal factors (from DlO), from adjustments with 3x3 and 3x9 filters, 
respectively, for the series from 1972-1985. December was chosen for display because it is the month whose 
3x3 seasonal adjustments are most unstable as measured by the sliding spans statistics: its average value of 
S(%) is 5.2, and all Decembers were flagged. By contrast, with 3x9 filters only 3 out of 12 Decembers were 
flagged and the average value of S(%) is 2.5. It seems reasonable to prefer the adjustment with 3x9 seasonal 
filters, because of its much greater stability. 

For CUT, the value of GMSR is 5.1, suggesting the 3x5 filter, but the M-M(%) value of 41.9 for this filter is 
not satisfactory, whereas the sliding spans statistics associated with the 3x3 filter seem acceptable. Only 13 
years of data were available for this series, so only three 11 year spans could be calculated for adjustments 
with 3x9 filters. Sliding spans statistics from only three spans tend to be smaller than those obtained with 
four spans, see Table 7.1, making comparisons difficult. However, for this series, the “F’‘-statistics for the 
presence of stable seasonality from X-11.2’s (and X-ll-ARIMA’s) Table D8, which are printed for each span 
by the sliding spans program, offer evidence that shorter than 3x9 filters, and even a shortened series, should 
be used, as we will now explain. Because the SI ratios in Table D8 are correlated, being detrended values of 
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Figure 5.1 

DECEMBER VALUES FOR SI RATIOS AND SEASONAL FACTORS 
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Figure 5.2 

DECEYBER VALUES FOR SI RATIOS AND SEASONAL FACTORS 
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“F’‘-Statistics for Stable Seasonality for CUT 

Span 

1 2 3 4 

Filter 
3x3 4.1 5.8 6.8 7.2 

3x5 4.3 4.8 6.9 7.0 

the observed series, the associated “F’‘-statistics for the presence of stable seasonality do not follow an 
F-distribution precisely. The tradition at the Census Bureau and at Statistics Canada has been to interpret 
an F-statistic value less than 7.0 as indicating a seasonal pattern which is too weak to permit adjustment. By 
this criterion, only the last 6-8 years of CUT are adjustable. 

To summarize, if the seasonal filter length suggested by Lothian’s GMSR statistic does not yield an 
acceptable adjustment, the sliding spans statistics can sometimes reveal a more suitable filter length. Usually 
(see also Table 7.1 below), but not always, the sliding spans statistics S(%), M-M(%), etc. are smaller for 
longer filters. The “F’‘-statistic from Table D8 for the different spans can reveal evolution in the seasonal 
movements which the other sliding spans statistics do not reflect clearly, and this possibility should also be 
considered when selecting the length of the seasonal filter. 

. 6. SEASONAL ADJUSTMENTS VERSUS TRENDS (X-11) 

“Trends” receive much attention. The concept, however, is use-dependent rather than fixed. For example, 
analysts seeking short-term trends expect more wiggly graphs than investigators of long-term trends. There 
are Qtistical model based Ion -term forecasting procedures whose trend forecast curves differ from those of 
the corresponding short-term orecasting procedures in just this way, see Gersch and Kitagawa (1983). The f 
X-11 trends are intended to reveal seasonal movements and are produced by 9-, 13- or 23-term Henderson 
filters (moving averages), with the 13-term filter being the most frequently used. The “final” trends are 
obtained by applying one of these filters to the seasonally adjusted data. Because of the filter lengths, the 
resulting trends are short-term trends and might be expected to have more stable month-to-month changes 
than the seasonally adjusted data. It is less clear what to expect for year-to-year changes. Surprisingly, 
perhaps, in every case we have observed, they are less stable. The examples in Table 6.1 are typical. Similar 
results have been observed with BAYSEA. 

Table 6.1 Seasonal Adjustment/Trend Analysis of Some Foreign Trade Series 

S(%)!T(%]* h4-M(%‘ol Y-Y(%) 

FUANEC 10.4/6.2 29.516.3 0.0/11.9 

FUASIA 11.5/6.2 29.5/1.1 0.0/11.9 

FUOECD 7.314.2 24.210.0 O.O/S.O 

FUOEEC 9.413.1 25.3/1.1 0.0/4.8 

FUWEUR 9.4/2.1 24.2/0.0 o.o/o.o 

FUWGER O.O/O.O 12.6/0.0 o.o/o.o 

FUWH 2.115.2 9.5/0.0 0.0/9.5 

XUOECD 2.813.5 10.5/0.0 0.0/8.3 

*T(%) is the analogue of S(%) with trend values used instead of 
seasonal factors. 

Seeking theoretical confirmation of these phenomena, through an analysis of the linear filters representing the 
entire seasonal adjustment and trend estimation procedures of additive X-11, William Bell, in unpublished 
work, calculated the coefficients of the filters which produce the revisions, from initial to final estimates, of 
the month-to-month and year-to-year changes, both for seasonal adjustments and for trends. He observed 



that the filter coefficients associated with month-to-month changes are much larger for seasonal adjustments 
than for trends, whereas for year-to-year changes, the situation is reversed. Although the coefficient patterns 
are complex and involve both positive and negative coefficients, this calculation suggests the phenomena we 
observed. It seems, therefore, that a data user who chooses to use X-11 trends instead of seasonal 
adjustments must be prepared to accept less stable estimates of year-to-year change. 
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7. BIAS IN THE SLIDING SPANS PROCEDURE 

In a sliding spans analysis with four spans, some months are common to only two spans (“2’‘-months), some 
only to three spans (“3’‘-months), and some occur in all four spans (“4’‘-months”). Are months for which 
more comparisons are available more likely to be flagged? Or, to the contrary, are “4’‘-months the least 
likely to have unstable adjustments, because their adjustments are produced by closer-to-symmetric filters, 
see Dagum (1982, 1983a), Wallis (1982) and Pierce and McKenzie (1987)? To address these questions, 
Marian Pugh investigated the percentages of months identified as having excessively variable factors 
(S(%)>3.0) for 59 series, using spans of length 7, 8, 11 and 13 years according to whether 3x3, 3x5, 3x9 or 
“stable” filters were used. (The “stable” filter calculates a single seasonal factor to be applied to all data 
associated with a given calendar month. This factor is the average (the sample mean) of all the SI ratios 
associated with the calendar month.) The results presented in Table 7.1 show that, on average, “2’‘-months 
will be flagged less than “3’‘-months, and “3’‘-months less than “4’‘-months. The table shows that this 
conclusion continues to apply when only series are considered which are adjustable for a given filter length, 
according to the criteria of Table 1.1. These are summary statements, however, and need not apply to an 
individual series. We have not attempted to refine the threshold values to remove this bias. There are 
somewhat complicated, practical considerations. For example, “2’‘-months, which are less numerous and are 
least likely to be flagged, are either the most recent (and therefore most interesting) or the oldest (and usually 
therefore least interesting) of the months for which comparisons are available. 

* 
Table 7.1 

Percentages of Months with Unstable Adjustments, 
Classified by Position-In-Span and Filter Length Used. 

