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1. Introduct ion 

Three common approaches to evaluating (Gaussian) likelihoods and doing 

other computations with time series models might be called the classical 

approach, the Kalmau filter approach, and the matrix approach. The classical 

approach works directly with difference equation forms of models (particularly 

for autoregressive - integrated - moving average (ARIMA) models) and such 

things as covariance generating functions and spectral densities. This 

approach has bees used for likelihood evaluation for ARIMA models by Box and 

Jenkins (19701, Newbold (19741, Dent (19771, Osborn (19771, Hillmer and Tiao 

(1979), Ljung and Box (19791, Tunnicliffe-Wilson (19831, and others. Spectral 

approaches to model estimation have also been used; one such reference is 

Han&n (1970) . The classical approach has been used in the signal extraction 

problem in the stationary case by Whittle (19631, among others, sith 

extensions to the nonstationary case provided by Hsnnan (19671, Sobel (19671, 

Cleveland and Tiao (19761, Pierce (19791, and Bell (1984). The Kalmsn filter 

approach involves putting the tims series model in stats-space form and us% 

the Kalman filter in doing likelihood evaluation, as in Gardner, Hmey, and 

Phillips (19801, R. H. Jones (19801, Pearlman (19801, Kitagasa (19811, 
. 

Melard (19841, and others. Signal extraction may be performed vith the Kalmn 

smoother as suggested by Pagan (19761, Kitagava (19811, Burridge and 

Wallis (19851, and others. The Kalmsn filter has no inherent limitations to 

stationary models; however, it does require specification of initial 

conditions, for which there is typically no basis with nonstationary models 

involving differencing. Ansley and Kohn (1985) and Rohn and Ansley (1986, 

1987) addressed this problem sith what they called a “transformation approach” 

implemented in a mdified Kalmsn filter. Bell and Hillster (1987a) show how 

the transformation approach can be implemented with the ordinary Kalman 
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filter. The matrix approach uses matrix results (such as decompositions) to 

evaluate the determinant and quadratic form in a Gaussian likelihood; this 

approach can also be used to solve the signal extraction problem. The matrix 

approach seems to have been less popular in the literature than the classical 

or Kalman filter approaches. For likelihood evaluation Ansley (1979) 

suggested use of the Gholesky decomposition, Phadke and Kedem (1978) 

considered this and a method using Woodbury’s formula for the inverse of a 

matrix of particular form, Uincek and Reinsel (1984) extended the use of the 

Cholesky decomposition to problems with missing data, and Brocksell and Davis 

(1987) suggested use of an Ynnovations algorithm” that amOunts to doing a 

Cholesky decomposition. Carlin (1987) used the weep operator in a Bayesian 

analysis involving likelihood evaluation and signal extraction for 

fractionally int ergrat ed moving average models. 

The classical and Kalmsn filter approaches each have their advantages and 

disadvantages. Using the classical approach one can easily take advantage of 

any special structure of the model (such as the rmltiplicative seasonality of 

Box and Jenkins (1970))) mking this approach convenient and computationally 

efficient in certain case8. lfniortunately, there are som problem where the 

classical approach is difficult or inpossible to apply, including problm 

vith missing data, variances changing over time, and estimation for component 

models (one of the problems considered here). Also, finite sample signal 

extraction requires modifications to the classical results as suggested in 

Cleveland and Tiao (19761, Bell(19841, and Hillmer (1985). The Kalman filter 

approach is more general and handles all these problems. Proponents of this 

approach often cite it for computational efficiency, but some effort may be 

required to achieve this efficiency because of the large number of zeros in 

the state space representation of ARI!IA models. Also, as a recursive 
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procedure, the Kalman filter gives little insight into the computations, 

whereas, in the signal extraction problem for example, the classical approach 

yields filters whose weights can be examined to see the effect of observations 

in the time series on the signal extraction estimate at a given time point. 

Because of the close connection between the Kalman filter and the Cholesky 

decomposition (Solo (1986) points out that the Kalman filter computes the 

inverse of the Cholesky factor, and Kohn and Ansley (1984) exploit the 

connection in using the Kalman filter on seasonal moving average models), the 

matrix approach can, in principle, be used on any problem on which the Kalmsn 

. filter approach can be used. The choice betveen the two could then depend on 

the ease with which an efficient implementation can be achieved, something 

tha% is likely to be problewdependent. The matrix approach does have one 

advantage over both the classical and Kalman filter approaches. Results from 

the classical approach often appear obscure to statisticians who are not time 

series specialists, and the Kalman filter approach is obscure-even to many 

time series analysts (though this is becoming less so as it becomes better 

knovn) . Results from the matrix approach should be more accessible to non- 

tim series specialists, and also are more interpretable than those from the 

Kalman filter approach. 

In section 2 of this paper we present our ARIHA component models and 

assuqtions, and section 3 develops matrix results for Gaussian likelihood 

evaluation for these models. Section 4 develops matrix results for 

nonstationary signal extraction using the transformation approach of Ansley 

and Kahn (1985). The matrix results apply the transformation approach 

directly, rather than implementing it with their modified Kalmsn filter, or 

the ordinary Kalmsn filter with a particular initialization (Bell and Hillmer 

1987). In section 5 we shov how to compute the matrix results for signal 
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extract ion. The approach to computations in sections 3 and 5 uses the 

Cholesky decomposition approach of Ansley (19791, which applies an 

autoregressive transformation to the data, allowing the Cholesky decomposition 

to be taken of a band covariance matrix. Similar:ideas could be used for 

other time series problems, such as forecasting, though we shall not do so 

here. 

