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1. Introduction

Three common approaches to evaluating (Gaussian) likelihoods and doing
other computations with time series models might be called the classical
approach, the Kalman filter approach, and the matrix approach. The classical
approach works directly with difference equation forms of models (particularly
for autoregressive - integrated - moving average (ARIMA) models) and such
things as covariance generating functions and spectral densities. This
approach has been used for likelihood evaluation for ARIMA models by Box and
Jenkins (1970), Newbold (1974), Dent (1977), Osborn (1977), Hillmer and Tiao
(1979), Ljung and Box (1979), Tunnicliffe-Wilson (1983), and others. Spectral
approaches to model estimation have also been used; one such reference is
Hannan (1970). The classical apﬁroach has been used in the signal extraction
problem in the stationary case by Whittle (1963), among others, with
extensions to the nonstationary case provided by Hannan (1967), Sobel (1967),
Cleveland and Tiao (1976), Pierce (1979), and Bell (1984). The Kalman filter
approach involves putting the time series model in state-space form and using
the Kalman filter in doing likelihood evaluation, as in Gardner, Harvey, and
Phillips (1980), R. H. Jones (1980), Pearlman (1980), Kitagawa (1981),
Hélard (1984), and others. Signal extraction may be performed with the Kalman
smoother as suggested by Pagan (1975), Kitagawa (1981), Burridge and
Wallis (1985), and others. The Kalman filter has no inherent limitations to
stationary models; however, it does require specification of initial
conditions, for which there is typically no basis with nonstationary models
involving differencing. Ansley and Kohn (1985) and Kohn and Ansley (1986,
1987) addressed this problem with what they called a "transformation approach"
implemented in a modified Kalman filter. Bell and Hillmer (1987a) show how

the transformation approach can be implemented with the ordinary Kalman



filter. The matrix approach uses matrix results (such as decompositions) to
evaluate the determinant and quadratic form in a Gaussian likelihood; this
approach can also be used to solve the signal extraction problem. The matrix
approach seems to have been less popular in the literature than the classical
or Kalman filter approaches. For likelihood evaluation Ansley (1979)
suggested use of the Cholesky decomposition, Phadke and Kedem (1978)
considered this and a method using Woodbury’s formula for the inverse of a
matrix of particular form, Wincek and Reinsel (1984) extended the use of the
Cholesky decomposition to problems with missing data, and Brockwell and Davis
(1987) suggested use of an "innovations algorithm" that amounts to doing a
Cholesky decomposition. Carlin (1987) used the sweep operator in a Bayesian
analysis involving likelihood evaluation and signal extraction for
fractionally intefgrated moving average models. |

The classical and Kalman filter approaches each have their advantages and
disadvantages. Using the classical approach one can easily take advantage of
any special structure of the model (such as the multiplicative seasonality of
Box and Jenkins (1970)), making this approach convenient and computationally
efficient in certain cases. Unfortunately, there are some problems vhere the
classical approach is difficult or impossible to apply, including problems
vith missing data, variances changing over time, and estimation for component
models (one of the problems considered here). Also, finite sample signal
extraction requires modifications to the classical results as suggested in
Cleveland and Tiao (1976), Bell(1984), and Hillmer (1985). The Kalman filter
approach is more general and handles all these problems. Proponents of this
approach often cite it for computational efficiency, but some effort may be
required to achieve this efficiency because of the large number of zeros in

the state space representation of ARIMA models. Also, as a recursive



procedure, the Kalman filter gives little insight into the computations,
whereas, in the signal extraction problem for example, the classical approach
yields filters whose weights can be examined to see the effect of observations
in the time series on the signal extraction estimate at a given time point.

Because of the close connection between the Kalman filter and the Cholesky
decomposition (Solo (1986) points out that the Kalman filter computes the
inverse of the Cholesky factor, and Kohn and Ansley (1984) exploit the
connection in using the Kalman filter on seasonal moving average models), the
matrix approach can, in principle, be used on any problem on which the Kalman
filter approach can be used. The choice between the two could then depend on
the ease with vhich an efficient implementation can be achieved, something
that is likely to be problam-dependent. The matrix approach does have one
advantage over bofh the classical and Kalman filter approaches. Results from
the classical approach often appear obscure to statisticians who are not time
series specialists, and the Kalman filter approach is obscure';ven to many
time series analysts (though this is becoming less so as it becomes better
known). Results from the matrix approach should be more accessible to non-
time series specialists, and also are more interpretable than those from the
Kalman filter approach.

In section 2 of this paper we present our ARIMA component models and
assumptions, and section 3 develops matrix results for Gaussian likelihood
evaluation for these models. Section 4 devglops matrix results for
nonstationary signal extraction using the transformation approach of Ansley
and Kohn (1985). The matrix results apply the transformation approach
directly, rather than implementing it with their modified Kalman filter, or
the ordinary Kalman filter with a particular initialization (Bell and Hillmer

1987). 1In section 5§ we show how to compute the matrix results for signal



extraction. The approach to computations in sections 3 and 5 uses the
Cholesky decomposition approach of Ansley (1979), which applies an
autoregressive transformation to the data, allowing the Cholesky decomposition
to be taken of a band covariance matrix. Similar.ideas could be used for
other time series problems, such as forecasting, though we shall not do so

here.