For each series/filter combination, the count of the number of poorly adjusted months and the ratio to the 
total number of months is tabulated for months common to 2, 3, and 4 spans, respectively, and for all 
months. 

SEASONALLY ADJUSTABLE SERIES/FILTER COMBINATIONS 

3x3 FILTER 3x5 FILTER 3x9 FILTER STABLE ALL FILTER 

“2’‘-MONTHS 
1% 

9/ 672 
1% 

“4’‘-MONTH!; “3”-MONTH;y 
32/ 672 
42/1008 7811920 2% 

ALL MONTI$ 8312352 

4% 4% 

2% 
123/3456 

0 3% 2% 

ALL SERIES/FILTER LENGTH COMBINATIONS 

3x3 FILTER 3x5 FILTER 3x9 FILTER STABLE 

“2”-MONTH;8~273/1464 
0 13% 2018/;464 0 

“3’‘-MONTH&420/1464 

“4”-MONTHS ‘710/2196 
24% 

32% 24% 

3;7$464 

879/;660 

2;$464 

15% 
8,9&856 

0 

ALL MONTHS 1403/5124 
27% 21% 

143$588 
125121i784 

155919516 
0 0 18% 

3613360 

109/3360 

392/11100 

537117820 

ALL FILTER 

76’lY;4 0 

187/;l4$ 

1296/;$? 
0 

668/ 5856 

1199/ 5856 

3784/18300 

5651/30012 



8. REGRESSION MODELS WITH ARMA ERRORS 

Now we turn to the modeling and model estimation capabilities which have been incorporated into our 
developmental version of X-12-ARIMA. The models are (possibly nonstationary autoregressive moving 
average models, with coefficient gaps, which frequently appear as t h e error process for a linear regression 
mean function. What follows in Sections 8-11 is taken from Otto, Bell and Burman (1987). 

Regression models with autoregressive-moving average (ARMA) errors for equally spaced data can be 
written, 

$(B)(wt -x;P)=O(B)e(BS)at, t=l to n. (8.1) 

Here wt is the time series to be modeled, possibly a transformed or differenced version of the original series; 

xi is a row vector from X, the n x k matrix of similarly differenced regression variables; at is an innovation 

error-assumed to be approximately iid N(O,/). 4(B) is a p-order autoregressive operator, 

where B is the backshift or lag operator (Biyt=yt). 4(B) need not include all the lags l;..,p and so can 

t 
allow for seasonality with operators of the form 1 - $12B12 or 1 - $lB -$2B12, etc.. We do not consider 

multiplicative AR operators, d(B)@(B’) because of their nonlinear product coefficient*onstraints. 

B(B) is a q-order non-seasonal moving average operator, 
I 

0(B)=i-0,B-02~2-03~3- . . . -eq~q. 

e(Bs) is a Q-order seasonal moving average operator with seasonal period s, 

e(BS)=1~1Bs~2B2s,3B3s- . . . -8 
Q 

BQs. 

The roots of both the non-seasonal and seasonal moving average operators are required to lie on or outside the 
unit circle and have no common roots with the autoregressive operator. The roots of the autoregressive 
operator are unconstrained. 

Ljung and Box (1976) and Hillmer and Tiao (1979), hereafter HT, document the importance of using exact 
likelihood methods for the estimation of moving average parameters only. We follow HT’s approach of 
conditioning on the first observations for estimating AR parameters. 

9. EXACT MA LIKELIHOOD EVALUATION 

In this section we briefly review exact likelihood evaluation for pure MA models. A detailed derivation of the 
exact form of the likelihood is given by HT and Ljung and Box (1976). For simplicity in this review we 
consider models with only nonseasonal MA terms, O(B), not the full MA operator, O(B)@(B). We refer the 
reader to HT for details on how to handle multiplicative seasonal models efficiently. 

The exact form of the likelihood (density of the data) is obtained by relating the data to a set of iid 
innovations through a linear transformation. Let a = (al, . . . , an)’ be the vector of innovations shown in 

equation (2.1), a, = (al-, a2-, . . . , a-I, ao) ’ be q* initial innovations, assumed to be from the same 

stochastic process as the a’s, so a, N N(0,g21). Let w = (~1, . . ., wn)’ be the data vector of observations 

satisfying (8.1), and let w+ = (w 
1-V y&q . ’ . > w-I, wo)‘, be q* artificial initial values prior to the period 

of observations. As described in Ljung and Box (1976), we can define w* by linearly relating it to a* by an 

arbitrary lower triangular system such that ] J] , the Jacobian of the transformation between [a;, a,]’ and 

bG> w’]’ is 1. The transformation from a to w and our choice of triangular system will be described below. 

This transformation allows us to rewrite the exact likelihood in terms of w and w*, 

p(w*,w) = p(a*,a) I J I = pb4 (9.1) 



NOW, the joint density, p(w*,w), can be factored&s 

P(w)P(w* I w) = p(w*,w). (94 

We obtain the desired unconditional density, p(w), (the exact likelihood) by obtaining an expression for 
p(w*,w) and identifying p(w) and p(w* I w) in (9.2). 

The pure MA model is defined as follows: 

wt = O(B)at, t=l,..., n, . 

or 
Wt = -e a t-q -eq-1atq-1 - 

(9.3) 
q . . . -e&-l + at 

Notice that the equations for w1 to wq require a* so we include q* more equations for the initial conditions. 

We use Tunnicliffe-Wilson’s (1983) choice of triangular system relating wt to a,, which is 

607 

. 

wl-q = “l-3 

w2-q = -el a1-q + $q 

w3-q = -42 al.+ - e1 “2-q + a3-q 

wO 
=-e a q-1 l-q -eq-2a2-q - ... -$a-, + a0 

Equatyons 9.3 and 9.4 in matrix form are, 

wO 

W n 

= -eq -eqsl . . -el i 

. . . . . . . 

0 . . Leq . . . ' -0, 

(94 

1 

“0 

“n 

and so in an obvious notation 

[;] = Ak] 

The innovations and the initial innovations are related to the data and initial values by the inverse 
transformation, 

k] = A-l[;] (9.5) 

where A -I is a matrix of a finite set of T-weights from the expansion T(B) = !! ?r.Bj = O(B)-‘, where ~~ = 1 

(Tunnicliffe-Wilson 1983) 
j=o J 

1 

rrl l 

A--’ = : ’ . . 

Tn+q-l “. 7rl 1 

(9.6) 

The T-weights are obtained by equating coefficients in B(B)z(B) = 1. 
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To separate the equations relating to the initial conditions from those relating to the data, we partition 
-1 

A 
with the first q columns labelled G and the remaining n columns labelled H. (9.5) can be rewritten, 

or 

Gw*+Hw= ; [I 
^ 

If we regress Hw on G we get an estimate of the initial values given the data, w* = -(G/G)-IG’Hw. In fact, 
L 
w* is the conditional mean and (G’ G)-lg2 is the conditional covariance of w* given w. Now we can define 

the unconditional density, p(w) (see Ljung and Box 1976), 

P(W) = (27rg 2 -d2 1 G,GI-~/~ x ) 
exp(-(Gw*+Hw)‘(Gw*+Hw)/202) (9.7) 

Note in (9.7) that G and H are functions of 0, through the T-weights. 