2. ARIHA ComDonent Wodels and AssumDtions 

The general model we shall consider is as follows: 

. Yt - St + It 

where the components St and Nt follow the ARIMA models 

I 

(2.1) 

: 
&(B)$(B)St = t+(B)bt (2.2) 

#I(~) ++B)E~ - eII(~kt. (2.3) 

Here #S(B), bS(B), etc. are polynomials in the backshift operator B, and bt 

and ct are independent white noise series pith variances ob 2 ) 0 and TV; ) 0. 

For simplicity, we shall assum mssns are all zero except where stated 

otherwise. If this is not the case we can simply subtract the means. This 

general mdel has wide applicability beyond the classical problem of 

observations Yt of a signal St that are corrupted by noise (or measurement 

error) Pt. Other applications include seasonal mdeling and adjustment 

(St = seasonal, Et = nonseasonal), model based trend estismtion (St = trend, 

It = irregular), and periodic sample survey estimation (St = true population 

series, It = sampling error). 

We shall assume that (s and 4, have all zeros outside the unit circle, and 

es and 8, have all zeros on or outside the unit circle. While Js and 6, will 

I 

I 
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most coxmnly be differencing operators, we do not need to restrict their 

zeros to the unit circle, and thus can allow for explosive models, or for 

models with roots outside the unit circle where we do not wish to assume the 

stationary distribution for the starting values of, St or Nt. We shall assume 

no conmon zeros for the pairs (bs,tis), (#,,B,), and <#s,dN>, though the last 

restriction is easily dispensed with. We shall also assume, except where 

stated otherwise, that b 
S and 6 N have no common zeros. This assumption is 

mre key, and different results for signal extraction are developed for a 

particular case where this does not hold. 

. Given the above model and assqtions it is sell Imoss the observed series 

Yt follows the model 
i 

((B)6(B)Yt - B(B)at 

where 

9(B) - #S(B)#IO(B), 6(B) = 6s(B)6N(B), 

at is white noise with variance g2 > 0, and B(B) and g2 csn be determined from 

the covariance generating function relation 

B(B) B(F) g2 * /,(B)(N(F)61~(B)611(B)eS(B)BS(F)~~ 
(2.4) 

+ (s(B)ds(F)6S(B)6S(F)eN(B)BN(F)o~ 

where F = B -1 . The orders of ((B), 6(B), and e(B) vi11 be denoted p, d, q, 

those of (,, bs, es denoted ps, dS , qs, and those of 4,. bN, flN denoted 

+,Ji’ $,J, qN’ (Of course, it is possible for a p, d, or q, to be 0, in which 

case the corresponding operator is not present in the model, or may be taken 

as the identity.) We see p - ps + pN and d = dS + $. It vi11 be convenient 

.I 

I 
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to write 

6(B)Yt = vt bS(B)St = ut 6N(B)Nt = Vt* 

We see that 

=t = bN(B)Ut + 6S(B)v,. (2.5) 

We assume that the series ut, vt, and hence vt are stationary. This 

encompasses the assuqtion on the roots of (S and (,, and also an assllmption 
. 

that the starting values for ut and vt come from their stationary 

distribution. We assume that Yt is observed at time points labelled 

- t=1 ,***, n. Hence, vt is available for time points t - d+l,...,n. Ue are 

thus assuming that there are no missing data. Problems with tissing data sre 

typ&ally handled with the Kalman filter, though Uincek and Reinsel (1984) 

developed a matrix approach that deals with missing data. 

The results that follow do not explicitly take account of any 

multiplicative seasonal structure that may exist in the models-for Yt, St, or 

Nt* It should be obvious how to take advantage of such structure in 80s~ of 

the computations that follow, such as in computing autocovsrisnces. In other 

computations (see section 3) knowledge of such structure may be of no help. 

while we are assuming Var(b$ and Var(c,) do not depend on t, it is easy to 

modify our results for the case where they do depend on t, as long as how they 

do so is known. Finally, we are explicity considering only the case where Yt 

is the sum of two component series, but the results extend easily to three or 

mre component 8. 

3. Gaussian Likelihood Evaluation 

Time series model paranrsters are frequently estimated by maximizing the 

Gaussian likelihood function. Here we show how the Gaussian likelihood for 
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the ARIM component models (2.1) - (2.3) CM be evaluated by making au easy 

extension to the approach using the Cholesky decomposition suggested by Ansley 

(1979) . 

The first step is to apply 6(B) to Y+, to get vt for t = d+l,...,n. Often 

b(B). will be a diff erencing operator, but it may also include autoregressive 

parameters to be estimated. This occurs when the mdel for St or Nt has 

autoregressive term(s) in regard to which we do not wish to assume the 

stationary distribution for the starting values. We shall use the density of 

v - vd+l = (wd+l ,n ,...,v~)~ as our likelihood function, a standard procedure 

* that has been justified by Ausley and Kohn (1985). (The superscript T 

indicates the transpose of a vector or matrix.) 
I 
Gives w we sake the following transformation suggested by Ansley (1979): 

: 

wt 
t - d+i ,...,d+p 

=t = ((B)wt t - d+p+l,...,n 

This may be written 4 w = z where 
- - 

(n-d) x (n-d) 

I 

+P 
.P.-,t 1 
. . . . . . 

bp . . ..q 1 

I r 

2 = 

k 

-- 

=d+l . 
. 
. 
z n 

(3.1) 

(3.2) 

A 

. 

We will need to compute the covariance matrix of z to get the likelihood. 

