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COMPARING NOT NECESSARILY NESTED MODELS WITH THE MINIMUM 

AIC AND THE MAXIMUM KULLBACK-LEIBLER 

ENTROPY CRITERIA: NEW PROPERTIES AND CONNECTIONS 

David F. Findley 

ABSTRACT 

Applied statistical modelers frequently have to compare models of rather 
w 

different forms. To the extent that objective criteria are used to facilitate such 

compatisons, Akaike’s minimum AIC criterion seems to be the one most widely used, 

due in part, perhaps, to its ease of use and its impressive successes in some 

industrial applications. A coherent theory to motivate MAIC’s use with non-nested 

model comparisons has been lacking, however, and the present paper seeks to describe 

one. Not surprisingly, Akaike’s non-operative Entropy Maximization Principle turns 

out to provide a model of what successful performance might mean in some subtle 

situations involving incorrect models. This paper summarizes some new results 

concerning this principle, a linear stochastic regression version of Akaike’s criterion, 

and the related criteria of Schwarz and Hannan and Quinn. Some analyses related 

to a successful ship autopilot design project are presented to illustrate the application 

of MAIC. Our theoretical results are directed towards analyzing the performance of 

the model selection criteria in some general situations, including three in which the 

preferred model, or lack of one, seems obvious a priori. Loosely described, these 

three situations are: 
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(9 The best model from one class fits the data better than all models 

from the other class. 

(ii) Both model classes include the correct model, but one class has 

fewer parameters to be estimated than the other. 

(iii) The two model classes have the same number of parameters to be 

estimated and both include the correct model. 

We also analyze the performance of the various criteria in two situations in 

which the princinle of parsimony is contradicted. 

. 

1. Introduction 

We assume that a q-dimensional process yt is given which is to be linearly 

regressed upon one or more other processes (stochastic, nonstochastic ‘or mixed). If 

the r-dimensional process xt is a candidate regressor, then several points of view are 

possible concerning the “ideal” regression relation to be estimated, 

(1.1) Yt = A(x)xt + eiX) 
> 

(4 beyond the basic assumntions that the error process et has mean zero and a 

constant, nonsingular covariance matrix IZ (4 . 

One point of view is that (1.1) simply represents a potentially useful 

approximation formula, in which case the ideal regression function A (4 xt need not 

be subjected to very demanding conditions: some useful results can be obtained from 

the simple uncorrelatedness requirement 

(1.2) Eep)xi = 0 . 
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At the other extreme, we may wish A (4 xt to capture information about yt in 

a quite strong sense. In this case, motivated by stochastic control problems, we will 

assume that the entries of xt are variables which were measured or calculated at 

time t-l or before, and we will let It denote the information set (o-algebra) 

generated by alJ such variables, including those not in xt which might be used a 

comnonents in some other comneting regressor it. We will say that xt contains the 

correct regression variables, or is a comnlete regressor, if the mean of yt conditional 

on the information set It is a linear function of the entries of xt, so that, for some 

iqxr)-matrix A(x), 

(1.3) - A(‘)x, = E(Yt IIt) (for ~41 t), 

(4 holds, and if, also, the variability of et is unaffected by It, in the sense that 

(1.4) E(eix)eix)’ II ) - Z(x) (for all t). 
t - 

If, in addition, all columns of A (4 are non-zero, then xt will be called a correct 

regressor. 

All complete regressors are eauivalent regressors for yt in the (asymptotic) sense 

that they have the same values of A (4 xt and eiX). The conditions (1.3) and (1.4) 

(4 will be satisfied, for example, if the error et is independent of the variates 

generating It. 
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We will be concerned with least squares estimates of A(X) and I;(x) from data 

xt, Yt, t=1,.**, N. These are the matrices AN * and EN which maximize the Gaussian 

log-likelihood function1 

LN[X,A] = - (N/2)log2r] C ] 

- (l/2) if (yt - Axt)‘+(yt - $1 , 
t=1 

and which are given by 

. 

and 

A 
AN = &t’i)(t~lxtxi)l 

N 
'N = N-l z 

t=1 
(y, - $x&t - L&)' , 

The maximized log-likelihood is 

1 . 
L&‘AN] = - (N/2){l@@NI + 9) - 

From (1.1) and (1.2) and the assumption that Extx; is nonsingular, we obtain 

IThis is an extension of the usual terminology, since LN[X,A] is not a log joint 

density function for the observed values of xt and yt except in the special case in 

which x t is deterministic. It is a sum of N terms which can be interpreted as log 

Gaussian conditional densities for the individual yt%. 
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(1.5) AcX) = (EY~x;)(Ex~x~)-’ . 

Note that if xt and yt are jointly covariance stationary (with mean 0) and if we 

define A(X) (4 as in (1.5) and set et = yt - A(X)xt, then (1.1) and (1.2) hold. For 

example, if yt is a scalar, mean-zero, stationary process and xt = ytBk, then A(X) 

‘pk, the autocorrelation at lag k. 

. 