. The joint sum of squares, (Gw*+Hw)‘(Gw*+Hw), is a quadratic form that can be rewritten in terms of w, 

using 

I 
(Gw*+Hw) = HW - G(G’G)-lG/Hw = (I-G(G’G)-‘G’)Hw. 

Let C = (I-G(G/G)-‘G/)H where I-G(G’G)-IG’ is idempotent, thus 

C’C = H/(1-G(G/G)-lG)H 

and (C’C)-lg2 is the covariance matrix of w. Note that C is the linear transformation of the data to the 
exact likelihood residuals, ELR’s, 

^ 
a* 

[ I 

- = cw (9.8) 
i 

Finally, the unconditional density, (9.7), can be written 

This is the likelihood, L, that is maximized for exact likelihood estimation of pure MA models. Alternatively, 
we can minimize the deviance, a monotonically decreasing function of L = p(w) defined as follows. Take the 

derivative of L with respect to a2 , set it equal to zero, and solve. The result is 

~~ = w’C/Cw/n. 

Substitute this back into the likelihood to get 

L(0) = (2a(w’C’Cw/n))-“/2/G~G]-1/2e-n/2. 

Then to get a transformation of the likelihood that is as free as possible from unnecessary constants, we define 
the 

deviance = (n/27re)L(0)-2/n = (w#CJCw) I G/G] ‘In, 

Now, L( 0) is a monotonically decreasing function of the deviance, so minimizing the deviance will maximize 
the likelihood. 



10. IGLS ESTIMATION OF REGRESSION MODELS WITH ARMA ERRORS 

Cberhofer and Kmenta (1974) prove a theorem regarding iterative generalized least squares (IGLS) 
procedures for obtaining maximum likelihood estimates when direct maximization with respect to all the 
parameters is difficult. The theorem applies to regression models with ARMA errors and the result shows 
that jointly maximizing the Gaussian likelihood over p, 4, and B can b,e done by iteratively maximizing it over 
p given 4 and 0 and visa-versa. 

10.1. Regression Models With AR Errors 

Conditional least squares estimation of regression models with autoregressive errors provides a simple example 
of IGLS estimation. Jmtly estimating B and 4 is a nonlinear problem but estimating each separately is two 

linear problems. First, let w: = $(B)wt, and xi/ = $(B)xi , t=p+l, . . . ,n, where f denotes AR filtering. The 

likelihood in terms of /!I given 4 is, 

Given 4, this is maximized over /I by 

where i indicates the iteration. The likelihood in terms of # given /I is 

* 

where % = wt-xi/3 for t = 1, ... ,n, and the columns of Z are the lagged values of z = (z 

fi, (10.3) is maximized over 4 by 
Pf 

The scheme for maximizing L(aq5) is to iterate between (10.2) and (10.4). Note that in bo t1 
regression is calculated easily by doing an OLS regression on the transformed variables. In 
transformation is the AR filter, and in (10.4) transformation is to the regression residuals. 

( 
1. s . . . . . _ 

. . . , 

(10.3) 

ZJ’. Given 

(10.4) 

1 cases the 
10.2), the 
;o a difficult 

(10.1) 

(10.2) 

nonlinear problem IS reduced to a procedure that iterates between two simple linear regressions. Also, since 
the regression and AR parameter estimates are asymptotically independent (Pierce 1971) their asymptotic 
variances are obtained from the regressions directly after estimates have converged, 

and 

var(j) = (Xf/Xf)-lg2 

var(i) = (ZfZ)-lg2. 

10.2. Regression Models With MA Errors 

For regression models with MA errors we modify (9.9), the exact density for pure MA models, to include 
regression effects, 

P(W) = (27rg 2 -n/21G,G/-1/2 ) x exp(-(w-X@)/C/C(w-Xp)/202) 

For given 0 this is maximized over /I at 

(10.5) 

^ 

j3 = (X’C’C x)-lXT’Cw 

the GLS estimate. At each iteration, a new value of Bis obtained by fixing p, thus updating the inverse 

covariance matrix C -1 
= C’Cgm2; then a new /3 is obtained with updated covariance matrix. 

Continue until convergence. 
These iterations 
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Note, as was shown in 9.8, that C linearly transforms both w and X into exact likelihood residuals, ELR’s, w 
^ 

= Cw and X = CX. After the transformation to ELR’s, the p can be obtained by an OLS regression of w on 

x, 
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a = (x~x)-'x~ ;. 

w and X can be obtained recursively as shown in Otto, Bell, and Burman 1987). Finally, assuming the 
model is correct, the regression estimates are asymptotically independent 1 rom the MA parameter estimates, 
so the q x q covariance matrix of Bis obtained from the inverse of the negative Hessian of the likelihood 
function (Pierce 1971) and the k x k covariance matrix of 0 is obtained from the regression, 

var(i) = (XtX)-Ic2. 

10.3. Repression Models With ARMA Errors 

We can consider three possible approaches to estimating regression models with ARMA errors: (l), maximize 
L(fl,#,o) jointly over 0, 4, and 0 by nonlinear least squares, (2), use a two stage IGLS where r$ and 0 are 
estimated jointly by nonlinear least squares and p is estimated by iterative GLS regression, and (3), use a 
three stage process where only Bis estimated by nonlinear least squares and both fi and 4 are estimated by 
separate GLS regressions. 

The two stage procedure is similar to the regression with MA errors except now both the AR and MA 
parameters are jointly estimated by nonlinear least squares. 
linear AR filter, 

By letting the n-p x n matrix, L, represent the 

z --#p -$p-l - ... 41 1 
L= 

-“P 
- ... -c#12 -q$ 1 , 

. . . 
i 

0 . . . 
-#P 

. . . ‘-4, . 1 

the joint likelihood (10.5) can be modified to include AR terms, 

p(w) = (2*a2)-(n-p)/21GxGI-112 x exp(-(w-X/?)‘L#CJCL(w-XP)12g2). 

The GLS regression for /I is 

p = (x~L~c~cLx)-lx~L~c’cLw, 

and the covariance matrix of p is 

var(p) = (X/LRC’CLX)-‘a2. (10.6) 

Notice that these are regression results with the data w and regression variables X filtered by both the AR 
filter ( #(B)NL) and MA-ELR filter (C). 

The three stage method is similar to the regression models with AR errors but at the beginning of each 
iteration, estimates of the B’s are obtained by nonlinear least squares, and the ELR’s are taken as part of the 
transformation for each GLS. For each iteration’s /3 GLS step the ELR’s are taken after the AR filtering and 
for each iteration’s &GLS step the ELR’s are taken after the regression residual transformation. The 
step-by-step procedure for this method is fairly involved; it is described in Otto, Bell, and Burman (1987). 