2. ARIMA Component Models and Assumptions
The general model we shall consider is as follows:
Y, =S, + N 2.1)
vhere the components St and Nt follow the ARIMA models
$5(B) GG (B)S, = O (B)b, 2.2
4y (B) 6y (BIB, = Oy (B)c, . (2.3)

Here ¢5(B), 6S(B), etc. are polynomials in the backshift operator B, and b,
and c, are independent white noise series vith variances d% > 0 and v: > 0.
For simplicity, ve shall assume means are all zero except vhere stated
othervise. If this is not the case ve can simply subtract the means. This
general model has wide applicability beyond the classical problem of
observations Yt of a signal St that are corrupted by noise (or measurement
error) Nt' Other applications include seasonal modeling and adjustment
(St = geasonal, lt = nonseasonal), model based trend estimation (St = trend,
N, = irregular), and periodic sample survey estimation (S, = true population
series, Nt = gampling error).

We shall assume that ¢S and ¢N have all zeros outside the unit circle, and

0S and BN have all zeros on or outside the unit circle. While 6s and 6H will



most commonly be differencing operators, we do not need to restrict their
zeros to the unit circle, and thus can allow for explosive models, or for
models with roots outside the unit circle where we do not wish to assume the

stationary distribution for the starting values ot.St or N We shall assume

&
no common zeros for the pairs (¢s,ﬂs), (¢N,0N), and (¢S,¢N), though the last
restriction is easily dispensed with. We shall also assume, except where
stated otherwvise, that 6S and 6N have no common zeros. This assumption is
more key, and different results for signal extraction are developed for a
particular case where this does not hold.

Given the above model and assumptions it is well knmown the observed series

Yt follows the model

-

§BISBIY, = §(B)a,

where

4(B) = 4B y(B),  6(B) = 65(BYG(B),

2 2

a, is white noise with variance ¢“ > 0, and #(B) and ¢“ can be determined from

the covariance generating function relation

) 2
4(B) 0(}-‘) 0" = $y(B) 4y (F) 0y (B) 8y (F) 65 (B) Og (F) oy (2.4)

+ §(B) 4o (F) b (B) 6 (F) f (B) 6y, (F) o™

where F = B™>. The orders of ¢(B), §(B), and #(B) will be denoted p, d, q,

those of ¢s, Js, 08 denoted Pg: ds, qg» and those of ¢N’ 5!' ﬂn denoted

Py» dN’ - (0f course, it is possible for a p, d, or q, to be 0, in which

case the corresponding operator is not present in the model, or may be taken

as the identity.) We see p = Pg * Py and d = ds + dN’ It will be convenient



to write

5(B)Yt 2y

+ 6S(B)St =4

t JN(B)Nt =y

.
We see that

v, = 5N(B)ut + 6S(B)vt.~ (2.5)

We assume that the series U, v and hence w_ are stationary. This

t’ t
encompasses the assumption on the roots of ¢S and ¢N’ and also an assumption

that the starting values for u_ and v, come from their stationary

t
distribution. We assume that Yt is observed at time points labelled

t=1,...,n. Hence, w_ is available for time points t = d+1,...,n. We are

t
thus assuming that there are no missing data. Problems with missing data are
typically handled with the Kalman filter, though Wincek and Reinsel (1984)
developed a matrix approach that deals with missing data.

The results that follow do not explicitly take account of any
multiplicative seasonal structure that may exist in the models for Yt' St, or
Nt' It should be obvious how to take advantage of such structure in some of
the computations that follow, such as in computing autocovariances. In other
computations (see section 3) knowledge of such structure may be of no help.
While ve are assuming Var(bt) and Var(ct) do not depend on t, it is easy to
modify our results fof the case where they do depend on t, as long as how they
do so is known. Finally, ve are explicity considering only the case where Yt

is the sum of two component series, but theAresults extend easily to three or

more components.

3. Gaussian Likelihood Evaluation
Time series model parameters are frequently estimated by maximizing the

Gaussian likelihood function. Here we show how the Gaussian likelihood for



the ARIMA component models (2.1) - (2.3) can be evaluated by making an easy
extension to the approach using the Cholesky decomposition suggested by Ansley
(1979).

The first step is to apply §(B) to Y, to get w, for t = d+1,...,n. Often
6(B) will be a differencing operator, but it may also include autoregressive
parameters to be estimated. This occurs when the model for St or N, has
autoregressive term(s) in regard to which we do not wish to assume the
stationary distribution for the starting values. We shall use the demsity of

d+1

v=w "~ = ('d+1"""n)T as our likelihood function, a standard procedure

" that has been justified by Ansley and Kohn (1985). (The superscript T
indicates the transpose of a vector or matrix.)

-

Given v ve make the following transformation suggested by Ansley (1979):

L t = d+1,...,d+p
%t T 14(B)w,  t=depsl,....n @.1
This may be written ¢ w = z where
I h
P zd+1
—f cee=g, 1 .
8 = P 17 z = | . (3.2)
(n-d)x (n-d) . Lo, - .
_¢p.. -¢1 1 zn
J

We will need to compute the covariance matrix of z to get the likelihood.

Since z, =W, for t = d+1,...,d+p we need to compute some autocovariances

of v, = 6N(B)ut + JS(B)vt. These can be obtained from those of u, and Veo

which ve will also need to be able to compute later for doing signal



extraction. Note that u, and v, are independent and follow the ARMA models
dg(Bu, = O (BIb, BV, = 6y (B)c, .