If yt is nonstationary with changing mean or variance, then xt must capture 

(4 this effect well enough that the error process et satisfies our zero mean and 

-constant variance requirements. For example, if yt is a nonstationary scalar process 

whose increments yt - yt-I are stationary, then x+, should have yt-I as one of its 

components, see Tiao and Tsay (1983). 

Under (1.2), the matrix pair E cx), AcX) can be shown to be the unique 

maximizer of the version of the Kullback-Leibler entronv functional defined by taking 

the expected value of the log-likelihood function with respect to the true distribution 

of the data: 

ENPA = E(LN[X,A]} = -(N/2)(log2r] C( 

(tr denotes trace). Observe that 

EN(X(X),A(X)] = - (N/2) {log2a]C(X)] + q) . 
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Even with incomplete regressors, i, and AN are consistent estimators of B(x) and 

A(X) under quite general circumstances, that is, 8, +p &x) and AN +p A(x), see 

Hannan (1970), Hosoya and Taniguchi (1982) Lai and Wei (1982) and Ljung and 

Caines (1979). Therefore the entropy functional ENII;,A] can be said to identify the 

asymptotic values of the maximum likelihood estimates. 

Our goal is to derive some properties of entropy and log-likelihood which are 

relevant for model selection, particularly regressor selection. Given two candidate 

(i) regressor processes xt , i=1,2, let us denote by EN , * Ci) ‘&‘I, A Ci) ACi), i=l 2 their 
N ’ , 9 

corresponding values of eN, x(x), A, and A(X). An elementary argument can be 

used to show that if xi’) (2) is a complete regressor but xt is not, then 

] X(l) ] f I JJ2) 1, which is equivalent to ENIXA1),Ail)] > EN[Xi2),Ai2)]. Thus, 

larger entropy values are associated with the preferred regressor. Of .course, there are 

further considerations: a correct regressor would be preferred over a regressor which 

was complete but not correct (and therefore contains superfluous variables) although 

both would have the same value of S(x); also, Z(i) and A(i) are not known, only 

estimates ti#), A$) i=1,2 are available, etc. Akaike’s entropy maximization 

principle (EMP) asserts that, among estimated models, the one with largest entropy 

is to be preferred. For regressor selection, this becomes 

(EMP). Prefer xi’) m xi2) if the entroov difference 

(1.6) E 
N 

[~~1),~~1)] _ E [f( 2, A ( 2)] 
NN’N 

& positive. 

This is not an operative criterion, because the entropy difference cannot be 

calculated, the true distribution of the observed processes being unknown. The usual 
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interpretation of Akaike’s work (1973) is that & s& of (1.6) can be estimated b 

the sia of 

LN[$kl),Akl)] - A( 2)] q(r(l) - 
’ N 

(l-7) 
= - (~/2) log(d1)//18(2)l) - q(r(‘) - r(2)) 

N N 

. 

yhere r(i) = dim xi’), i=1,2. 

To describe the connection between (1.7) and our version of Akaike’s Minimum 

AIC c?iterion, we require the fourth cumulants of et = (ZZ (x) -1/2eix). ) (We use 

21/2 to designate a matrix with the property that X = ($/2)(J$/2)” and ‘$-l/2 to 

denote its inverse.) With ejt denoting the j-th entry of et, l<_j<q, these are given 

bY 

‘jk = E( $&) - 1 - 26jk , 

where 6. is 1 if j=k and 0 otherwise. 
Jk 

Then, for the purpose of theoretical analysis, 

we define 

AI$) = -2LN[Qi),4i)] 

+ 2{q(q+1)/2 + qr(i)} + ! I;;(i) 
j&=1 jk 

(the term in curly braces is the number of distinct parameters estimated in 2;) and 

ALi), i=1,2), and set 
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DAIcf$‘2) = A+) - AICA2). 

The fourth-cumulant sum in (1.8), which does not appear in the definition of 

AIC in the traditional correct-model maximum likelihood estimation context, see 

Akaike (1973) for example, occurs here because a Gaussian likelihood function has 

(1) been used to model possibly non-Gaussian data. If the error processes et and eta) 

are Gaussian, the fourth cumulant expressions are zero and (1.7) coincides with 

(-1/2)DAICl&1,2). (1) If the processes xt and xi2) are complete, they are eauivalent 

in the sense that A(‘)x(‘) - A(2)x(2) and (therefore) e(l) = ei2) hold (almost t - t t 

surely) for all t. Thus, for equivalent regressor processes too, (-1/2)DAIC&1,2) 

coincides with (1.7). Nearly equivalent regressor can be expected to have this 

property to a good approximation. Our purpose in including the cumulant expression 

in the definition of AIC will become apparent in section 3b below, where it will be 

seen that modeling contraints imposed on the error covariance matrix, such as (3.2), 

interfere with the properties of DAICN(1,2) unless certain cumulants are 0, see (3.4). 