Since zt = vt for t = d+l,..., d+p we need to compute some autocovariances 

of wt = 6K(B)ut + 6s(B)vt. These can be obtained from those of ut and vt, 

which we will also need to be able to compute later for doing signal 
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extraction. Note that ut and vt are independent and follow the AlWA models 

ds (B) Ut = flS(B)bt /N(B)Vt = BN(B)ct. 

McLeod (1975,1977) gives a method for computing ARMA covariances. To 

illustrate his approach here let y,(k) = Cov(utwk,ut), and let gb(B) = 1 + tilB 

+ T/,BZ + - -0 = e,(B>/#,(B> so the 3, are obtained by equating coefficients of 

powers of B in (S(B)fl(B) = es(B). Then (let es0 - -1) 

. 7,(k) - t�$17,(k-1) - l 0 l - (s,ps7u(k-ps) - 
(3.3) 

I (-‘Sk - eS,k+i*, - l *’ - es,qsfiqs-l[) @; 

where the right hand side becomes zero for k > qs. Using yu(k) - 7,(-k) and 

taking the above equations for k - 0, 1, . . . , ps yields ps+l linear equations 

which may be solved for 7,(O), . . . , 7,(ps) . Then 7,(k) for k = ps+l , . . . , 

p+%-1 may be obtained recursively from (3.3). Similarly, 7,(k) for k = 0, 1, 

. . . , p+dS-1 may be obtained. These determine 7,(k) for k = 0, 1, . . . , p-l 

through (let 6No = $0 * -1) 

%dat dS dS 
y,(k) = C E 6,i6Nj7u(k+i-j) + Z x 6 .6 -7 (k+i-j) 

i=O j-0 i=O j*O " sJ v 

which determines Var(z $;I = Vsr(@. 

We also need Cov(zt, z~+~) for d+l 5 t s d+p and d+p+l s t+k 5 n. These 
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are 0 for k > q. Otherwise, we note 

cov (Zt , z~+~) = Cov(vt, #(B)vt+k) 

= COV(~N(B)U~+~~(B)V~, #N(B)6N(B)BS(B)bt+k + 4S(B)6S(B)6N(B)ct+k) 

= Cov(6N(B)ut, 4N(B)6N(B)f&(B)bt+k) + Cov($(B)vt, #S(B)6S(B)~N(B)ct+k) 

These depend only on k, not t. Let q(B) = #N(B)SN(B)BS(B) = 1 + vlB + . ..+ 

vmBm where m = pN+dN+qSS Now 

. 
Cov$, b& = 

0 cc0 

vz 
L>O 

I m 
Then (letting q. = -1, and E be 0 when k+i > m) 

j=k+i 

cOV(bN(Bht, 7j(B)bt+k> = dN m 

I 

0 k>m 

ix 
' 'Ni~j~j-(k+i)'~ 

O<k<m 
i=O j=k+i 

We similarly obtain the Cov(GS(B)vt, ~,(B)6s(B)~N(B>ct+k), and hence the 

COV(Z~,Z~+~) needed. 

Finally, we see that for t = d+p+l, . . . . n 

zt = /(B)vt = B(B)at = #N(B)6N(B>f$(B)bt + #S(B)6S(B)~N(B)ct. 

The two terms on the right hand side are independent moving average series of 

orders m = PN+dN+qS and Ps+dS+qN' whose autocovariances are easily computed. 
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For example, those of dN(B)6N(B)OS(B)bt = a(B>b, are 

0 k>m 

Cov(?)(B)bt, q(B)bt+k> = 

' Vi-kVi'E O<k<m 
i=k 

For k = 0, 1, . . . . q we add these to the lag k autocovariances of 

#S(B)~S(B)ON(B)C, to get the COV(Z~,Z~+~) needed. This is effectively using 

the covariance generating function (2.41, though we merely wish to compute the 

,autocovariances, we need not solve for B(B) and r2. 

We have thus shown how to compute all the elements of 

a 

xz E Var(z> = Var(Pw> = 4 xw QT. (3.4) 

Notice that xz is a band matrix of bandwidth max(p,q+l), that 

is, Cov(z., zj) 
1 

= 0 for i-j 2 max(p,q+l). Since the Jacobian of the 

transformation, IQ/, is 1, the likelihood is the joint density of z: 

p(z> = (2a) 
-(n-d)/2 

Pzl 

We thus require the determinant, lCzl, and the quadratic form, zT xi1 z. 

Following Ansley (1979), we use the Cholesky decomposition of xz: 

E = L LT Z L = [eijl lower triangular (3.5) 

Since xz is a band matrix of bandwidth max(p,q+l), so is L, which may be 
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efficiently computed by a routine desinged to take advantage of the band 

structure (see, e.g. Dongarra et al. (1979)). 

We then have 

ZT E,’ Z’Z T (L LTP z = (L-lz)T (L-lz) z nZdE2 
- - i=l ’ 

where 6 = CC 1 P-‘&j )T * L-l Z, and the pi are uncorrelated, unit variance 

innovations that may be solved for recursively from 

. 
L C = 2. (3.6) - e 

We could alternatively use the square-root-free Cholesky decomposition 

xz - L D L T , vherq. D is diagonal and L is unit lower triangular (l’s on the 

diagonal), with obvious modifications to the above. Hovever, the form given 

above is somewhat more convenient for the signal eztraction results later. 