11. COMMONLY USED REGRESSOR VARIABLES 

Ourcurrent developmental version of X-12-ARIMA incorporates four kinds of regression variables. These 
model stable seasonality, trading day variation, additive outliers and level-shift outliers. Other variables, for 
modeling Easter effects, for example, will be added later. Also, the program will accept as input the design 
matrix of any linear regression variables the user wishes to include in the model, such as the ramp function 
defined below. 

Stable Seasonalitv. The conceptual regression model for a stable (perfectly repetitive), additive, seasonal 
component St for monthly data has a coefficient for each calender month, and these twelve coefficients are 

This can be handled with a regression constrained to sum to zero, leaving eleven unconstrained coefficients. 
model of the form 

St = z‘ ai(Mit - M12J 
i=l 



where 
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Mit = { 
1, if month t is the i-th calendar month 
0, otherwise 

for i= 1,. . . ,12 corresponding to (January,. . . *December). 

Trading Dav Effects. A regression model for additive trading day effects (Bell and Hillmer 1983, Bell 1983a) 
is 

6 

TDt = ,&PiCDit - D7t> + PTLYFt 

where Dit is the number of i-th weekdays in month t, i=1,...,7 (Monday,...,Sunday) and 

0.75, if month t is a leap-year February 
LYFt = -0.25, if month t is a non-leap-year February 

0 , if month t is not a February. 

Outliers. We consider two possible ways in which the observed datum for month to can be an outlier (see 

Bell 1983b). The additive outlier regression variable is . 
AOito) = I 1 , if t = to 

0,ift # to, 

and&he level shift outlier variable is 

Ls\to) = 

i 

0, if t > to , 

-1, if t < to 

An additional regression variable which will be considered for the series examined in the next section is the 
“ramp” function at time to defined by 

0,) 
Rt = 

0, t <to 
(t-t,), t > to 

The examination of various combinations of such regressors, perhaps with different ARIMA models for the 
regression errors, will often give rise to comparisons of models which are non-nested. That‘is, the models 
with fewer parameters will frequently not be special cases of the models with more parameters. In this 
situation, the familiar F-tests and &i-square tests are inapplicable and the familiar “Box-Jenkins” time 
series methodolog 
Findley and Wei i 

lacks an objective procedure for making such comparisons. Findley (1984, 1987) and 
1988) provide a large-sample theory supporting the use of Akaike’s minimum AIC criterion 

(MAIC) for such comparisons. For a given, estimated model, AIC is defined by 

AIC = (-2) log maximized likelihood + 2 (number of estimated parameters). 

The model with the smallest AIC is preferred. 

When Akaike’s procedure is applied to compare two nested models, it reduces to a familiar 
log-likelihood-ratio test with a large-sample chi-square test statistic having degrees of freedom equal to the 
difference in the number of parameters. In this situation, differences of AIC values less than 1.0 will often be 
insignificant unless the difference in the number of parameters estimated is large. The difference between two 
AIC values can have greater variance when non-nested comparisons are made, and differences a little larger 
than 1.0 may then not indicate a substantial preference for the model with smallest AIC. 

12. REGRESSION AS AN AID TO SEASONAL ADJUSTMENT 

Our analysis of the series CUT in section 5 suggested that only the later years of data should be considered for 
seasonal adjustment. We will consider the data from January, 1980 through October, 1987. An “airline” 
model for the logarithm of the data with appropriate regression terms, 

(1-B)(1-B12)(logyt - x;B) = (i-e1B)(1-e,3B12)at (12.1) 
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seems to fit the data well. The regression terms utilized were the trading day expression TDt described in 

(toI 
section 11; additive outlier variables AOt for times to corresponding to April, 1982, December, 1986 and 

(toI 
January, 1987; and a level shift outlier variable LSt , with to corresponding to March, 1984, all of which 

were favored by the MAIC procedure and also had nominal F- and t- statistics which were significant at 
close to the o = .Ol level. An examination of the graph of log CUT given as Figure 12.1 suggests that a ramp 

function Rlf’) with to corresponding to March, 1984 might fit better than a level-shift expression. When this 

was tried, the estimated slope was small (bR=.0018) and the AIC value of -221. for the model with the ramp 

was larger than the AIC value of -228. for the model with the level shift, so the model with level-shift was 
retained. (Note that this comparison concerns non-nested models and that statistical procedures for making 
such comparisons other than the minimum AIC procedure are not readily available.) Figure 12.2 displays the 
fitted outlier regression component. Subject-matter experts from the Census Bureau’s Foreign Trade Division 
later told us that the data values for December, 1986 and January, 1987 contained substantial errors (which 
were corrected subsequently) thus providing an independent confirmation of this part of our model. 

Removing from the data the outlier effects estimated with the model above has a substantial impact on both 
the diagnostic F-statistics and the seasonal factors produced by X-11. For the original data, the Table D8 
F-statistic for the hypothesis of no stable seasonality had the value 7.1 (barely significant according to the 
discussion of section 5) which changed to 9.8 when the series preadjusted for outliers was used. The value of 
the F-statistic from X-11’s Table Cl5 for the null hypothesis of no trading day effects was 6.7 for the original 
data and 5.3 for the preadjusted data. As was discussed in section 5, the correlation in the errors of X-11’s 
regressions makes it necessary to have empirical criteria for interpreting the significance of these statistics. If 
a we&fitting ARIMA-with-regression-model is available for the data, then both the likelihood ratio test 
(which has a &i-square limiting distribution under the null hypothesis of no effect) and also the likelihood 
ratio-based minimum AIC procedure represent more objective alternatives to these empirical criteria. 

The AIC’s for the model (12.1) are -215. without TDt and -228. with, suggesting the presence of a 

statistically significant trading day component. 

For testing the existence of a significant stable seasonal component, a regression- with-IMA(l,l)+error model 
was fit, 

(1-B)(logyt - x;S) = (1 - OIB)at ) (12.2) 

which included a seasonal regression component St in addition to the trading day and AO- and LS- outlier 

effects described above. This is the model that would result if 012 = 1 in (12.1) (Bell 1987). (The estimates 

of ti12 obtained for (12.2) for the different regressions considered were all close to 0.7.) A comparison of the 

AIC values of the maximum likelihood estimates of (12.2) with (AIC = -280.6) and without (AIC = -238.6) 
an St component, favors the assumption that CUT has such a component. 

The Table 12.1 below gives the X-11 seasonal factors first for the original CUT data, then for the outlier 
preadjusted data, followed by the minimum variance seasonal factors obtained from the Hillmer-Tiao (1982) 
signal extraction procedure obtained from the fitted version of (12.1). (Hillmer, Bell, and Tiao (1983) discuss 
application of the procedure to models with calendar and outlier variables.) The latter factors are similar to 
those obtained by X-11 from the preadjusted data. They differ markedly in December and January from 
those obtained by X-11 from the original data, revealing a lack of robustness in X-11’s procedure. (We have 
encountered a quarterly series in which three outliers strongly influenced the seasonal factors of three of the 
four quarters over a five year stretch.) Scott (1987) has made similar observations and has also identified 
certain instabilities associated with identifying and estimating outliers. 
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Table 12.1. Effects of Outliers on Seasonal Factor Estimates 

The first panel presents the seasonal factors obtained from X-11 for CUT. The second was 
obtained by X-11 from the preadjusted series from which the outlier effects identified by the 
estimated model had been removed. The third panel displays the seasonal factor obtained 
from the Hillmer-Tiao model-based adjustment procedure applied to the outlier preadjusted series. 