The minimum AIC criterion for regressor selection is: 

(MA=). - - Prefer the regressor xi’) m xi2) if DAICl&1,2) is negative. - 

2. Overview of the Main Results of (4) 

Let US abbreviate LN[G,A,], EN[eN,AN], LN[6(X),A(X)] and EN[X(x),A(x)] by LN, 
* 
EN’ LN,oo and EN,m’ respectively, adding a superscript 6) N when the regressor xt 

is considered (L#), etc.). All of our analyses will be connected with the terms of 

the fundamental decompositions (LD) and (ED): 
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(LD) ‘N = &J - LN oo) + tLN m - EN WI + EN o. ’ I > , > 

(ED) $,J = @N - EN,oo) + EN,oo * 

. 

The term ENloo, being proportional to N, is the dominant term in these 

decompositions. (In familiar situations, the fundamental log-likelihood ratio 
1 

LN - LN,~ converges in distribution (to xqz, usually) and so is bounded in 

probability, and the same is true of fi, - EN oo, whereas the term LN o. - EN o. 

is of order N1j2 * Thus, when ‘IX(‘)] # I X(2)], EI$‘L - l&2$, 
I 

. m probability.) 

dominates the behaviors of both l$l) - g&2) and DAICl$1,2), see (2.3) below. 

The situation with equivalent regressors is more subtle. If XI’) and xi”) are 

(1) equivalent, then EN o. = El&2L and L&‘L = 

&il) - &A21 and ~AI(‘J&‘I~) 
9 

Lk2i, so that the behaviors of 
I 

depend only on properties of the first terms on the 

right in (LD) and (ED). 

The crucial fact is that these first terms behave onnositelv. This is always 

true in the simple sense that LN - LN o. is positive (since $N tiN, AN maximizes 

LN[X, A]) whereas I%N - EN o. is negaiive (X cx), 
I 

A(X) maximizes EN[X,A]). 

However, in many, although not all, important situations, a deeper result holds: 

(A-S) {‘fi - LN oo) + @N - EN M)) 4p E o * I I , 

Here +p E denotes convergence both in probability and in expectation. (This seems 
, 

to have been recognized first by Akaike, and first rigorously proved, for the case of 

complete univariate autoregressors in the Gaussian context, by R. Shimizu (1978), 

(1) who discussed only convergence in probability.) Observe that if xt and xi”) are 
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equivalent regressors for which (A-S) holds, then subtracting the two (A-S) 

-Cl) - expression yields the fact that the log-likelihood ratio LN Li2) and the entropy 

difference behave oppositely in the strong sense that 

(E( 1) _ q)} - {q) - jp} + 
N 

0 
P . 

This “opposite” behavior will be seen to enable (EMP) to make correct decisions in 

situations in which superfluous variables are present. (Interestingly, (2.1) also holds 

for an important class of nonstationary regressors for which (A-S) fails, this being 

the class of unstable autoregressions studied by Chan and Wei (1988).) 
* 

2a. Comparing Repressors: To show the power of (EMP) we will now list the 

situations in which most statistical researchers would be willing to make decisions a 

priori about regressors. We are assuming that no special considerations apply, such 

as one regressor’s being significantly more difficult or expensive to obtain than the 

other. We will, at the same time, describe senses in which (EMP) and, to a 

somewhat lesser extent, (MAIC) lead to correct decisions in these situations. These 

are the main results of the paper. The precise hypotheses required for the results 

are given in Findley and Wei (1988). 

First we consider the neutral situation, in which neither regression would be 

preferred over the other. 

(APO). - The processes xi’) and xf2) ilre complete and have the same dimension, 



. 

In this situation, it can be shown that, asymptotically, (EMP) and (MAIC) 

have no preference for one regressor over the other More precisely, there is a ---* 

random variable S with symmetric distribution, Pr{S>o} = P{S<-a} for all ~~20, 

such that 

(2.2) (1/2)DAIC ( ‘12)1 ~( - ~~2) S . 
N 

(1) in particular, large enough a realization the processes xt , 

*Xi2’ , N which is by or is as 

probable one which is (S a form: r. 

the deficiency the matrix the process cl>’ and 

6 a variate is times difference two 

chi-square with degree freedom. S the of 

sum r(l) independent which the of If (1) 

then Findley Wei give to that regressors 

equivalent incomplete, limiting need be 

0) the (APl) (AP3) the process would 

(2) preferred priori xt Note in and the are 

constrained be that the variables one not 

linear of other. in and the are 

required be that the equations only 

(APl). aspmptotic covariance are that 

represent 
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(1) Under (APl), both (MAIC) and (EMP) prefer xt with probabilitv aDDroachinG 

1 s N+oo. This will follow from 

P-3) DAICi1,2) --b --(D & 8p - 8b2) - al 

with Drobabilitv 1. 

(1) * Since (APl) holds, in particular, if xt (2) * is complete and xt is not, this result 

generalizes the well-known fact that, asymptotically, (MAIC) will prefer a fully 

parameterized regression to an underparameterized one, with probability 1. 