The preceeding shows how the likelihood may be evaluated. It may then be 

maximized by standard numerical techniquea to estimte the unknown parameters 

of @3) , 6#), t$(B) , /IO(B), $,,(B), B,(B), g;, and (0 Care nust be taken 

in doing this to assure that the model is identified, that is, that different 

values of the parameters do not lead to the same xz. One possible such 

problem arises if 6, and flN are not restricted in the optimization to have 

zeros outside or on the unit circle. However, this problem is easily 

dispensed with without performing restricted optimization -- if the procedure 

converges to a non-invertible solution (a zero of 89 or 8, inside the unit 

circle) one converts this to the corresponding invertible solution (see Box 

and Jenkins 1970). More serious problems arise if the model is not identified 

due to an infinite set of combinations of the parameters yielding the same xz. 

. I 

, 
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We shall not pursue this here; see Hotta (1988) for a discussion of 

. 

identification of ARIMA component models. 

Other refinements to the procedure are possible. A scale constant, e.g. 

2 
‘b or u z, may be concentrated out of the likelihood as done by Ansley (1979) 

for the ARMA model. If the model includes a regression mean function, XT B, 

for Yt, where XI = (Xl,,. ..,X,> is a kxl vector of regressors observed at 

time t and @ a kxl vector of regression parameters, then by taking Yt - Xt B, 

the above procedure yields the likelihood for a given 8. The joint likelihood 

. may be efficiently maximized by an iterative generalized least squares scheme 

as suggested by Otto, Bell, and Buman (1987) a If p > q+l one could save som 

comp%ations by taking advantage of the fact that the bandwidth of xz is p in 

the upper left but only q+l for most of the matrix. This could be done using 

a backward autoregressive transform&ion (Ansley 1979) on vt instead of (8.1). 

A refinement suggested by Ansley (1979) for multiplicative seasonal AMA 

models that takes advantage of zeros within the band structure of xz by 

recognizing corresponding zeros in L does & work here, since it depends on 

the mltiplicative nature of the seasonality and this is lost, in general, 

with component models. 

4. Siznal Extraction Au 

A 
Here we obtain matrix expressions for amestimate S, of S = (S1,..-,Sn)T, - 

and for Var(S - ii,. The estimate is obtained using the transformation - e 

approach of Ansley and Xohn (1985), who develop a modified Xalman filter to 

calculate the estimate on the grounds that direct calculation of the 

transformation approach estimate would be difficult. (Bell and Hillmer 
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(1987a) show how the ordinary Kalman filter may be initialized to yield this 

estimate.) However, the expressions we give here give some insight into the 

transformation approach estimate, and in the next section we show how the 

Cholesky decomposition can be used to compute the estimate and its variance. 

The transformation approach estimate of St is obtained as follows. Let S* 

= (Sl,...,Sd IT. Following Bell (1984) we can write, 
S 

(4.1) 

. 

where As and the [s may be computed from 
4-t 

i=t 
i#t 

t=l,...,ds , i=l,...,ds 

s,(B)!; = 0 t>d 
S 

$(B)(l + [;B + [;B2 + . ..> = 1 + $(B) [; = 0 i>d 
S 

The relation (4.1) also holds for t=l,... ,ds if the sum is interpreted as 

0. The transformation approach estimate is found by (1) finding a linear 

combination of Y, hTY say, - hTY does not depend on the starting 
- ,...a, 

such that St .., . 

values S ,*, and (2) projecting St - hTY on the "differenced data", w, and a, .., 

,. ,. 

adding this to hTY. 
I B 

The resulting estimate, St, has error (St - St) that does 

not depend on S* or N* = 
T 

(Nl,...,Nd ) , and has minimum mean squared error 
N 
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(MMSE) among all linear functions of Y with this property (Kohn and Ansley 

(1987)) . The estimate is globally optimal, having MMSE among all linear 

estimators, if Y 
,* 

= (Y,,..., Yd)T is independent of .(u,) and cv,) (Assumption A 

- see Bell and Hillmer (1987a)). 

We now give expressions for transformation approach estimates, S, of S, 

and for Var(S - 
. 

S), for three different cases regarding bs(B) and JN(B)* 
..a 

4.1 Case I: . St nonstationary. Nt stationary (bN(B) = 1) 

In this case the transformation approach estimate amounts to using w to 

esti&e N = 
A 

(N 
1 
,... ,Nn)T (call this estimate N) and then estimating S with 

s =y- N, and using Var(S - S) = Var(N - - N) (since S -s =i - N). 
.., .., ..9 - s .., .., . - - . 

From (2.5) with SN(B) = 1 and vt = Nt we have wt = ut + bs(B)Nt, so that 

Cov(wt ,Nj) = Cov('S(B)Nt,Nj) = r,(j-t) - bslrN(j-t+l) - **. - 6, d rN(j-t+ds). 
' s 

This yields the elements of Cov(w, N) from the autocovariances of Nt which 
- I 

here follows the ARMA model, dN(B)Nt = flN(B)ct. We can write w = u + As N so ..# I 

where As = 

Cov(w, N) = XNA; . I 

I -dS,ds . . . -6,, 1 
. 

(4.2) 

1 

As is an (n-d)xn matrix that effects differencing by Ss(B) (= S(B) here). 
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Then from well-knovn results on (mean zero) linear projections 

so that 

4.2 Case II: S. and N, nonstationary. JS(B) and JN(B) have no common zeros b 

Consider the nonsingular transformation 

1 . . . 

I, s = 
S ,* I.1 U where 

& = -6S,ds"' Sl. ' . (4.6) 
. . . . 