McLeod (1975,1977) gives a method for computing ARMA covariances. To
illustrate his approach here let 7,(K) = COV(ut-k’ut)’ and let ¢(B) =1 + ¥,B
+ ¢2B2 + oo = 0S(B)/¢S(B) so the §. are obtained by equating coefficients of
powers of B in ¢S(B)¢(B) = 0S(B). Then (let 030 = -1)

7u(k) - ¢s17u(k-1) = ot = ’s’ps'yu(k-ps) = (3 3)

- 2
-8 b5, qgPag ¥ %

sk ~ ¥5,xe1?1 " 0
vhere the right hand side bacomes zero for k > qc. Using 7, (k) = 7 (-k) and
taking the above equations for k =0, 1, ... , Pg yields ps+1 linear equations
vhich may be solved for 7u(0), cee 7u(ps). Then 7u(k) for k = ps+1, cee
p*+dy-1 may be obtained recursively from (3.3). Similarly, 7v(k) for k=0, 1,

- » ptdg-1 may be obtained. These determine 7 (k) for k = 0, 1, ... , p-1
through (let &y, = bgq = -1)

;N gn Oy: 6 ) gs gs 0a:0 ( )
7.(k) = Oy .7 (k+i-j) + 0.7, (k+i-j
v i=0 j=0 Ni"Nj'u i=0 j=0 Si"Sj'v

vhich determines Var(fgI;) = Var(ggI;).

We also need Cov(zt, z_..) for d+1 { t < d+p and d+p+1 < t+k { n. These

t+k



are 0 for k > q. Otherwise, we note

Cov(zt, Zt+k) = Cov(wt, ¢(B)wt+k)
= Cov(6y(Bu +6_ (BIv,, #p(BI6y(B)O(BID, o + §g (B 65 (B) Oy (B)cy 1)
= Cov(by(Bu,, ¢y (B)E(BIIg(BIb, . ) + Cov (6o (B)v, , §g(B) 65 (B) Oy (B, o)
These depend only on k, not t. Let 7(B) = ¢N(B)5N(B)9S(B) =1+ B+ ...+
ntm where m = pN+dN+qS. Now
. _ (0 £ <0
Cov(ut, bt—Z) = { )
7% £>0
- m
Then (letting 7, = -1, and Y be O when k+i > m)
jek+i
0 k>m
d
Cov(§,(B)u,_, n(B)b, ) = N m
N t Tk ¥ ¥ §Nin'¢'—(k+i)0§ 0<k<m
i=0 j=k+i ¢ JJ

We similarly obtain the Cov(&S(B)vt, ¢S(B)5S(B)0N(B)c ), and hence the

t+k

Cov(zt,zt+k) needed.

Finally, we see that for t = d+p+l, ..., n

z, = ¢(Bw, = 0(Bla, = ¢N(B)§N(B)0S(B)bt + ¢S(B)5S(B)9N(B)Ct.

The two terms on the right hand side are independent moving average series of

orders m = pN+dN+qS and ps+ds+qN, whose autocovariances are easily computed.
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For example, those of ¢N(B)6N(B)0S(B)bt = n(B)bt are

Cov(n(B)b,, 7(Bb, ) = 4 2
s 1K1 =0

For k =0, 1, ..., q we add these to the lag k autocovariances of

$3(B)6g(B)y(B)c, to get the Cov(z, ) needed. This is effectively using

2k
the covariance generating function (2.4), though we merely wish to compute the

autocovariances, we need not solve for #(B) and 02.

We have thus shown how to compute all the elements of

T

Ez = Var(E) = Var(@g) =9 Ew 1] (3.4)

Notice that Ez is a band matrix of bandwidth max(p,q+1), that

is, Cov(zi, zj) = 0 for i-j > max(p,q+1). Since the Jacobian of the

transformation, |#|, is 1, the likelihood is the joint demsity of z:

p@ = o W D/2 g |2 o 1T 5t 5

We thus require the determinant, |Ez|, and the quadratic form, 21 2;1 z.

~

Following Ansley (1979), we use the Cholesky decomposition of Ez:

T

¥ =LL L = [Zij] lower triangular (3.5)

Since Ez is a band matrix of bandwidth max(p,q+1), so is L, which may be
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efficiently computed by a routine desinged to take advantage of the band
structure (see, e.g. Dongarra et al. (1979)).

We then have

n-d 9
15| = 1 ¢,
z . ii
i=1
_ _ _ _ n-d
zT 221 z = z'r (L LT) 1 z = (L 1z)T (L 1z) = ¥ ez
- - - - - - i=1
where ¢ = (61,...,en_d)T = L-iz, and the ei are uncorrelated, unit variance

innovations that may be solved for recursively from
Le=z. (3.6)

We cguld alternatively use the square-root-free Cholesky decomposition

%, =L DL, chere D is diagonal and L is wnit lover triangular (1's on the

diagonal), with obvious modifications to the above. However, the form given

above is somevhat more convenient for the signal extraction results later.
The preceeding shows how the likelihood may be evaluated. It may then be

maximized by standard numerical techniques to estimate the unknown parameters

2 2
of 45(B), b5(B), Og(B), 44(B), 6(B), Oy(B), o2, and o2

Care must be taken
in doing this to assure that the model is identified, that is, that different
values of the parameters do not lead to the same Ez. One possible such
problem arises if BS and 0n are not restricted in the optimization to have
zeros outside or on the unit circle. However, this problem is easily
dispensed with without performing restricted’optimization -- if the procedure
converges to a non-invertible solution (a zero of Os or 0! inside the unit
circle) one converts this to the corresponding invertible solution (see Box

and Jenkins 1970). More serious problems arise if the model is not identified

due to an infinite set of combinations of the parameters yielding the same 22.
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We shall not pursue this here; see Hotta (1988) for a discussion of
identification of ARIMA component models.