(AP2).* Both regressor processes xi’) and xi”) are complete, but r(l) = dim 

xi’) < rc2) - dim xc2) - 
t * 

l 

Under (AP2), it can be shown that 

s + (1/2) Xi(rC2) - r(l)) 

where the right-hand side denotes the distribution of a variate which is the sum of 

two independent components, one having the symmetric distribution of the variate S 

described after (2.2) and the other the distribution of l/2 times a chi-square variate 

with q(r(2) - r(l) ) degrees of freedom. It follows from (2.4) that 
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(2.5) DAICI$1,2)- &St* 2S + - 2q(r 

. 

(1) can be that var(S)=O and only xt is linear transform xi”), in 

case the is a one. Thus, shows that will 

have greater variance with non-nested comparisons than with nested comparisons. 

Since DAICl$ly2) behaves completely differently asymptotically under (API) than 

under (AP2), the sampling properties implied by (2.5) can only be assumed if one is 

certain that (AP2) holds. But in this case, one would want to use a regressor 

(1) process which was a linear transform of both xt and xi2) instead of using these 

processes. For these reasons, (2.5) is not useful for tests of hypotheses. 

R collateral result which is more useful concerns the convergence of the 

expected values under (AP2): 

(2.6) The means E{I,N(2) - i&l)}, (-1/2)E{DAICl&1,2)], and E{I$$‘) - Ek2)} 

alJ converge h (1/2)q(r(2) - r(l)) as N-KKL 

Since rt2) _ r(l) ’ is positive, this shows that (EMP) and (MAIC) prefer the more 

parsimonious model with regressor x (1) 
t , on averape, a N+oI. It also follows from 

(2.6) that DAICN(1,2) is an asvmptoticallv unbiased estimator of minus twice the 

entropy difference. This is Akaike’s famous result, for which a complete proof has 

heretofore been lacking in the stochastic regression context. Findley and Wei (1988) 

present a formula which shows that the mean of EN cI ( ‘) - $Ji2) - DAICi112) tends 

continuously to 0 as the situation changes from (APl) to (AP2); that is, the mean 

will be close to zero if the regressors are almost correct. This stability may help to 

explain (MAIC),s effectiveness. 
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. 

The convergence-in-mean result, (2.6)’ is easy to motivate from (2.4), but quite 

difficult to prove rigorously. The first complete verification is given in Findley and 

Wei (1988) for the case of (subvectors of) Gaussian autoregressive processes. The 

convergence-in-probability or -distribution results discussed above can be shown to 

hold under quite general assumptions which encompass the most familiar classes of 

stationary and nonstationary time series processes. 

Finally, we consider the nested situation, with not necessarily complete 

regressors. Let us define a regressor process zt to be sunerfluous given xt if the 

qrocesses xt and (xi ,z{)’ are equivalent. 

(AP3): (2) The regressor process xt has the form xl’) = (x$l)’ - 

(1) 

zi)/ ,- - where zt is 

superfluous given x t * 

Under (AP3), we will show that 

q(r(‘)-r(l) 

Ii 1 
2 2 

i=l ixl,i 

where the distribution on the right-hand side is that of a sum of q(r C2) _ r(l)) 

independent variates which are positive multiples of a chi-square variate with 1 

degree of freedom. (1) Thus, in this situation, (EMP) prefers xt &l~ probability 

aDDroaching 1 2 N+x,. However, (-1/2)DAICl$1,2) now has an asymptotic 
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distribution whose mean is q(r C2) _ r(l)) _ 
q(r(2)-r(1)) 

C 
i=l 

XT, and it is shown in 

(1) Findley and Wei (1988) that this mean will be positive if xt is close to complete. 

The situation (AP3) is, however, one in which the a priori assumption, that the 

more parsimonious model is better, is not valid in complete generality. By 

considering regressors which cannot reproduce the data mean, violating an assumption 

made concerning (l.l), a counterexample is obtained in section 2c. below. 

. 

2b. More on the distribution of (2.5). The asymptotic distribution of 

-DAIC ( 1,2) described in (2.5) is not a practically useful one, since it assumes that 

both J1) and xi2) have linear transformations which yield correct regressions. It 

does, however, shed some light on how the presence of entries in both regressions 

which are not linear transforms of the other regressor diminishes the probability of 

DAIC’s selecting the more parsimonious model in comparison 10 the situation in 

which XI’) is nested in xi”). If we define r. as before (below (2.2)) and set m = 

q( r(l) -ro) and d = q(r (2)-r(1)), then with xi+d and xi denoting independent 

chi-square variates of degrees m+d and m, respectively, we obtain for (2.5) that 

limNhoo P(DAICN(1,2) < 9) = P(x;+d - Xi < 2d), 

some values for which are tabled below. 
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Table 2.1 

. 

P 
m,d = p(x;+d - Xi < 24 

(From a sample of 50,000 pairs of hi-square pseudorandom deviates) 

d 

m 1 2 6 12 18 . . . 00 . 