FINAL SEAS 

YEAR 

1980 

1981 

f9a2 

1983 

19% 

1985 

1986 

1987 

iONAL FACTORS FOR IMPDRT SERIES 

3x5 MOVING AVERAGE SELECTED. 

JAN FEE MAR APR 

102.01 93.57 100.13 98.72 

101.71 93.21 100.44 98.47 

101.40 92.31 100.69 98.47 

100.80 91.42 100.87 98.61 

100.16 90.64 101.14 98.98 

99.40 90.54 101.56 99.23 

99.00 90.63 101.84 99.62 

98.87 90.68 101.74 99.94 

MAY JUN JUL AUG SEP DC1 NOV DEC 

102.70 103.14 98.27 102.41 96.87 107.94 loD.al 93.64 

103.04 103.11 98.81 102.27 96.98 107.85 100.91 93.41 

103.69 103.14 99.58 102.01 97.04 107.97 101.09 92.92 

104.32 103.25 100.74 101.53 97.30 107.77 101.11 92.45 

104.87 103.07 102.16 100.91 97.34 107.80 100.97 91.91 

105.17 102.89 103.36 100.29 97.36 107.43 100.88 91.70 

105.25 102.59 103.93 99.87 97.12 107.43 101.07 91.66 

105.19 102.55 104.06 99.71 97.07 107.41 l tt*t*tt * l **.*** 

FINAL SEASONAL FACTORS FOR SERIES MODIFIED FOR UJTLIERS 

1980 

1981 . 
1982 

1983 

1984 

aas 

1986 

1987 

3x5 MOVING AVERAGE SELECTED. 

JAN FEE MAR APR 

105.15 94.34 98.76 98.96 

104.84 93.97 98.91 98.91 

104.43 93.15 99.02 99.17 

103.80 92.25 99.10 99.57 

103.16 91.65 99.33 99.85 
102.65 91.69 99.46 100.01 

102.50 92.05 99.47 100.16 

102.54 92.24 99.34 100.39 

HILMER-TIAO CANONICAL SEASONAL FACTORS 

YEAR JAN FEE MAR 

1980 104.82 95.36 loo.28 

i9al 104.78 95.09 99.94 

l9a2 104.42 94.55 99.58 

1983 103.88 94.26 99.48 

1984 103.51 94.38 99.47 

1985 103.23 94.62 99.38 

1986 103.26 95.10 99.33 

1987 103.40 95.55 99.33 

APR MAY JUN JUL AUC SEP OCT 

99.52 102.94 102.12 98.23 101.11 95.45 106.02 

99.40 - 102.86 102.19 98.54 101.55 95.79 106.49 

98.99 102.85 102.25 99.18 101.79 96.11 106.82 

98.56 102.97 102.10 99.83 101.41 96.16 106.93 

98.37 103.13 101.84 100.39 100.76 96.01 106.79 

98.40 103.13 101.51 loo.83 100.10 95.84 106.57 

98.39 102.91 101.25 101.20 99.65 95.71 106.39 

98.25 102.72 101.14 101.41 99.44 95.62 106.34 

RAY JUN JUL AUG 

101.88 103.04 97.55 101.72 

102.12 102.91 97.99 101.72 

102.58 102.71 98.63 101.60 

103.05 102.43 99.76 101.05 

103.46 101.99 101.13 100.20 

103.63 101.57 102.41 99.25 

103.64l 101.25 103.10 98.58 

103.57 101.16 103.37 98.23 

SEP OCT NOV DEC 

97.27 107.70 98.78 95.13 

97.28 107.80 98.92 94.99 

97.13 108.10 99.22 94.84 

97.07 107.86 99.46 95.09 

96.68 107.53 99.95 95.35 

96.33 106.81 100.34 95.82 

95.85 106.50 100.77 96.05 

95.72 106.30 .**.*ttt tt*.**** 

NOV DEC 

99.45 95.58 

99.56 95.35 

99.69 95.24 

100.19 95.43 

100.67 95.68 

100.93 96.04 

100.97 96.23 

For a final application of the use of these modeling and model comparison procedures, we return to the 
discussion of section 3 concerning the question of trading day adjusting some foreign trade series. The AIC 
values associated with the trading day and outlier regression models with seasonal ARIMA errors given in 
Table 12.2 below affirm the conclusions of section 3: Only for the export series XUOECD is there some 
justification for doing a trading day adjustment. 
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Table 12.2. AIC ANALYSIS FOR TRADING ADJUSTMENT OF FOREIGN TRADE SERIES 

Series Model Type 

Outliers AIC’s 

# AO’s #LS’s TD/No TD 

FUANEC (0 1 l)(l 0 1)12 2 2 -188.31-192.4 

FUASIA (0 1 2x1 0 142 0 2 -202.5/-210.2 

FUOECD (0 1 l)(O 1 1)12 1 1 -230.9/-240.0 

FUOEEC (0 1 l)(l 0 1)12 1 0 -173.4/-175.1 

FUWEUR (0 l l)(O 1 1)12 2 0 -232.11-242.3 

FUWGER St+constant+ 2 0 -227.7 J-237.9 

(0 1 1) error 

FUWH (0 1 No 1 1112 0 1 -259.9/-261.8 

XUOECD St-l-constant+ 4 2 -560.8/-539.5 

(O,l,l) error 

. 
13. OTHER POSSIBLE ENHANCEMENTS FOR X-12-ARIMA 

Time Series Diagnostics 

We plan to add some ARIMA modeling and outlier diagnostics, so that the user has the option of utilizing 
X-12-ARIMA for model and outlier identification purposes. Bell (1983) describes an outlier identification 
program which is a prototype of what we are currently using. We are also seeking diagnostics to help the user 
select the forecast horizon for extending the series prior to seasonal adjustment, when a regression or seasonal 
ARIhlA model has been fitted. 

Seasonal Adjustment Diagnostics 

Some of X-11’s diagnostics, such as the “F’‘-statistics and the F2B table, are based on sums of squares, which 
can be strongly influenced by outliers. Several approaches are being considered to robustify these diagnostics 
in ways that do not substantially affect the program’s execution time. The simplest approach, currently 
under investigation, is to replace the irregular component of the series with the modified irregular from Table 
E3. The graphical *diagnostics of X-11.2, including spectra, have been incorporated into the program. 

Filters 

With the exception of the Henderson trend filter, the symmetric filters of X-11 have an attractively simple 
form. This is less true of the asymmetric filters used for the adjustment of the most recent observations, 
which are usually the data most of interest. It may be worth abandoning simplicity altogether in favor of 
filters with good frequency response function characteristics designed by the techniques in current use in 
electrical engineering. Another alternative, when a seasonal ARIMA model has been fitted to the series, is to 
use the filters determined by a model-based signal extraction procedure. 