'-bs,ds... '-6s1' 1 

A 

N= Covh, N> E-l v = EN A; $' v I " v " 

We shall estimate f* and u separately and then for t > ds use 

A A I A 

st = 6s1St-1 + . . . + 6s,dsSt-ds + ut. Also, we shall obtain the error 

variance matrix in estimating [ZT uTIT, and then obtain Va.r(S - ii) by " " 

inverting the above transformation. 
c 

(4.3) 

i A = Y - N = Y - El1 A; Xi1 v (4.4) " " " " 

,. 
Var(S - S> = Var(N - N) = EN " I (4.5) " " - EN A; Xi’ As EN . 

. 

From (2.5) we have 

w=ANu+Asv 
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where A is (n-d)x(n-%) but of the same form as in (4.2) (where 
S % ) =0 , and A, 

is an (n-d)x(n-dS) matrix defined analogously to As but using bN(B). Then 

covh, u) = Eu A;, ” ” and the elements can be computed from Cov(wt, uj) = 

Cov(GN(B>ut, uj) = T,(j-t) - 6N17u(j-t+l) - . . . - ‘8 N,dN7u(j-t+s). Then using 

v to estimate u we have 

A 

u - Cu A; Xi’ u 
,. 

Var(u-II) = c u - Zu A; Xi1 AH Eu . (4.7) - - 

w Also estimating v from v givea 

I 

; - c AT z-l u 
1 

v s v ” var (v-v) - c v - Xv A; “,l As Xv . (4.8) ” - 

To estimate s* we need the following relation between the kxuting values 

for Yt and those for St and I!$ given by Bell (1984): 

S ds 
r* - CH, a21 -* + cl ud [I - 

+1 dn +1 

N + ‘2 !d 
-* 

%+l where u ,d - (u 
ds +1 ,-“,u,) T ‘+’ - (v , yd ,...,v IT, and 91 d 

H1 = 

dxdS 

Ids 

(!is+l)T 
. 

(4.9) 
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Cl = 

dx(d-ds) 

S 
'd&d-d,) 

(0 1 . . I 
‘S 
I,-ds-1 . . : (; 

I 

(4.9) just amounts to taking expression (4.1) for St and a similar expression 

c2 = 

dx(d-dN) 

cl 

'd,.(d-dN) 

. . 
. 

‘N 
(d-dN-1 . . : (; 

for Nt for t = l,... ,d, and adding these together to get Yt for t = l,...,d. 

Bell (1984) observes that the dxd matrix [Hi H21 is nonsingular. We can then 

obtain from (4.9) 
. 

[I,‘0 s dsxdN1 ‘Hl H21 -l Y 
ds+l 

,* - s* = 'Ids ‘dsxdN1 ‘Hl H,l-l’c, :d 

dN+l 

+ '2 !d ' 

= -Al u - A2 v 

where 

Al = -[I, 0 
S dSXdN 

1 CHl H21-l Cl[Id 0 
N dNX(n-d)' 

A2 = -[I, 0 N dNxdS1 CHl H21 -l C2[Id 0 
s dsx(n-d)' 

The transformation approach estimate of S* is 

,. A ,. 

S 
,* 

= [I, 0 s dSxdNICHl H21 
-' If* + Al u + A2 v 

with error 

s -s 
,. ,. 

,* “* = A+ - u> + A2(v - v> 
I " " " 

(4.10) 

(4.11) 
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1 A 

which does not depend on 2,. With u given by (4.7) and s* by (4.10) we could 

A 

express S as 

s x H,t .S* , 
ii 

(4.12) 

A A 

though it is more convenient to recursively compute Sd +l 
S 

,..., S, from 

,Ve now obtain Var(S - il. First note that - ” 

A A L 
covbl - u , v - v) = Cov(u - u , v) - ” ” ” ” 0 0 

I 
- -Cov(u, v) ” ” 

- -Cov(E AT L-l u v) u N 0 -*- 

= -X AT X-l A C UNV sv (4.13) 

using an oxthogonality property of linear projections in the first line and 

the orthogonality of u and v in the second. Then from (4.71, (4.81, (4.111, 

and (4.13) we have 

A e A 1 A 
cov a* - s*, u - u) - A1 Var(u - u) + A2 Cov(v - v, u - U> 

- ” ” ” ” “- - 

= A1(Cu - Eu Ai Xi1 AN Eu) - A2 Xv Ai Xi1 AN Cu (4.14) 

L . 



19 

vaa, - i,, = A1 ‘Cu - xu A; I;;l A, XJ A; - A1 cu A; E;’ As Xv A; 

- A2 xv A; xi1 AN cu A; + A2 - Xv A; E;l As Xv) A; . 
(4 * 15) 

(z‘ V 

(4.7), (4.14)) and (4.15) complete the specification of the error variance 

matrix of LGT ;TlT. , then from (4.6) and (4.12) we obtain 

. 

S -ii 
Var(S - ;) I $1 vm -* 

” - II 1: I* i,T u-u ” ” (4.16) 

vherz iiT denotes the inverse of Ai . 

4.3 Case III: S- and I, nonstationarv. tS(B) and JN(B) have conmmn zero(a), 

= Var (N,) known. and (I. ) indemndent of {qt> and iv& 

Component models where bS(B) and 611(B) have a common zero have been used 

in a seasonal adjustment context by Cleveland and Tiao (1976) and Burridge and 

Wallis (19851, but seasonal modeling or adjustmmt ir not the application we 

have in mind here. In fact, argunmtr can be made against Js (B) and bN(B) 

having a comon zero in this contezt (see Bell and Hillmer 19841, and also 

estimation of St and IIt when bS(B) and bN(B) have a common zero requires 

assumptions about starting values such as those in this subsection’s heading 

or others (see, e.g., Xohn and Ansley (198711, for which there is generally 

little basis in seasonal modeling. 