0 .84 .86 .94 .98 .99 ’ 1.0 

1 .74 .81 .92 .98 .99 1.0 

2 .68 .76 .91 .97 .99 1.0 

6 .59 .67 .85 .95 .98 1.0 

12 .56 .62 .79 .92 .97 1.0 

18 .55 .60 .75 .89 .96 1.0 

00 .50 .50 .50 .50 .50 

Conjectures: 

P m+l,d < ‘m,d 

P m d < ‘rn d+l , I 
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2c. Related Criteria and Two Counterexamples to Parsimonv: The results 

(2.2) - (2.6) can be shown to similarly support the use of Schwarz’s minimum BIC 

criterion, the Hannan and Quinn HQ criterion and the cross-validation criteria of 

( 1’2) Stoica et al. (1986). (The BIC and HQ statistics have the form of DN below, 

with CN = (l/2) log N, respectively (2 + 6) log log N, for any c>O.) The Schwarz 

and Hannan-Quinn criteria have an additional property not possessed by MAIC of 

preferring the model with fewer parameters, with probability approaching one as 

Ntoo, when two equivalent but not complete regressors are being compared. 

-(l> _ 
w Indeed, the fact that, in this situation, LN Li2) is bounded in probability 

means that any criterion of the form 

I 

D ( 'p2) 
N 

= -2{jp - th2)} + 2cN{q(r Cl) _ rC2)))' 
. 

with C N+oo will have the property that 

P(Da112) < 0) + 1 , 

leading to a consistent preference for the more parsimonious regressor. This propertv 

is not alwaps desirable, as the following two examples show. 

Counterexamnle to No. 1. To begin generally, suppose that a covariance stationary 

time Series with mean 0, whose autocovariance sequence Pk = EytytBk and 

autocorrelation sequence pk = Pk/Po are absolutely summable. Consider the 

regressors xi’) = ytW2 and xi’) = [yt 1 yt 3]t. - - The associated idealized regressions 

satisfying (1.2) are 
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Yt = Ah1)ytw2 + ei’) , Model 1 

with A(l) = p2, and 

with 

. 

. 
and 

yt =Ai2)yt-1 + Ah2)ytq3 + ei2) 

42) = '1 - p2p3 
2 

l-P2 

Aa2) = p3 - p2Af2) . 

If, as we assume hereafter, 

Model 2 

(2.8) 

(2.9) 

Pl = P2 = P3 = 0 (2.10) 

then A.$‘) = Ai21 = Ah2) = 0, SO that the regressors x (1) 
t and xi”) are eauivalent 

given yt. 

Consider the situation wherein the regressions estimated for yl,...,yN are used 

to estimate (predict) y+, from an independent replicate (realization) f, of the yt 

process. The prediction errors are 



. 

and 

(2.11) 

(2.12) 

Let k denote the expectation operator for the f, process. Since the terms on the 

right hand side of (2.11) and (2.12) are mutually I%uncorrelated, because of (2.11) 

pnd the independence of the yt and yt processes, the mean square prediction errors 

are given by 

Efi( e(l))2 = r. + E(Wp3)2ro ’ 
t 2 

and 

Efi( ei2))2 = r. + E(Ai2])2ro + E(AA2J)2ro . 
I I 

We will demonstrate a Gaussian process yt satisfying (2.10) and also 

E(Ai2])2 + E(AN,3) L (2) 2 -UP 
I 

< E(AN12) (2.13) 

for N sufficiently large, from which it follows that model 2, with two sunerfluous 

parameters, has smaller mean sauare prediction error than the more parsimonious ---- 

The result (7.16) of Findley and Wei (1986) combined with (VI.3.12) of model 1. 

Hannan (1970) shows that NE(A6’);)2 converges to the asymptotic variance of the 

limiting distribution of N 1/2Ajjl, ’ This variance can be obtained from the central 
9 
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Limit Theorem of (6) or by observing that the asymptotic distribution is that of the 

sample autocorrelation at lag k (cf. (2.8) and (2.9))’ so that Bartlett’s formula, given 

as (47) on p. 488 of Anderson (1971)’ applies: 

limNjw NEN(A~ik)2 = ~ (p? + pj+kpj_k) I j=e J (2.14) 

To generate a variety of autocorrelation sequences, it is simplest to specify partial 

autocorrelations #kk and obtain the autocorrelations from the Yule-Walker equations 

* and the Levinson-Durbin algorithm. The condition (2.10) is equivalent to $11 = 

922 =, 933 = 0, and the sign changes needed in the pj+kpj_k terms of (2.14) to 

obtain (2.13) are obtained by mixing the signs and magnitudes of @,, k>3 

. appropriately. Armed with this strategy, my associate Marian Pugh found, for 

example, that $44 = #55 = .3, $66 = -.6, $kk = 0, k_>7, yields NE(AI$la) h 4.38, 

NE( Ai2{) i 2.04 and NE(Al$ZS) t 
> 

.6 from which (2.13) follows. 
I 9 

( 1’2) In contrast to the behavior of BIC and other statistics of the form DN 

(2) above, Akaike’s Entropy Maximization Principle prefers the regressor x+, , on 

average, as N-roe, in the following sense: if we denote the asymptotic variance 

(2.14) by V(k), then it follows from formula (3.4) of Findley (1985) that, under 

(2wl 

hNjw E@) - Ek2)) = (l/2) (V(1) + V(3) - V(2)) , 

which is negative for our example. Also, using (2.1) and the limiting distribution 

given below for DAICl&1,2), one can show that P(E&2)-El&1) > 0) converges to 0.56. 