Other refinements to the procedure are possible. A scale constant, e.g.
ag or Jg, may be concentrated out of the likelihood as done by Ansley (1979)

for the ARMA model. If the model includes a regression mean function, XT g,

for Yt’ where §z = (xlt,...,xkt) is a kx1 vector of regressors observed at
time t and § a kx1 vector of regression parameters, them by taking Yt - XE g,
the above procedure yields the likelihood for a given f. The joint likelihood

may be efficiently maximized by an iterative generalized least squares scheme
as suggested by Otto, Bell, and Burman (1987). If p > q+1 one could save some
compﬁtations by taking advantage of the fact that the bandwidth of 22 is p in
the upper left but only gq+1 for most of the matrii. This could be done using
a backvard autoregressive transformation (Ansley 1979) on v, instead of 3.1).
A refinement suggested by Ansley (1979) for multiplicative seasonal ARMA
models that takes advantage of zeros within the band structure of Zz by
recognizing corresponding zeros in L does pot work here, since it depends on
the multiplicative nature of the seasonality and this is lost, in general,

with component models.

4. igna jo.

Here we obtain matrix expressions for an estimate S, of S = (Sl,...,Sn)T.

and for Var(S - S). The estimate is obtained using the transformation

approach of Ansley and Kohn (1985), who develop a modified Kalman filter to
calculate the estimate on the grounds that direct calculation of the

transformation approach estimate would be difficult. (Bell and Hillmer
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(1987a) show how the ordinary Kalman filter may be initialized to yield this
estimate.) However, the expressions we give here give some insight into the
transformation approach estimate, and in the next section we show how the

Cholesky decomposition can be used to compute the estimate and its variance.

The transformation approach estimate of St is obtained as follows. Let S
= (Sl""’sd )T. Following Bell (1984) we can write,
S
t-do-1
_ xS\T S ~,S
Sy = ()" S, + LT fuy (4.1
i=0
S S
where A} and the fi may be computed from
-
g 1 i=t
A°, = t=1,...,d, , i=1,...,d
it 0 ift S S
6 (‘B)AS =0 t >d
N I A S
S S,.2 _ S _ .
bg(B(1 + (B +{BT+ .. =1 3 5S(B) ¢ =0 1i>dg
The relation (4.1) also holds for t=1,...,dS if the sum is interpreted as

0. The transformation approach estimate is found by (1) finding a linear

combination of Y, n'y say, such that St - h'Y does not depend on the starting

values S

e and (2) projecting St - hTY on the "differenced data", w, and

A~

adding this to v'Y. The resulting estimate, St’ has error (St - St) that does
)T
N

not depend on 5. or N_ = (Nl""’Nd , and has minimum mean squared error
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(MMSE) among all linear functions of Y with this property (Kohn and Ansley
(1987)). The estimate is globally optimal, having MMSE among all linear

estimators, if Y = (Yl,...,Yd)T is independent of {ut} and {vt} (Assumption A

-~ see Bell and Hillmer (1987a)).

We now give expressions for transformation approach estimates, S, of S,

~ ~

and for Var(S - S), for three different cases regarding 5S(B) and 5N(B).

4.1 Case I: St nonstationary, Nt stationary (6N(B) =1)

In this case the transformation approach estimate amounts to using w to

estimate N = (Nl""’Nn)T (call this estimate N) and then estimating S with

W
1=

S =Y - N, and using Var(S - é) = Var(N - ﬁ) (since S -

- .

From (2.5) with 5N(B) =1 and v, = Nt we have w, = u, + 6S(B)Nt, so that

t t t

Cov(wt,Nj) = Cov(éS(B)Nt,Nj) = 738 - 6317N(j-t+1) - e - 5S,dS7N(j-t+dS)'

This yields the elements of Cov(w, N) from the autocovariances of Nt which

here follows the ARMA model, ¢N(B)Nt = HN(B)ct. We can write w = u + AS N so

- T
Cov(g, N) = ENAS (4.2)
4. . -6 1 -
where AS = S’dS Sl.
'5s,dS BT

AS is an (n-d)xn matrix that effects differencing by 5S(B) (= 6(B) here).
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Then from well-known results on (mean zero) linear projections

- _ -1 _ T -1
! = Cov(g, g) E' v = EN AS 2' v (4.3)
so that
. _ - - _ T o1
S=Y-N=Y-Z A2 v (4.9
- o i T ot
Var(§ - §) = Var(g g) EN SN AS Ew AS EN . (4.5)