The application ve have in mind here is estimation in periodic surveys 

where St represents the true underlying series and IOt the sampling error (see 

I’ 
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Scott end Smith (19741, R. G. Jones (19801, and Bell and Hillmer (1987b)). 

Typically St vi11 require differencing, and one can conceive of situations 

where the model for Nt might also involve differencing. This could arise if a 

nonstationary model was used to explain correlation over time for units in the 

population being sampled, and the sample design were such that the resulting 

Nt followed, at least approximately, a nonstationary model. This might happen 

in a panel study where units remain in sample a long time, or even 

indefinitely. Since we should have available an estimate of Var(N,) in this 

case, we have the situation we shall consider here if f* is independent of 

* $1 and Ivt). This last asawtion may be more open to question, but could 

be considered with regard to any particular application, or perhaps the 
I 

results given hera can be modif ied. Ue should point out that ve have not 

actually attempted nonstationary modeling of sampling error - modeling of time 

series subject to sampling error being still in its infancy - &t are 

presenting results here that may be used in this case should such a model be 

developed. 

If $(B) and 6l,(B) have common zero(a) we write 

6(B) - QB) a$(~) 6,(~) 6,(B)-l-6 B- . ..-6 B dC 
cl c,dC 

where SC(B) is the product of the dc common factors in JS(B) and 6N(B), 

b;(B) = 6S(B)/6c(B), 6;(B) = 610(B)/6c(B>, and d = dS + s - dco (Actually, 

the approach taken here seem mat appropriate when JS(B) contains $(B) , so 

6,(B) = JN(B), +B, = 1, and d - dS. If this is not the case, part of the 

effect of the starting values F= can be eliminated, which may yield better 

. 
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results than those presented here. > We then have 

Vt 
= 6(B)Yt = b;(B$ + C;(B)vt 

v =A ii” ” u+A;v 

where Ai is au (n-d)x(n-ds) matrix corresponding to S;(B), and A; is au 

Cn-d)xCn-dN> matrix corresponding to 6:(B), analogous to (4.2). Notice that 

. 1 1 
!dS * !!* + !!% 

The tranaformatiop approach vi11 eliminate the effects of S,, but not of II+, 

since when bS(B) and $+B) have commn zeroes ve cannot eliminate both 

_- 
N ,*’ 

First, consider the case $ 2 dS so that N1 
-% 

is part of lllL - I1 
-%' 

s* and 

Note 

cova,, u) - Cov(N+. A; u + A; v) - 0 

so the estimate of y* using w is 0. The transformation approach then uses 

ii* - $ - u - Eu A; $l u 
s - 

c) 

and $(B)S, - it for t - d +l, 
S . . . . n. We also have 
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. 

Var(u - u> = BU - Eu ($lT Xw ” I 
-’ A; Eu 

vare, - j*) = Var(-I$ > 
S 

= dSxdS upper left-hand corner of Var(N,) 

,. A 
cov ‘S* - $*9 u - u) = COVGJJ~ ) u - u) = 0 . 

I ” S” - 

With these pieces we can obtain Var(S - s> using (4.16). " " 

If ds > dN we estimate N* by N* = 0 again, and then estimate v by 

,. 

v = Xv A; E,’ w . 
a 

,. n ,. ,. 

After recursively computing Nt = SNINtB1 + ..a + 6, d Nted + vt for 
'N N 

n a ,. 

t = dN+l,...,n, we compute S = Y - N. Also Var(S = Var(N - N), and the 
" " " -s> "_ " " 

latter may be obtained from 

,. 
Var(Ii* - lJ*> = V-p*) 

A A 
covm* - Ii*, v - v) = Cov(li*, ” ” 

,. 

Var(v - v> = E,. - Bv 
I ” Y 

and 

,. ,. 

Var(S - S) = Var(N - N) = a,' Var 
" I " " 

(assumed known) 

,. 
v - v) = 0 
I ” 

(A*jT E-l A* E 
s w sv 

A 

N ,* N ,* I-1 III - ,. i-T 

V V 
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where 

iN = 

1 

-6, d l * * -& 1 ,’ 
’ N 

5. Sianal Extraction Commutations 

,. A 

We now show how to efficiently compute S and Var(S - S) given by the 
” ” 

. 
expressions in section 4. Along with specific schemes for each of the three 

cases, there are some general considerations for computational efficiency. 

One is that the roles of St and It are interchangeable, that is, instead of 

a a 

directly computing S and Var(S - S), we can compute ; and Var(l a - IO), and then ” ” 0 0 

A 

use S - Y - ii and ” ” 0 This fact 

was already used in sections 4.1 and 4.3. For the case considered in section 

4.2 it will generally be easier to compute S and Var(S - i) as given there if 0 0 ” 

dS < $, and easier to.compute the corresponding results for ; and Var(B - ii> ” ” 

if dS > % Here we shall show how to compute the results specifically given 

in section 4. 