Since 
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limN+co E(DAICN ( 112)) = V( 1) + V(3) - V(2) - 2 

(1) is negative, Akaike’s minimum AIC criterion prefers the less successful regressor xt , 

on average, as N+oo. The limiting distribution of DAIC is (-2) + a linear 

combination of three independent $ variates, 

C-2) + (4.37)~; 1 + (2.48)~;,~ + (0.15)~; 3 . I I 

. 

.(The coefficients are the eigenvalues of the matrix CA T diag(l,-l,l)CA, where CAC: 

is the Cholesky factorization of the asymptotic covariance matrix of AN 1, ^ (2) A(l) N 2, 

I$$“$ A s ( 1’2) (2) ’ ’ 
I 

a consequence, DAICN is positive, and prefers xt , with 

large-sample probability 0.2. To this limited extent, MAIC outperforms 

Dl$‘12)-based criteria. 

Counterexamnle No. 2. We now present a second, more elementary, example, 

describing an incorrect, superfluous, fixed regressor which offers improved predictive 

performance over the model which omits it. 

Suppose that for some C> 1, 

Yt = 2ca,t -112 + e 
4 = 1,2,... 

where et - IID(O,cz), and consider the fitting of a constant mean to N observations 

Yp- (1) lyNl using Xt ~1, so that AN = N-%7=1 y+,. Since A N-0 (w.P.~), this 

regressor is superfluous. However, if y,,...,fN denote an independent replicate, it is 

easy to check that 
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1imNjw{Efit$&-A,)2 N -2 
- ~t~lyt) = 0;(1 - C2) ) 

- 

a negative quantity. (1) Hence the regressor process xt has predictive value over the 

(0) null regressor xt E 0, when N is sufficiently large. 

We now determine the preferences of the various model selection criteria. Set 

ir;=N -l N x,,1 t-N (y fi )2, ii; N = N-1E~=ly;, iLo) = LN[hO N’O], ii&‘) = 

LN[‘N,b,l and define I$$‘) and l$&l) analogously. Let xl($) denote a &i-square 

variate with 1 d.f. and non-centrality parameter C2. Observing that 

‘N1j2(b / ) . N a, ddist N(C,l), it is straightforward to verify that 

-2{1~” - ~~l))‘dist. x2( C2) ’ 
. 

Thus , from our previous discussion, the statistics Dl$‘,l) will have a consistent 

preference for the more parsimonious model (with x(O)) 
.t * 

On the other hand, 

DAIC~“‘l)-dist. x~(C2) - 2 , 

which has positive mean C2- 1, as does the limiting distribution of twice the entropy 

difference, 

2($~l) - ~~‘))_dist c2 - xl . 

Thus, in an average sense, MAIC and EMP prefer the regressor having more 

(1) predictive power, xt . Also, by choosing C sufficiently large, the probability of 

this choice can be made arbitrarily close to 1. 
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Since the distributions XT - C2 and xT(C2) are different, this example reveals, 

too, that results like (2.1) and (2.7) depend on the assumption implicit in the 

conditions imposed on (1.1) that the mean of yt can be obtained as a linear function 

of the components of xt. 

2d. Additional Discussion. The result (2.1) shows that (-1/2)DAICl&1,2) is not a 

consistent estimator of 8&l) - 8k2) under (AP2). Indeed, the fact that, 

0 - asymptotically, LN iA21 has the same sign as EN A ( ‘) - l?i2) for regressors 

-associated with different entropies, but the opposite sign for equivalent regressors, 

suggests that an estimator of EN * t 1) _ q) cannot be found which will be consistent 

in hots situations. 

. 
Regressors being compared in applications are likely to be neither complete nor 

equivalent, but might come close enough to having these properties that, for the 

given sample size N, EN o. - E&2; (1) d oes not dominate the behaviors of 

)$$l) - $JA2) and j&2) 1 Ll&l), and, also, that the means of {iN 

{L(2) - LA2&} and {Ei’L - 8i1)} - {EA2$, - EA2)} 

(1) -$L} - 
2 

(l/t)q(r(‘) y r(2) 

are close to 

). For this situation, an alte,rnative approach to DAIC suggests 

itself which reveals a possible direction for further research. Consider the problem of 

finding a constant C such that 

qy - $y) - c 

QN= -(I) -(2) 

EN - EN 

is positive as often as possible. (Then we can use the sign of the numerator to 

estimate the sign of the denominator.) We can rewrite QN in the form 
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QN = 1 - I~~/(I!&.~) - I$$.~)), 

with 

From the discussion after (LD) and (ED), the dominant term in 6N is 

{Lil$, - Ek’;} - {LA2L - El@} 
7 I > 

. 