4.2 Lase II: St and N| nonstationary, 6S§B2 and 5N§BZ have no common zeros

Consider the nonsingular transformation

[ 1
- §* - 1
AS § = s where niﬁ = -6S,ds"'-651 1 . (4.6)
R S S
S,d S1
S ]

We shall estimate S, and u separately and then for t > ds use

~

S

-~ A

S + u_. Also, ve shall obtain the error
g t-ds t

t = 05154 * -+ gy

variance matrix in estimating [SI uTjT, and then obtain Var(S - S) by

inverting the above transformation.
€

From (2.5) we have

vE=ldyu+dgy
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vhere AS is (n-d)x(n-dN) but of the same form as in (4.2) (where dN=0)’ and AN
is an (n-d)x(n-dg) matrix defined analogously to Ag but using §,(B). Then

Cov(w, u) = Eu AT, and the elements can be computed from Cov(wt, uj) =
Cov(JN(B)ut, uj) = 7u(j-t) - 5N17u(j-t+1) - .- 6N,dN7u(j-t+dN). Then using

W to estimate u we have

-~

T o-1 " T o-1
u=3% A, 3 ' w Var(g-g) = Eu - Eu AN Ew AN Eu . (4.7)

- u N"v¢ .

~ Also estimating v from v gives

vaz A5l Var(v-v) = 5 - 5 AT 57t 4 5 4.8)

To estimate S, ¥e need the following relation between the starting values

for Y, and those for S, and N, given by Bell (1984):

ds+1 d‘+1

Y, = [H, H) ; +C u>  +Cy vy (4.9)
-

+1

T
vhere u,” = (uds+1,...,ud) v = (vdn+1,...,vd) , and
tag tay
S T N T
(A ) - |€A )
H1 = ds+1 1{2 -d"+1
dxd dx .
S (5s)r dy AT
i | -d




Cl

odsx(d—ds)
S
£

:S
§d-d..-
d-dg-1 .

Lt

17

Cy
dx (d-dy)

0
de(d—dN)
N
$o

N
{g-a. -
d-dy-1 .

i

(4.9) just amounts to taking expression (4.1) for S, and a similar expression
for Nt for t = 1,...,d, and adding these together to get Yt fort =1,...,4d.
Bell (1984) observes that the dxd matrix [H1 H2] is nonsingular. We can then

obtain from (4.9)

: - ] 1 -1 ds+1 dN+1}
I. O [H, H,] Y -S, =1[I, O J[H, H,] {C, u + C, Vv
dS dsde 172 ot % dS dedN 172 1 .d 2 .d
=Aju-Ayv
where
-1
A, = -[1I, O 14, H,] “ C,[I, O i
1 dS dsde 172 1 dN dNX(n d)
-1
A, =-[I, O 1[H, H,] C,[I, O Y
2 dN dedS 1 72 2 dS dSX(n d)
The transformation approach estimate of S, is
- 1 - .
Sy = [Id 04 xd ][H1 H2] Yo +A u+ Ay v (4.10)
S SN
with error
§* —§*=A1(1~1—1~1) +A2(\~r-1~r) (4.11)
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vhich does not depend on §*. With u given by (4.7) and S, by (4.10) ve could

-

express S as

(4.12)

[ 7]
L}
[~

[ =1

~

though it is more convenient to recursively compute Sd FOREEREY Sn from
S

-~

N JS(B)St =u,.

¥e now obtain Var(S - S). First note that

A 'S A

Coviu ~u ,v-v) =Cov(u-u, v)

a

-Cov(Z, A; 2;1 v, V)

T p-1
= -5 Ay Elag s (4.13)

using an orthogonality property of linear projections in the first line and

the orthogonality of u and v in the second. Then from (4.7), (4.8), (4.11),

and (4.13) ve have

-~ S

Cov(S* - S*, u-u) = Al Var(u - u) + A2 Cov(v - v, u - u)

T g1 T o-1
= Al(Eu - Eu AN I Ay Eu) - A,y Ev As I, Ay Eu (4.14)
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_ - - _ T -1 T _ T -1 T
Var(§* §*) A1 (Eu 2u AN zw AN Eu) Al Ai Eu AN Ev AS 2v A2
(4.15)

} T o-1 T g AT o1 T
A, Sv AS 2' AH Eu Ay + A (Zv Ev AS Ev AS Zv) A, .

(4.7), (4.14), and (4.15) complete the specification of the error variance

T uT]T;

matrix of [S*

then from (4.6) and (4.12) we obtain

ay o i1
Var(§ - §) = Ag" Var S (4.16)

+*
e TR
%
[~
]
[ |

vhere X;’l‘ denotes the inverse of Ag .

4.3 Case III: Sl and N| nonstationary, és_@)_gng_én(ﬂ) have common zero(s),
Var(N ) known, and (N ) independent of {u.} and jv|l )

Component models where 6S(B) and JN(B) have a common zero have been used
in a seasonal adjustment context by Cleveland and Tiao (1976) and Burridge and
Wallis (1985), but seasonal modeling or adjustm;xt is not the application we
have in mind here. In fact, arguments can be made against §o(B) and'ﬁl(B)
having a common zero in this context (see Bell and Hillmer 1984), and also
estimation of S. and N, when 5S(B) and 5N(B) have a common zero requires
assumptions about starting values such as those in this subsection’s heading
or others (see, e.g., Kohn and Ansley (1987)), for which there is generally
little basis in seasonal modeling.