Other general computational savings are possible in computing Var(S - SI. ” ” 

First, and moat obvious, since Var(S - 5) is symetric, it is determined by ” ” 

its lover triangle. Second, (ignoring the case in section 4.3 for the 

moment), since the models (2.1) - (2.3) hold for the series reversed in time, 
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. 

i.e. t running from n to 1, it follows that Var$ - k,) - Var(Sn+l t - 

s > n+l-t ' with analogous results for covariances. If we partition Var(S - S) 
" " 

as 

(or (n+1)/2 for n odd) 

then (3) is the transpose of the mirror image of (1) , so the elements in (1) 

- and (2) are sufficient to determine Var(S - ii This does not hold for the ” ” 

caae*covered in section 4.3 because of the special assumptions about IJ*, which 

appears in S 0 ; :’ If 5 - Cuij] - Var(S - S) th es8 tvo restrictions mean that 0 0 ” ” 

we only need o. . 
iJ 

for i 1 j and j < (n+l)/2 to determine 5. Finally, it will -- 
A 

berarethatall of Var(S - S) will be of interest, at leaat for n reasonably ” 0 

large. For example, Cov(Sl - il, S, - in) will rarely be needed. This makes 

possible aoms significant computational savings for the case of section 4.1; 

these will be outlined in section 5.1. 

The basis for our computation schemes here is the computation and Choleaky 

decomposition of cz discussed in section 3. Thus, we start from (see (3.4) 

and (3.5)) 

xz - * xv 4 T - L LT 

where xz and the Cholesky factor L are band matrices. From this we have 

, 

I 
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z-1 = (T q 4 I (T L-T L-1 ) 
u 

All our estimates here involve 

E1-1 V=# 
v ” 

T L-T L-1z = +T L-Tc 

(5.1) 

where c = L-‘z may be solved for recursively from L c = z. ” M” Letting r = LmT, 
” 0 

we may solve recursively for its elements mod, . . . , x1 (bottom to top) from 

T Lr=c. We can then easily compute 
. 0 ” 

when taking this product, though some 

explicitly compute this last product. 

X;lv - rTr , ignoring the zeros in iT 

of the approaches that follow do not 

5.1 Comutina Results for Case I (N, Station-1 

Recall that ve wish to compute, from (4.3) - (4.5) 

We discussed computation of ARK4 covariancea in section 3. For the results 

here we need ~~(0) , . . . ,7H(n-1) to determine G. Then i can be coquted by 

computing Xi1 P aa described above, multiplying this by Ai taking account of 

the many zeroes in Ai , and then rrmltiplying this result by s. That is 

N - r;, (A; ‘Xi1 w) > - EN (A; (iT (LOT ~1)) (5.2) 

. 

where the parentheses indicate the order of computation. 

, , 
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If we are also going to compute Va.r(S - S), we can use an alternative 
" " 

. 
aproach to computing N. From (5.1) and (5.2) we can write 

I 

N= (4 As x,> 
T 

(L -T 6) = [L 
-1 T 

I (4 As EN)] z 

Var(S - s> ” I = XN - [L-l (4 As C,>l 
T 

[L -’ (i As X,)1 

(5.3) 

(5.4) 

Obviously, we need to compute + As X, and then L-l (4 As X,). We start with 

just As X,. The ijth element of As BN is a. i-j where the sequence Q . k is 

defined by 

'k E Cov(bs(B)Nt, Nt+k) = TN(k) - 6sl?N(k+l) - . . . - 6, d rN(k+ds). 
' s 

Then ’ 
P 

+l-n’““*n-d-l determine As 8, through 

As EN = 

(n-d)x(n-dN) 

'-dS 'I-$ "' 'n-d-1 

'-ds-1 . *-ds . ' . 

. 

(We are showing the indices here in a way that the results can be easily used 

in the next section where vt replaces Nt, or ut and A, replace N, and As. 

Recall that here % = 0 anddS = d.) Notice As $, is determined by its first 

row and column. If there are no AR operators, i.e. $(B) = #N(B) = 1, we 

replace i by the identity matrix. Other-vise, consider + given in (3.2). We 

see the first p rows of i As EN are just those of As X,. The remaining 
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elements are determined by the sequence Xk defined by 

'k 5 Cov(#(B)Gs(B)Nt, Nt+k) = ak - (lOk+l - . . . - (pak+p * 

We compute Ad +l-n,...,A n-d-p-l 
and then 

N 

4 As C, = 

"-dS 
. 

�l-ds l l � l �n-d-1 

I 

first p rows 
. . 

* * . 
of As B, 

A A ' ' -ds-P 1-dS-p 
l A n-d-p-l 

. I 
A -ds-p-l 

. 
$-p * ’ 

. . . 

. . . 

(5.5) 

Notice this matrix is determined by its first and p 
th rows, and first column. 

Having thus computed * As EN we can then compute 

R = L-l (4 As EN> + L R = + As EN . 

We solve the second relation recursively for each column ri of 

R = [r,,...,r_,l. We then have from (5.21, (5.31, ad (5+6) 

A 

N = RT c S-Y-i 
" 0 - 

Var(S - i) = SN -RTR. 
" " 

(5.6) 

(5.7) 

Actually, since it is easy to solve LTr = c for r = L 
-T 

" " 
E , we may prefer to 
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A A 

compute N as N - (4 As l&IT r . 

We will seldom need all of Var(S - 9, and it is easy to use (5.7) to " " 

. 

compute only those elements needed. If fl = Cwijl 5k Var(S - S> then 
” ” 

w. . 
1J 

= yN(i - j> - 51 rj . 

Ue can save considerable computations by computing only those rT r . needed. -1 -J 

- If we only want VarGt - St) for t - l,..., n ae only compute the required 

rT r -i i ’ If we also want Cov$ - Se, Stol - Stol) we also compute ~1 riol as 

required, and so oh. (See also the discussion at the beginning of this 

section on what computations are required.) We can also save on computer 

storage vith this approach since aa we sequentially compute fi--for i - 1, 2, 

. . . , we Cap compute $ ris Ti ri-1’ 5: ri-2’ etc. as desired; and then 

discard the r. -1-j as they are not needed (i.e. large j,. 