= (-l/2){trI$1)-1(t~,e~1)et’).) 
- 

- trX(2)-‘(t~,ej2)e~2)‘)j, 

which has order N1i2 and mean zero. One strategy might be to choose C(=CN) in 

such a way that E&N G 1, but determining the required expression for such a C 

seems very difficult. A simpler, related strategy is to choose C so that E6N i 0, 

which is accomplished for our situation by Akaike’s choice C = q(r tl) _ rt2)). 

(since the sign of l$$l) - Ei2) is unknown, we do not have a preferred sign for 

6N.) Thus, from this perspective, Akaike’s criterion seems more intelligible than 

those of Schwarz or Hannan and Quinn. Deeper analyses might support other 

strategies. Their appeal would depend on the simplicity and stability of the resulting 

formulas for C. 

2e. CornDaring Both Regressors and Error Covariance Structures: As we shall 

illustrate in section 3, there are situations in which the models being compared differ 
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. 

not only in the choice of regressors but also according to whether or not a 

simplifying block-diagonal structure is assumed for the error covariance matrix, 

which reduces the number of error covariances estimated. The discussion of (APl) 

and (2.3) is not affected by such model differences. Also, if the form of (2.8) is 

correct (but not necessarily assumed), so that estimates of error covariances in the 

off-diagonal blocks are superfluous, and if the regressand and regressor processes are 

j&@ Gaussian, then the rest of the discussion about a priori conditions and their 
* 

consequences generalizes in an obvious way: a model with smaller total number of 

estimated parameters (coefficients, error covariances) is preferred, and the magnitude 

of the difference of the number of parameters estimated replaces the quantity q(r (2) _ 

r(l)). F or U-Gaussian error processes, the same results hold provided the 

fourth+umulant terms associated with the assumed-zero entries of E(x) are zero, see 

(3.4) below. 

We will now illustrate the kinds of comparisons discussed above -with some 

analyses related to modeling for the design of a statistical autopilot for a ship. 

3. Ship AutoDilot Modeling: Amerika Maru Data 

3a. Regressor Selection: In Kitagawa and Ohtsu (1976) and Ohtsu et al. 

(1979) and the papers referenced there, the design and testing of a 

stochastic-regression-model-based ship autopilot is described. The success of this 

experiment influenced the design of a new ship (Shoii Maru III) incorporating such 
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an autopilot (personal communication from K. Ohtsu). The principle variable to be 

controlled is yaw (Y), the angular deviation of the ship’s forward movement from the 

intended direction, measured at the bridge. Other less important but useful variables 

to control include roll (R) and pitch (P). The rudder angle (RU) is the main 

controller input variable, but measured values of the lateral acceleration (YACC) and 

vertical acceleration (ZACC) of the forepeak may also provide useful information for 

the controller/autopilot. 

Our first analysis will seek to determine the situations in which ZACC is a 

useful controller input variable for a specific ship: we consider the problem of 

(4 choosing between the regressors xt and %i”), these being defined by 
* 

. . . Y t-m Rt-m ‘t-m RUt_mYACCt-m) ’ 

and 

‘f”) = (~(~1’ ZACC t t-1 .a. ZACC t-M)’ 

for l<m,M<lO. The modeling will be done with N=894 observations made at 1 

second intervals on the container ship Amerika Maru under manual control. These 

data are discussed in the papers cited above. The bias-adjusted maximized log 

likelihood value 
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Ladj 
N = LN[BN, AN] - dimA 

. 

adj is used to define AIC = (-2)LN . If rii and k denote the lags associated with 

(4 minimum AIC values for the regressors xt ,l<m<lO and %i”) , l<M<lO, - - 

respectively, and 

use of ZACC in 

adj 
if L, and igdj denote the corresponding values of LN adj, then the 

the control model seems worth considering seriously only when 

DAICN = (-2){$dj - q-y%) 

is negttive. Results obtained from the program MULCON of Akaike et al. (1985) 

for seven choices of the regressand yt are included in Table 3.1 below. The choices 

for yt are: Yt, Rt, Pt, (Yt RJ/, (Yt P,),, (Rt Pt)’ and (Yt Rt PJ’. In the 

table, LAG denotes k or m, as appropriate, and 

AdimA = q(6ti - 5m) , 

with q = dim y. The results are consistent: the use of ZACC is favored only when 

P is one of the controlled variables. This conclusion has engineering plausibilitv: 

ZACC is closely related to P but not to the other controlled variables. Thus, MAIC 

has functioned quite satisfactorily. (Note also that in two cases, yt = Yt and yt = 

Pt, the comparison is between non-nested regressors.) 

3b. Couoled Models versus Uncoupled Models: Now we consider another kind 

of model comparison which sometimes plays a role in regressor selection in control 

problems. It is a useful if a noncontrolled variable such as ZACC has the property 
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that its innovations (or noise) process is uncorrelated with the innovations processes 

of the controlled variables. This facilitates the interpretation of the cross-spectrum 

diagnostics of Otomo et al. (1972) and seems empirically to be associated with some 

robustness of a model-based controller against the changes which occur in the joint 

stochastic properties of the measured variables when the controller is implemented. 