The application we have in mind here is estimation in periodic surveys

vhere St x;epresents the true underlying series and Nt the sampling error (see
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Scott and Smith (1974), R. G. Jones (1980), and Bell and Hillmer (1987b)).
Typically St vill require differencing, and one can conceive of situations
where the model for Nt might also involve differencing. This could arise if a
nonstationary model was used to explain correlation over time for units in the
population being sampled, and the sample design were such that the resulting
Nt followed, at least approximately, a nonstationary model. This might happen
in a panel study vhere units remain in sample a long time, or even

indefinitely. Since we should have available an estimate of Var(N)) in this
case, we have the situation we shall consider here if N* is independent of

{u,} and {v,}. This last assumption may be more open to question, but could
be cegsidered vith regard to any particular application, or perhaps the
results given here can be modified. We should point out that we have not
actually attempted nonstationary modeling of sampling error - modeling of time
series subject to sampling error being still in its infancy - but are
presenting results here that may be used in this case should such a model be
developed.

It 68(3) and 6’(3) have common zero(s) we write

Bd“

*» *
§B) = SSEBE@E® 6B =1 -G48~ ... - O B

vhere 6C(B) is the product of the d_ common factors in 6S(B) and JN(B).

* *

bg(B) = 5S(B)/5c(B), by(B) = 6,(B)/6_(B), and d = dg + dy - d.. (Actually,
the approach taken here seems most appropriate when 6s(B) contains JN(B), 80

6C(B) = 5N(B). 6;(8) =1, andd =d If this is not the case, part of the

s.
effect of the starting values N, can be eliminated, which may yield better
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results than those presented here.) We then have

- *
v, = 5(B)Yt = 5N(B)ut + l5S(B)vt

where A; is an (n—d)x(n-ds) matrix corresponding to 6;(3), and A; is an

(n-d)x(n-dy) matrix corresponding to 6;(8), analogous to (4.2). Notice that

-

The transformation approach will eliminate the effects of S,, but not of N,

since when 68(8) and 6N(B) have common zeroes we cannot eliminate both S, and

v,

First, consider the case d' > ds so that Nés is part of '* = lén. Note

Cov(N,, ¥) = Cov(N", Ay u + A3 v) = 0

so the estimate of N_ using v is 0. The transformation approach then uses

and 5S(B)St =u, for t = ds+1, ..., n. We also have
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~

_ _ * T -1 ,*
Var(g - E) = Eu Eu (AN) Ew AN Eu

Var(S, - 5,) = Var(—N1 ) = dgxdg upper left-hand corner of Var(N )
~ ~ ~dg ~
. - 1 -
Cov(g* - §*, u - E) = Cov(—]ild ,u=-u) =0 .

g ~ -

With these pieces we can obtain Var(S - S) using (4.16).

If dS > dN ve estimate N by N = 0 again, and then estimate v by

* -1
v 'S 2w v

~ ~ N ~

After recursively computing N, = 6N1Nt-1 + oo+ 5N,dNNt~dN + v, for

t = dN+1,...,n, we compute S = Y - N. Also Var(§ - S) = Var(N - N), and the
latter may be obtained from
Var(N* - N*) = Var(N*) (assumed known)
Covllly, = Ny v - ¥) = Covlll,, v - 1) =0

~

_ _ *\T -1 ,*
Var(Y - Y) = Ev Ev (AS) Ew AS EV
and
~ ) ~ ~_4 !\I* I-Y* ~_T
Var(S - 8) = Var(N - N) = AN Var - | A
- - v v
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vhere
1
- 1
By = |=6y 4 oov =6 1
N N,dy N1
'5N,dN" '5N11

5. Signal Extraction Computations

We now show how to efficiently compute S and Var(S - S) given by the

expressions in section 4. Along with specific schemes for each of the three
caseg, there are some general considerations for computational efficiency.

One is that the roles of St and Nt are interchangeable, that is, instead of

directly computing S and Var(S - S), ve can compute N and Var(N - N), and then

use S = Y - N and Var(S - S) = Var(N - N) (since S - S = ¥ - N). This fact
vas already used in sections 4.1 and 4.3. For the case considered in section

4.2 it will generally be easier to compute S and Var(S - S) as given there if

dS < dy, and easier to compute the corresponding results for N and Var(N - N)

if ds > dN' Here we shall show how to compute the results specifically given
in section 4.

Other general computational savings are possible in computing Var(S - é).
First, and most obvious, since Var(S - S) is symmetric, it is determined by

its lower triangle. Second, (ignoring the case in section 4.3 for the

moment), since the models (2.1) - (2.3) hold for the series reversed in time,
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i.e. t running from n to 1, it follows that Var(St - 5,) = Var(s

t n+i-t

én+1-t)’ vith analogous results for covariances. If we partition Var(S - S)

as

1

Var(§ - %) = \?;3\\‘ n/2 (or (n+1)/2 for n odd)
2 \k .

then (3) is the transpose of the mirror image of (1) , so the elements in (1)
and (2) are sufficient to determine Var(S - S). This does not hold for the

case_ covered in section 4.3 because of the special assumptions about N_, which

appears in S - § . It = [uij] = Var(S - S) these two restrictions mean that
ve only need vij for i > j and j £ (n+1)/2 to determine fi. Finally, it will

be rare that all of Var(S - S) vill be of interest, at least for n reascnably

~

large. For example, Cov(s1 -84, 8, - én) vill rarely be needed. This makes
possible some significant computational savings for the case of section 4.1;
these will be outlined in section 5.1.