User Interface 

The Namelist input methodology of X-11.2 will be used to reduce the amount of information required from 
the user and to facilitate interactive processing. 

14. SUMMARY 

The seasonal adjustment program under development at the Census Bureau combines features of the new 
X-11.2 version of the Census Bureau Method II program with enhancements to Statistics Canada’s 
X-ll-ARIMA methodology and diagnostics. With reference to X-11 and X-ll-ARIMA, its most important 
new features are the sliding spans diagnostics and the possibility of using regression models with seasonal 
ARIhlA errors. The sliding spans diagnostics offer more insight than previous diagnostics into the reliability 
of the adjustments produced by the programs many options. The new regression option makes it possible to 
address a variety of special characterisitcs of an individual series which compromise the performance of the 
X-11.2 and X-ll-ARIMA programs. The program is being developed on an IBM PC/AT with math 
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coprocessor ana is intended to be portable enough to run on any computer for which a sufficiently moctern 
FORTRAN is available (FORTRAN77 + Namelist) and which has enough memory (presumably 640 KB). 
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APPENDIX 

SLIDING SPANS ANALYSIS 

s 0. SUMMARY OF OPTIONS SELECTED FOR THIS RUN 

PRINT ONLY BREAKDOWN TABLES 

TRADING DAY FACTORS NOT ANALYZED 

YEAR-TO-YEAR CHANGES ANALYZED 

NUMBER OF SPANS : 3 

LENGTH OF SPANS : 96 

MONTH OF FIRST OBSERVATION IN FIRST SPAN : 1 

YEAR OF FIRST OBSERVATION IN FIRST SPAN : 74 

NAME OF SERIES BEING ADJUSTED : FUOECD 

SUMMARY OF F-TESTS FOR STABLE AND RESIDUAL SEASONALITY FOR EACH SPAN 
. 

SPAN 1 SPAN 2 

STABLE SEASONALITY CD 8) 8.16 *** 7.66 *** 

* 

RESIDUAL SEASONALITY (Dll) 0.51 0.55 

FULL SERIES 

RESIDUAL SEASONALITY (Dll) 0.31 0.61 

LAST THREE YEARS ONLY 

RESIDUAL SEASONALITY (E 2) 0.17 0.20 

FULL SERIES 

RESIDUAL SEASONALITY (E 2) 0.31 0.67 

LAST THREE YEARS ONLY 

*** : F-TEST SIGNIFICANT AT THE 0.1 PERCENT LEVEL 
** : F-TEST SIGNIFICANT AT THE 1.0 PERCENT LEVEL 

* : F-TEST SIGNIFICANT AT THE 5.0 PERCENT LEVEL 

SPAN 3 

7.54 *** 

0.48 

0.73 

0.14 

1.18 

NOTE: SUDDEN LARGE CHANGES IN THE LEVEL OF THE SEASONALLY ADJUSTED SERIES WILL INVALIDATE THE RESULTS OF THE 

RESIDUAL SEASONALITY F-TEST FOR THE LAST THREE YEAR PERIOD. 



A.2 

S ,,A SREAKDONN OF 3.0 PERCENT OR MORE DIFFERENCES IN SEASONAL FACTORS FOR FUOECD 

TOTAL : 9 OUT OF 96 ( 9.4 X1 

(USUALLY, 15% IS TOO HIGH, AND 25% IS MUCH TOO HIGH) 

619 

. 

JANUARY : 0 

FEBRUARY : 4 

MARCH : 2 

APRIL : 0 

MAY : 0 

JUNE : 0 

JULY : 0 

AUGUST : 1 

SEPTEMBER : 0 

OCTOBER : 2 

NOVEMBER : 0 

DECEMBER : 0 

1975 : 2 

1976 : 1 

1977 : 0 

1978 : 0 

m9 : 1 

1980 : 1 

1981 : 3 

1982 : 1 

(AMPD = 1.4) 

(AMPD = 2.8) 

(AMPD = 2.1) 

(AMPD = 1.1) 

(AMPD = 1.1) 

(AMPD = 1.6) 

(AMPD = 0.9) 

CAMPD = 2.2) 

CAMPD = 0.7) 

CAMPD = 2.5) 

(AMPD = 0.9) 

(AMPD = 1.6) 

(AMPD = 1.6) 

(AMPD = 2.0) 

(AMPD = 1.4) 

(AMPD = 0.8) 

(AMPD = 0.8) 

(AMPD = 1.6) 

(AMPD = 2.5) 

(AMPD = 1.8) 

AMPD = AVERAGE MAXIMUM PERCENTAGE DIFFERENCE 

7 OUT OF 96 ( 7.3 X) OF THE MONTH(S) TESTED HAD A CHANGE OF DIRECTION. 

2 OUT OF 7 ( 28.6 X) OF THE MONTH(S) WITH CHANGES OF DIRECTION WERE FLAGGED. 

S.l.B HISTOGRAM OF MAXIMUM PERCENTAGE DIFFERENCE IN SEASONAL FACTORS FOR FLAGGED MONTHS 

% : GREATER THAN OR EQUAL TO 3.0% BUT LESS THAN 4.0% : 5 

%% : GREATER THAN OR EQUAL TO 4.0% SUT LESS THAN 5.0% : 3 

%%% : GREATER THAN OR EPUAL TO 5.0% BUT LESS THAN 6.0% : 1 

%%%% : GREATER THAN OR EQUAL TO 6.0% : 0 

S.l.C STATISTICS FOR MAXIMUM PERCENTAGE DIFFERENCE OF THE SEASONAL FACTORS 

MINIMUM 0.020 

25TH PERCENTILE : 0.773 

MEDIAN 1.345 

->65TH PERCENTILE : 1.780~. 

75TH PERCENTILE : 2.128 

->85TH PERCENTILE : 2.829~. 

MAX I MUM 5.804 
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A.3 

S 4.A BREAKDOWN OF 3.0 PERCENT OR MORE DIFFERENCES IN MONTH-TO-MONTH CHANGES IN S. A. DATA FOR FUOECD 

TOTAL : 22 OUT OF 95 ( 23.2 X) 

(USUALLY, 35% IS TOO HIGH, AND 40% IS MUCH TOO HIGH) 

JANUARY : 2 

FEBRUARY : 3 

MARCH : 5 

APRIL : 1 

MAY : 2 

JUNE : 1 

JULY : 1 

AUGUST : 3 

SEPTEMBER : 0 

OCTOBER : 2 

NOVEMBER : 1 

DECEMBER : 1 

* 1975 : 4 

1976 : 1 

1977 : 1 

1978 : 0 

1979 : 1 

1980 : 3 

1981 : 7 

1982 : 5 

(AMPD = 2.4) 

(AMPD = 3.5) 

(AMPD = 3.0) 

(AMPD = 1.5) 

(AMPD = 1.4) 

(AMPD = 1.6) 

(AMPD = 1.6) 

(AMPD = 3.1) 

(AMPD = 1.7) 

(AMPD = 2.2) 

(AMPD = 1.7) 

(AMPD = 1.4) 

(AMPD = 1.9) 

(AMPD q 1.9) 