Let yt consist of the i noncontrolled variables whose innovations are under 

investigation and let Xt denote the &dimensional regressor selected for modeling yt. 

We thus have a pair of models, 

. 

yt 
= Ax, + et 

Yt = A Xt + et 

Table 3.1. DAIC Values. 

Without ZACC With ZACC 

y LAG dimA 

WJ’ 
Y,R 
YIP 
W’ 

Y 
R 

ZAC: 
Y,R,P ,ZACC 

i 108 72 

8’ 84 96 
4 24 

5 
; 

i4 
18 

6 144 

A1C894 

18683. 
12244. 
12468. 
13033. 

6027. 
6574. 
6477. 
7858. 

26552. 

LAG dimA 

6 90 
6 60 

i!i iTi8 
E 30 

8 ii: 
- 
- 

A1C894 

18693. 
12236. 
12483. 
13036. 

6025. 
6569. 
6491. 

- . 
- 

AdimA 

18 
12 
14 

2 
5 
2 

DA1C894 

-10. 
8. 

-15. 
-3. 

2. 
5. 

-14. 
- 
- 
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and we wish to know if they are uncoupled, meaning that 

. 

c- -‘=o 
ee = Eetet P-2) 

holds. By defining entries of the associated coefficient matrix appropriately, (3.1) 

could be rewritten in a single equation as a regression of (y; y;)’ on a combined 

regressor, xt Vxt, which encompasses the contributions of xt and xt. Under (3.2), the 

covariance matrix of (et et)’ is block-diagonal, 

x 0 cov(e&) = o i: , 
i I 

where g denotes a model covariance matrix for et. As a consequence, the log 

likelihood function for the data (yt it)/, xtV$, t=l,...,N has the decomposition 

L&%A,~] = LN[C,A]+LN[Z,A] . (3.3) 

Since the results of the previous section apply to the log-likelihood functions on the 

right hand side of (3.3), analogous results hold for LN[X,Z,A,A] and its expected 

value. Under a condition to be discussed ((3.4) below), the maximum likelihood 

model associated with (3.3) can be compared to that obtained from the regression of 

(yt y,)’ on some regressor process ft (which might differ from x,V$), whose 

associated error covariance matrix is not constrained, and therefore has qq additional 

covariances to be estimated. Let Lidj, Lidj and Lidj denote the adjusted 

maximum likelihood values obtained from the least squares regressions of 

(yt i$‘> yt and Y,, respectively, on their selected regressors. Let EN, EN and EN 

denote the corresponding entropy values. Consider the estimator 
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DAICN = -2(c;dj - Lkdj - cidj - s4) 

of -2( EN-E~-EN). Under (3.2), ~IKJ the assumption that the cross-fourth- cumulant 

terms vanish, 

(3.4) E(X$j2ejt)2(&/2ekt)2 -l=O 

. 

the appropriate versions of formulas (1.8) and (2.5), which are the results discussed 

in sub;ection 2c, show that DAICN is a bias-corrected estimator of -2(+E&). 

Thus, if DAICN is positive, the uncoupled models (3.1) are preferred: We will 

consider two examples, assuming (3.4) holds for both comparisons in order to 

facilitate the discussion. (Estimators of the left-hand side of (3.4) are highly 

variable, so this is a more difficult condition to analyze than (3.2)!). 

In the Amerika Maru analysis for M=6, the regression residuals of ZACCt and 

Pt had the smallest sample correlations with the other residuals. The calculated 

values are given in Table 3.2. 

Table 3.2. 

Sample Correlations of Regression Residuals. 

Residual Y R P 

ZACC 0.08 0.02 -0.01 

P 0.21 0.18 1.00 
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The analysis of the validity of (3.2) for yt = (Yt R+, Pt)’ and ft = ZACCt is 

the appropriate one for our earlier discussion. We obtain from Table 3.1 that 

DA1C894 = 26552.-18683.-7858. + 6. = 5.0 , 

favoring (3.2). To demonstrate a contrasting result, we examine yt = (y, Rt)’ and 

jst = Pt. From Table 3.1 again, 

. DA1C894 = 18683.-12244.-6477. + 4. = -34.0 , 

rejectin’g (3.2). 

. 
A traditional statistical test of (3.2) would involve (assuming (3.4) and) forcing 

the comparison to be a nested one by considering only a single regressor, so that 

gt=xt=xt (violated in both of our examples and in the example of Kitagawa and 

Ohtsu (1976)). Then the values of 

with E defined by 

would be compared to a preselected critical value of a x$ distribution. The use of 

AIC offers more flexibility. 
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. 

Other control applications of MFPEC/MAIC are described in Nakamura et al. 

(1986) and Otomo et al. (1972). Many more are not publicly documented for 

company confidentiality reasons. Mr. Kazutsuro Toki of System Soogoo Kaihatsu 

kindly informed the author in response to a query that his company has been 

involved in more than 60 commercial implementations based on the statistical 

methodology described in these papers. The University of Tulsa has distributed more 

than 700 copies of the TIMSAC software package. 
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