The basis for our computation schemes here is the computation and Cholesky
decomposition of Sz discussed in section 3. Thus, ve start from (see (3.4)
and (3.5))

T T
I =¢3I & =LL

where Ez and the Cholesky factor L are band matrices. From this ve have
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P lagTytgadT Tl (5.1)
v z
All our estimates here involve

2;1\: = 4T T, o ¢ T,

-~ ~

1 T

z may be solved for recursively from L ¢ = z. Letting r = L ‘¢

-~ -~

where € = L~

we may solve recursively for its elements SIPTRREY (bottom to top) from

LTr = ¢ . We can then easily compute E;Iw =8z , ignoring the zeros in §!

vhen taking this product, though some of the approaches that follow do not

expf&citly compute this last product.

5.1 Computing Results for Case I (N  Stationary)
Recall that ve wish to compute, from (4.3) - (4.5)

- T 1 -
! = 2! AS Sw v § = ! N

L

Q . T o1
Var(§ - §5) = Var(¥ - N) = 3, - I, Ag I, Ag I
We discussed computation of ARMA covariances in section 3. For the results
here we need 7n(0),...,7n(n-1) to determine EN' Then N can be computed by
computing 2;1 v as described above, multiplying this by Ag taking account of

the many zeroes in AL » and then mltiplying this result by I.. That is
Nz af @ ey =5 al @t aT oy 5.2)

vhere the parentheses indicate the order of computation.
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If we are also going to compute Var(S - S), we can use an alternative

aproach to computing N. From (5.1) and (5.2) we can write

W= @A T o=@ ag g1t e (5.3)
Var(s - §) =% - Lt @ 4. 3017 ! G AL B (5.4)
- ot N S N SN :

Obviously, we need to compute ¢ AS EN and then L™ (4 AS EN). We start with

. ..th . .
Just AS EN. The ij ™ element of AS EN is ai—j vhere the sequence a, is

defined by
a = Cov(és(B)Nt, Nogd = w{® - 6817N(k+1) - ... - JS,dS7N(k+dS)‘
Then adN+1-n""’an-d-1 determine AS EN through

[a a a ]
-dS 1—dS n-d-1
AL X, = a_, _ a_
SN ds 1_ dS
(n—d)x(n—dN) : :
.

(We are showing the indices here in a way that the results can be easily used
in the next section where Ve replaces Nt’ or u, and AN replace Nt and AS'
Recall that here dy = 0 and dg = d.) Notice AS ZN is determined by its first
rov and column. If there are no AR operators, i.e. ¢S(B) = ¢N(B) =1, we
replace ¢ by the identity matrix. Otherwise, consider ¢ given in (3.2). We

see the first p rows of & AS EN are just those of AS EN' The remaining
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elements are determined by the sequence Ak defined by

Ay E Cov(¢(B)6S(B)Nt, Noyw = O = 40,4y ~ +++ plk+p
We compute AdN+1-n""’An-d-p-1 and then
-a_ a _ . . . . a —A_ ]
~dg 1-dg n-d-1 { first p rows
: T of A, X
Q4 g - SN
1 dS P
AL NN
- 0,85 = | %P 1P n-d-p-l (5.5)
A A :
-dgp-1 “-dg-p
AdN+1-n

Notice this matrix is determined by its first and pth rows, and first column.

Having thus computed ¢ As EN ve can then compute

=11 =
R = L» (4, %) » LR=4% Ag By - (5.6)

We solve the second relation recursively for each columm I, of

R = [ri,...,rn]. We then have from (5.2), (5.3), and (5.6)

-~

N=n'¢ S=Y-N
Var(s - §) = 5y - RTR . (5.7

Actually, since it is easy to solve LTr = ¢ forr = L_Te , We may prefer to
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compute N as N = (¥ 4 ZN)T r.
We will seldom need all of Var(S - S), and it is easy to use (5.7) to

compute only those elements needed. If fl = [uij]"= Var(S - S) then

W, = 19(i - 3) - . .
ij N o R |

We can save considerable computations by computing only those rz rj needed.

-~

If ve only want Var(St - St) for t = 1,...,n ve only compute the required

T Q o T
r; T; - If ve also vant Cov(S, - S,, S,_4 st-l) ve also compute r. I, , as

required, and so on. (See also the discussion at the beginning of this
section on vhat computations are required.) We can also save on computer
storage vith this approach since as we sequentially compute riffor i=1, 2,

..., We can compute r? r., r} Ti-q rz T;_n» 9tc. as desired; and then

discard the T;-j 28 they are not needed (i.e. large j).