5.2 Comoutina Reaulta for Case II (St-& nonatationarv.. 

h,(B) and dN(B) have no coamn zeros) 

To produce the estimate S we need to compute (see (4.71, (4.81, (4.10)) 

-T 
U - Eu A; $’ P - (4 AN CJT r where r - L c 

a 
V - Ev A; 2;' u - (4 As XvjT r 
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i. -CI 0 
dS dsx% 

I [HI H21 
-1 

It* + A1 ii + A i 
2, 

A A 

We compute Cu, Xv, 4 AN Eu , 4 As Xv , r, and henc,? u and v as discussed 

1 

earlier (sections 3 and 5.1). We actually do not need all of v, as vi11 be 

. 
seen shortly. To compute 5, first notice its first term may be computed 

directly noting that [I, 0 s dsx%’ IHl H21 
-’ is the first dS rows of [H1 H21-l. 

Next let 
. 

I Bl - - [Ids Odsx%l CH, H21e1 Cl so Al - Bl CI$ O~(pd~l 

B2 - - 11% “4s’%’ CH1 H,l -’ c2 80 Ai’ - B2 cods OdSx(n-d) 1 

These are the first ds rows of - RI, H2]-l Cl and - [H1 H2]-' C2, 

respectively, and these products can be taken directly, taking account of the 

fact that the first d, rows of Cl and the first %J rows of C2 are 0. Then 
il 

(4 AN cu> A; - (i A, xu) [o(n>xJ BT - [“s42;:-a] BT 
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We can then directly compute 

A 

A1 u = [(i A I:) ATIT. Nul, 
A j 

2" = [(i As Bv> AzlT r 

,. ,. ,. 
and then compute s+. Notice that since we need only A2 v and not all of v, we 

need only the first ds columns of i As Ev, which are determined by the first 

column and first ds elements of the first and p+l st rows (see (5.6)). 

A ,. A 
Having computed s* andu,veobtainStfort=d+l, . . . ,nfrom 

S 
. 

s - = 6sl St-1 + l ** + 6S,ds tmds + ut t = ds+l, . . . , n 

,. 
To compute !I = Var(S - S) we first compute i = var " " 

we have that 

(4.71, (4.81, and (4.12) can be re-expressed as 

S -s ,* ,* i 1 . From (4.2) a 
u-u " as 

(5.8) 
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Using (5.8) and (5.9) and simplifying we eventually get 

S -i 
ii 

"* "4 Al zu A; + A2 zv A; Al Eu 

= var = T 
A 

u-u %l AT II 
- [Rl R21 CR1 R21 (5.10) 

U " " I 

where CR1 R21 is (n-d)xn with 

Rl 
= L-1 (4 AN YSu A; + i As Ev A;) is (n-d)xdS 

R2 
= L-1 (+ A, xu> is (n-d)x(n-ds) 

Given that we have computed Eu, Xv, 4 AN Eu , + AN Xu AT, and 4 As Xv AZ , 

se show how to compute the rest of the quantities needed. 

7,(O) l l l 7U(ds+l-n) 

l>' Al Eu = Bl CI, 
. 

0 ]Eu=B1 : . 
N dNXbd) 7,(dN-1) . l . 7u(d-n+l) 

A1 xu A; = (Ai Xu> 

A2xvAA;=B2CId 0 s dSx(n-d) IE v BT = B 
2 2 BT 2 

Compute all these directly. 

2) Compute Rl and R2 by solving recursively for each of their columns in 

L Rl = i A, Eu A; + i As Xv A; 

L R2 = ii AN Eu 

3) Compute CR1 R21 TIRl R21 and then i from (5.10). 
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Having computed 0, we use (4.16) to compute 5 = Var(S - S>: 

where R 
3 = ii1 5 is obtained by solving 

A, R3 = fl 

recursively for each column of R3. Then fl is obtained by solving 
. 

I 
n ii = R3 

recursively for each row of 0. 

From the general considerations at the beginning of section 5, we need not 

compute all of n. One could then avoid computing all of R3 and n'. However, 

unlike section 5.1, here it does not seem possible with this approach to limit 

computing z: r -j (where CR1 R21 = [~l,...,rJ) to i-j < kl if 

c”v(st+- it-k. St- - St> is not of interest for k > k2 for some small kl and 

k2' Ye could achieve this reduction in computations by pre- and post- 

multiplying both terms in (5.10) by ai1 and iiT, respectively, yielding 

(CR R I i-TIT (CR 12 s R I ioT> 12 s as the second term, rather than computing II 

first. This could be done with a partitioned inverse of is, and in fact, 

other algebraic simplifications are then possible, which could give a more 

efficient algorithm. Unfortunately, pre- and post- multiplying by ii' and ii' 

accumulates entries down columns and across rows (e.g. if bS(B) = 1 - B then 

ai1 is lower triangular with 1 for each element). Thus, this approach results 
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in subtracting one accumulating sum from another, which could easily result in 

an unstable algorithm. 

5.3 Computing Results for Case III 

The results of section 4.3 for the case where St and Nt are nonstationary, 

bs(B) and bN(B) have a common zero, Var (y,> is known, and N* is assumed 

independent of iu,) and iv,), may be computed using techniques developed in 

sections 5.1 and 5.2. One does need to recognize that Ai ” 6;(B) = 

6N(B)/6c(B) and A; - b:(B) = 6s(B)/6c(B). 

. 

. 
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