(AMPD = 1.4) 

(AMPD = 1.1) 

(AMPD = 1.5) 

(AMPD = 2.5) 

(AMPD = 3.7) 

(AMPD = 2.7) 

AMPD = AVERAGE MAXIMUM PERCENTAGE DIFFERENCE 

11 OUT OF 95 ( 11.6 %) OF THE MONTH(S) TESTED HAD A CHANGE OF DIRECTION. 

4 OUT OF 11 ( 36.4 %) OF THE MONTH(S) WITH CHANGES OF DIRECTION UERE FLAGGED. 

S.4.B HISTOGRAM OF MAXIMUM PERCENTAGE DIFFERENCE IN MONTH-TO-MONTH CHANGES IN S. A. DATA FOR FLAGGED MONTHS 

B : GREATER THAN OR EPUAL TO 3.0% BUT LESS THAN 5.0% : 17 

SS : GREATER THAN OR EQUAL TO 5.0% BUT LESS THAN 7.0% : 4 

sss : GREATER THAN OR EQUAL TO 7.0% BUT LESS THAN 10.0% : 1 

ssss : GREATER THAN OR EQUAL TO 10.0% : 0 

S.4.C STATISTICS FOR MAXIMUM PERCENTAGE DIFFERENCE OF THE MONTH-TO-MONTH CHANGES IN S. A. DATA 

MINIMUM 0.070 

25TH PERCENTILE : 1.036 

MEDIAN 1.786 

->65TH PERCENTILE : 2.421<- 

75TH PERCENTILE : 2.928 

->85TH PERCENTILE : 3.465<- 

MAX I MUM 8.685 
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A.4 

s 5.A BREAKDOWN OF 3.0 PERCENT OR MORE DIFFERENCES IN YEAR-TO-YEAR CHANGES IN S. A. DATA FOR FUOECD 

TOTAL : 0 ‘YJT OF 84 ( 0.0 %) 

(DSUALLY, 10% IS TOO HIGH) 

JANUARY : 0 

FEBRUARY : 0 

MARCH : 0 

APRIL : 0 

MAY : 0 

JUNE : 0 

JULY : 0 

AUGUST : 0 

SEPTEMBER : 0 

OCTOBER : 0 

NOVEMBER : 0 

DECEMBER : 0 

(AMPD = 0.8) 

(AMPD = 1.1) 

(AMPD = 1.2) 

(AMPD = 0.7) 

(AMPD = 0.4) 

(AMPD = 0.7) 

(AMPD = 0.6) 

(AMPD = 1.1) 

(AMPD = 0.5) 

(AMPD = 1.6) 

(AMPD = 0.6) 

(AMPD = 1 .O) 

1976 : 0 (AMPD = 0.6) 

1977 : 0 (AMPD = 0.8) 

1978 : 0 (AMPD = 1.1) 

1979 : 0 (AMPD = 0.8) 

1980 : D (AMPD = 1.0) 

1m1 : 0 (AMPD = 1.1) 

1982 : 0 (AMPD = 0.6) 

AMPD q AVERAGE MAXIMUM PERCENTAGE DIFFERENCE 

0 OUT OF 84 ( 0.0 %) OF THE MONTH(S) TESTED HAD A CHANGE OF DIRECTION. 

0 OUT OF 0 ( 0.0 %) OF THE MONTH(S) UITH CHANGES OF DIRECTION UERE FLAGGED. 

S.5.B HISTOGRAM OF MAXIMUM PERCENTAGE DIFFERENCE IN YEAR-TO-YEAR CHANGES IN S. A. DATA FOR FLAGGED MONTHS 

a : GREATER THAN OR EQUAL TO 3.0% BUT LESS THAN 4.0% : 0 

@@ : GREATER THAN OR EWAL TO 4.0% BUT LESS THAN 5.0% : 0 

xl@ : GREATER THAN OR EOUAL TO 5.0% BUT LESS THAN 6.0% : 0 

@@@@ : GREATER THAN OR EQUAL TO 6.0% : 0 

S.5.C STATISTICS FOR MAXIMUM PERCENTAGE DIFFERENCE OF THE YEAR-TO-YEAR CHANGES IN S. A. DATA 

MINIMUM 0.011 

25TH PERCENTILE : 0.518 

MEDIAN 0.784 

->65TH PERCENTILE : 0.965<- 

75TH PERCENTILE : 1.141 

->85TH PERCENTILE : 1.286x- 

MAX I MUM 2.522 
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s 7. RANGE ANALYSIS OF SEASONAL FACTORS FOR FUOECD 

MEANS OF SEASONAL FACTORS FOR EACH MONTH 

(MOVEMENTS WITHIN A MONTH SHOULD BE SMALL) 

JANUARY 99.05 99.48 100.63 1.60 99.72 

FEBRUARY 89.50 MIN 88.67 MIN 87.59 MIN 2.19 88.59 MIN 

MARCH 109.89 MAX 109.47 MAX 108.10 MAX 1.65 109.15 MAX 

APRIL 104.83 104.75 104.95 0.20 104.84 

MAY 
. 

JUNE 

99.79 100.30 102.05 2.27 100.71 

103.46 104.58 104.17 1.08 104.07 

XILY 102.59 103.15 102.05 1.07 102.60 

AUGUST 97.95 98.94 100.84 2.96 99.24 

SEPTEMBER 90.30 90.61 90.26 0.39 90.39 

OCTOBER 96.71 96.95 98.51 1.87 97.39 

NOVEMBER 100.68 99.52 99.04 

101.74 

1.65 99.75 

DECEMBER 104.38 103.54 2.59 103.22 

SPAN 1 SPAN 2 SPAN 3 MPD TOTAL 

MPD = MAXIMUM PERCENT DIFFERENCE = (MAX - MIN)/ MIN 

TOTAL = AVERAGE TAKEN OVER ALL 3 SPANS 

SUMMARY OF RANGE MEASURES 

RANGE R-R 

MEANS MEANS 

SPAN 1 20.39 1.2278 

SPAN 2 20.80 1.2346 

SPAN 3 20.52 1.2342 

ALL SPANS 20.57 1.2322 

R-R = RANGE RATIO = MAX / MIN 

SF q SEASONAL FACTORS 

MIN 

SF 

87.91 

87.92 

86.66 

86.66 

MAX RANGE R-R 

SF SF SF 

111.32 23.41 1.2664 

113.57 25.65 1.2918 

113.88 27.22 1.3141 

113.88 27.22 1.3141 
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Discussion 

William P. Cleveland 
Federal Reserve Board 

These two papers present valuable new tools for seasonally adjusting time series. 
Dagum and Quenneville offer a way to handle changing trading-day patterns, a 
feature which has been needed for some time. The creators of X-11 and their pre- 
decessors realized that seasonal patterns were not the same from year to year. 
Trading-day factors are subject to the same influences which cause seasonal factor 
changes. The necessity of using regression as an estimation technique for calendar 
related effects made it much harder to compute moving patterns. Findley et. al. 
provide a very nice companion paper presenting sliding spans as an evaluation tool 
and a way to compare specifications of models including seasonal ARIMA and regres- 
sion components using Akaike's minimum AIC criterion. One could apply these ideas 
in addition to the tests provided in Dagum and Quenneville to select between no 
trading-day, fixed trading-day, or moving trading-day adjustments. 