5.2 Computing Results for Case II Ssl, Nl_gggg;ggigng;!L
ﬁsng and 5N§Bz have no common zeros)

-

To produce the estimate S we need to compute (see (4.7), (4.8), (4.10))

é =2 A; 2;1 v o= (F Ay Eu)T r vherer = LT €
- T o-1 T
v = zv AS E' v= (¢ AS Ev) r
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-~

tn

= [I Y, + A u+ A

-1
0 ] [H, H,]
dS dsde 172 - 1. 2

<

*

~

Y , ¢4 Ev » T, and hence u and v as discussed

We compute Eu’ Ev' ¢ AN N S

-

earlier (sections 3 and 5.1). We actually do not need all of v, as will be

PN

seen shortly. To compute S, first notice its first term may be computed
. . -1, . -1
directly noting that [Ids Ddsde] [H1 H)] © is the first dg rows of [H1 H,]

Next let

B, = s0 A = B (1

-1
B. =

-1

4 Yaxm-a)’

so Ay =B, [Ods d x(n-d)]

. -1 -1
These are the first dg rows of - [HI 32] C, and - [H1 H2] C,»
respectively, and these products can be taken directly, taking account of the

fact that the first ds Tows of 01 and the first dﬂ rows of C2 are 0. Then

1

first colums
(@ A 5) AT = (& 84y 5D |, W | . [ “ ]BT
(n-d)xdn

1 of ¢ AN Eu 1

I
dg T

B, = T
o(n-d)xds 2 2

T
(F Ag I) A = (3 As I)

first ds columns
B
L of & AS Ev
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We can then directly compute

tg >

T4T
[(d by T AMlTr A,

=
L]

PN

_ T T
= [(¢ AS ) LY I

~ -~

and then compute S_. Notice that since we need only A, v and not all of v, we

%

need only the first ds columns of ¢ AS Zv, vhich are determined by the first

column and first dS elements of the first and p+1St

-~ -~ -~

rows (see (5.6)).

Having computed S* and u, we obtain St for t = ds+1, ... , n from
« Sy = lgySpg et 5S,ds St-ds*ut t=dgH, ..., n
R - §* - §*
To compute {! = Var(S - S) we first compute i = Var . From (4.2)
- - u-1u
ve have that
S« ™ Su A A ju-u
= (5.8)
u-1i Ipeg, © V-V
- - S - -
(4.7), (4.8), and (4.12) can be re-expressed as
- T
u-u 2u 0 2u AN -1
Var | o= - T EH [AN Eu ] As Ev] (5.9)
V-V 0 Ev Ev As
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Using (5.8) and (5.9) and simplifying we eventually get

T

{ )

+ A, Y A 1 I

_ T
S S A1 Eu A 9 2y Ay A T
) 5 AT : - [R1 R2] [R1 Rz] (5.10)
u-u u'1 u

where [R1 R2] is (n-d)xn with

T
1

! @ by B is (n-d)x(n-dg)

R

-1 T .
1 L * (? AN Eu A + @ AS Ev A2) is (n—d)xds

Ry

. . T T
Given that we have computed Eu’ Ev’ ¢ AN Eu , & AN Lu Ai’ and ¢ AS Ev A2 ,

%e show how to compute the rest of the quantities needed.

7.0 - - - 7,(dg+i-n)
1) A% =B, [I, 0,_, 1% = B : :
1% "1 Ty Tdpx(n-d)” fu 1 7,y - ¢ - 7, (d-n+1)
I )
first columms
A SA = (A B |, K B; = ofAdN By
u (n-d)xdy T Ay Yy
Id 7v(0)
T _ S T _ ; T
Ay I, 4y = B2[Ids Ddsx(n—d)lzv 0 By =By - : By
(n-d)xdS 7v(dN-1) s 7v(0)

Compute all these directly.

2) Compute R1 and R2 by solving recursively for each of their columms in

T

_ T
L R1 = ¢ AN Eu A1 + ¢ AS Ev A2

LR, = ¢ AN Eu

3) Compute [R1 Rle[R1 R2] and then i from (5.10).
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Having computed ﬁ, ve use (4.16) to compute i = Var(S - S):

where R, = Z;l l is obtained by solving

[ =l ]
oo
|
=1

S

recursively for each columm of R3. Then fl is obtained by solving

~

fl AS = R3
recursively for each row of {l.

From the general considerations at the beginning of section 5, we need not
compute all of fi. One could then avoid computing all of R3 and 6. However,
unlike section 5.1, here it does not seem possible with this approach to limit

. T _ - .
computing r; Ty (where [R1 R2] = [51""’fn]) to i-j < kg if

~ -

C°V(St—k- St-k’ St- St) is not of interest for k > k2 for some small k1 and

k2. We could achieve this reduction in computations by pre- and post-
multiplying both terms in (5.10) by 551 and Z;T, respectively, yielding

([R1 R2] K;T)T ([R1 R2] Z;T) as the second term, rather than computing h
first. This could be done with a partitioned inverse of ZS’ and in fact,
other algebraic simplifications are then possible, which could give a more
efficient algorithm. Unfortunately, pre- and post- multiplying by X;l and Z;T
accumulates entries down columms and across rows (e.g. if 6S(B) =1 - B then

A;i is lower triangular with 1 for each element). Thus, this approach results
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in subtracting one accumulating sum from another, which could easily result in

an unstable algorithm.

5.3 Computing Results for Case III

The results of section 4.3 for the case where St and Nt are nonstationary,

6S(B) and 6N(B) have a common zero, Var (N,) is known, and N_ is assumed

independent of {ut} and {vt}, may be computed using techniques developed in
sections 5.1 and 5.2. One does need to recognize that A; - 5;(B) =

* . _
6N(B)/5C(B) and AS 5s(B) = 6S(B)/5C(B).
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