Both of these papers deserve careful reading. They reflect much careful and thought- 
ful work, offering valuable insights on estimation procedures and evaluation of 
results. 

The technique selected by Dagum and Quenneville for handling moving trading-day ad- 
justments is a direct descendent of work by several authors on stochastic coefficient 
models and model-based seasonal adjustment, including Gersch and Kitagawa; navenner, 
Swam , 

iy 
and Tinsley; and Spivey and Machak. The long memory models for seasonality 

exp ored by Dempster, Jonas, and Carlin also carry the same spirit of random walk 
changes to initial fixed effects. Dagum and Quenneville have given us a study of the 
estimation properties of their models and a smoothing technique which leads to more 
believable and interpretable paths for trading day effects. My experience with 
trading-day coefficients is that their estimates are less stable than seasonal dummy 
estimates, particularly over spans of five years or less. This is partly due to 
the time it takes the calendar to cycle through its different weekday patterns. Thus, 
I would favor a result not permitting trading-day coefficients to change very fast. 
The backward smoother employed always starts from the last point, so the coefficient 
paths will be sensitive to the most recent data. It might be well to devise an alter- 
native starting point or use a forward smoother. I would also expect trading-day 
coefficients to be estimated along with a complete model for the series as a general 
practice, rather than using X-11 residuals. This prevents undesirable interactions 
of trading-day effects with the moving averages in X-11. 

Evaluation of the quality of seasonal adjustment is a continuing problem, and we 
should be grateful to David Findley and his colleagues at the Census Bureau for deve- 
loping a very helpful procedure in this regard. A simple test for remaining season- 
ality in a seasonally adjusted series does not reveal much, as an adjustment is 
rarely deficient in this way. One might find holiday or trading-day effects if these 
were needed and not included 

Smoothness is also a less than satisfactory criterion. One could use the trend-cycle 
instead of the seasonally adjusted series if smoothness was really the ultimate goal. 
It seems rather that the focus is on removing the predictable seasonal movements of 
the series. If a sliding spans analysis shows unstable seasonal factors or season- 
ally adjusted values, then we should not be comfortable with estimates of the 
seasonal part of the series. Since this paper uses fixed trading-day coefficients, 
one might need to observe the stability of the coefficients relative to the length 
of the span used. 

One of the best things about sliding spans is the variety of questions to which it 
speaks. This is well illustrated in the paper using several specific situations. 

The other major contribution of X-12 software is the ability to estimate regression 
models with ARIMA error terms. This will permit better estimation of trading-day 
effects and provide test statistics which are not contaminated by correlated errors. 
One should also be able to generate forecasts and, thus, do X-11 ARIMA. 
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Floor Discussion Marian Pugh 
Bureau of the Census 

The first paper, "Deterministic and Stochastic Models for the Estimation of Trading Day 
Variations," was presented by Benoit Quenneville of Statistics Canada. 
variation and presented two stochastic models 

He defined trading day 
- a random walk model, and a random walk with 

random drift model, for trading day variation. The second paper, "Toward X-12-ARIMA," was 
presented by David Findley of the Census Bureau. He described features that will be 
incorporated in this enhanced version of X-ll-ARIMA. He focused on the implementation of 
sliding spans diagnostics and the estimation of SARIMA models with regression variables. 

The discussant was William Cleveland of the Federal Reserve Board. Cleveland commended Dagum 
and Quenneville on their work with stochastic trading day components, a project "waiting to be 
done". He commented that their efforts have made previous work on time varying models more 
accessible and usable. He noted that Kalman filter estimation of trading day coefficients 
produces a ragged path of coefficients, 
problem. 

but that the smoothing algorithm alleviates this 
He approved of the greater weight given by the random walk model to the later years, 

and commented on the tradeoff between using enough data to get decent estimates and capturing 
short term behavior. Cleveland cautioned Quenneville and Dagum on running their program on 
residuals from X-11, explaining that using prefiltered data may smear out trading day effects 
in the estimated spectra. He suggested that they estimate trading day externally, possibly 
with a model based approach. 

Cleveland began his discussion of "Toward X-12-ARIMA" by joking that he hoped that 
Findley doesn't wait until he is happy with the program before releasing it. He noted that 
the paper concentrates more on sliding spans than on the modeling material, whereas the 
presentation stressed the ARIMA modeling capabilities. He summarized that sliding spans can 
be used to assess the quality of a seasonal adjustment performed by X-11, and to decide issues 
such as the selection of seasonal filter lengths and choosing between indirect versus direct 
adjustment of aggregate series. 
implemented for SABL. 

He supposed that sliding spans diagnostics could also be 
He commented that previous to sliding spans, it was hard to get a 

criterion for the quality of a seasonal adjustment. 

Cleveland concluded his discussion by presenting diagrams of the decision making process which 
he follows when he seasonally adjusts data using X-11. He remarked that both papers present 
helpful tools for evaluating seasonal adjustments using statistical tests and diagnostics. He 
asked whether artificial intelligence type expert systems could be used to automate the 
feedback loop he had described, 
seasonal adjustment. 

and to help the novice make some of the decisions regarding 

quenneville and Findley then responded to Cleveland's discussion. Quenneville explained that 
he and Dr. Dagum had started with the X-11 residual because they wanted to add the stochastic 
trading day as an option to the X-II program. Findley stated that we have a responsibility to 
provide a reliable and simple decision making procedure for the naive user of X-II. 

The floor was then opened to questions from the audience. Bob McIntire of the Bureau of Labor 
Statistics asked what the relationship between the developmental work at the Census Bureau and 
at Statistics Canada is, and whether their programs will be compatible with each other, and 
with previous versions of X-11. McIntire further asked whether there were plans to 
incorporate methodology for estimating discontinuous or moving holiday effects. 

Findley responded that the newer X-ll-ARIBA versions are compatible with X-II, because the 
X-II program is nested within the ARIMA estimation. Findley said that the Census Bureau has 
not looked at discontinuous holiday models, but he hopes that the new program will enable 
users to model their own holiday effects. Findley added that he would like to cooperate with 
Statistics Canada to produce a single seasonal adjustment package, and that he would be 
amenable to compromise on what features should be included. 

Cleveland asked what holiday effects are currently available in X-11, and Findley responded 
that the X-11.1 program includes the Easter, Labor Day, and Thanksgiving models used by the 
Census Bureau's Business Division. 

Stuart Scott of the Bureau of Labor Statistics asked for advice on identifying outlier effects 
and interventions. Findley stated that his staff is unsure how to proceed. For the X-II 
forecasting and seasonal adjustment procedure, work by Peter Burman and Mark Otto indicates 
that it is only important to model gross outliers. Findley's group hasn't defined "gross" 
yet. They have been using Bill Bell's sequential t-test procedure for identifying outliers, 
but have not settled on a decision criterion yet. 


