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Abstract 

In this paper we propose a recursive method for forecasting 

populations and calculating the uncertainty in the estimate. In 

a recent survey paper Land (1986) discusses three widely used 

classes of methods for national population forecasts. They are 

demographic accounting equations, statistical time series, and 

structural modeling methods. This paper combines the first two 

of these techniques. An advantage of the time series approach is 

that forecast variances can be derived. 
* 

In this paper we assume that time series methods have been 

use&to model and to forecast fertility, survival, and migration 

rates. Either univariate (Box and Jenkins, 1970) or multivariate 

(Tiao and Box, 1981) autoregressiic-integrated-moving average 

(ARIMA) time series models could tx employed. 

Assuming that means and vari.tnces have been calculated for 

future values of the fertility, mortality, and migration series 

this paper shows how to use the accounting equations to calculate 

the mean and the variance of future populations. 
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1. Introduction 

We assume that data are available for n years (labelled 

i=l,2,. .,n) and d+l age categories (labelled j=O,l,..,d) for both 

sexes (labelled s = f (female) or s = m (male)). We follow the 

demographic convention of using sex as a subscript before the 

variable and age and category as standard subscripts. The 

notation for the raw data is given in Table 1. 

w Table 1: Definitions of the Yearly Statistical Data 

svmbol number with sex=s, catezorv=-i, neriod=i 
* 

syij population 

sbij births 

sdij deaths 

s"ij emigrants 

swij immigrants 
. 

The problem of interest is to use the data to forecast 

future values of population. In the notation of Table 1 we wish 

to forecast 
syn+k,j for k=l,2,...,L, j=O,...,d and s=f and m, 

where L is the forecast horizon. 

We assume that the data are collected at equally spaced 

intervals. We choose the category length to be the time between 

collections. For definiteness we will assume 1 year intervals. 

The jth age category is defined to include all people who were j 
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years old at the beginning of the period. 

Most of the time series modelling of annual demographic data 

has focused on fertility and/or births (see, e.g., Land, 1986, 

Section 3.2). The use of univariate Box and Jenkins' analysis 

for modelling fertility rates goes back, at least, to Lee (1974). 

Lee models an aggregate of the different fertility rates and 

concludes that the series is not stationary. Then he derives 

confidence limits for future forecasts. Since the confidence 

limits grow so quickly, he rejects the model! A statistician 

. might draw quite different conclusions from this analysis. 

Demographers have long stratified populations by age and 

sex-(and frequently race). Sample survey research has shown 

that stratification is beneficial in estimation if populations 

with consistently different behavior on the quantity of interest 

can be identified (e.g.,Cochran (1963, Chapter 5)). The same 

principle applies to forecasting populations. 

The classical demographic approach for forecasting the total 

number of births in a population is to represent it as the sum 

over mutually exclusive exhaustive categories (i.e., strata), 

which are formed using the mother's age. The number of births in 

each age category are then forecast and summed to give an 

aggregate forecast. Of course, the number of births in the 

individual age categories may be of interest in their own right. 

The forecast in each age category can be made in several 

ways. We will discuss the following two methods: 
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(i) time series approach: model and forecast the births in a 

category using data on the number of births in the category for 

previous time periods. 

(ii).demographic approach: forecast both the number of women and 

the birth rate in the category. The product of these two gives 

the forecast for the number of births in the category. 

The change in the number of women in a cohort may be obtained 

using the accounting identities 

population change = immigrants - (deaths + emigrants). 

. The time series forecast is based solely on information 

obtained from cohorts other than one to be forecasted. The 

dem;graphic approach uses information on previous cohorts to 

forecast the birth rate, but uses information on the cohort in 

question to forecast the number of women. Since the death rate 

is low for women of child bearing ages, the number of women in a 

category can be predicted quite accurately. The time series 

forecasts of the number of births may be slow to respond to the 

changes, which are solely caused by changes in the distribution 

of women in the child bearing years ( and not by fertility 

changes). We will follow the demographer's approach, but we 

assume that time series methods have been used to forecast birth 

rates in the strata. 

These two approaches were contrasted in McDonald (1981), 

which was concerned with forecasting the number of (first) births 

to Australian women. He developed a transfer function model 
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using economic leading indicators, but the variables had little 

predictive capability. McDonald's approach was criticized by Lee 

(1981) and Long (1981) for failure to use any of the ideas of the 

demographic approach such as the accounting equations, birth 

rates, and stratification. 

Keyfitz (1977, p.24) has studied empirically whether 

stratification is useful in forecasting populations. Although 

there is some gain, he concludes that "...we should not be under 

the illusion that projection by age and sex is a powerful 

. technique for discerning the future." 

Probably the most important single variable to forecast is 

theTotal population, which is the sum of the components of the 

population distribution. Cohen (1986) gave an approach to this 

problem, which is valid asymptotically under weak assumptions. 

In population forecasting the horizon may be longer than the time 

series so it is unclear whether asymptotic techniques are 

relevant. 

The accounting equations can be used with both projections 

and forecasts to produce future population distributions. In 

projection, future values are assumed for fertility, mortality, 

and migration. In forecasting, the future values of the three 

rates are predicted based on previous data. 

Currently, the U. S. Census Bureau projects high, medium, 

and low values for each of the three rate (see, e.g., Spencer and 

Long, 1983). These projections are based on birth expectations 
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from current surveys as well as information from historical data. 

The high and low values are not claimed to be percentiles of a 

probability distribution. 

Long (1987) studied the accuracy of the last 40 years of 

Census Bureau projections. Over this period a naive method (use 

the current value to forecast the future) has performed as well 

as the Census Bureau's projections. This time period may have 

been unique in its large fertility variation since it included 

both the "baby boom" and the "baby bust." 

. In forecasting, the future rates would be selected 

automatically and objectively. For the method to be successful 

the *process that generated the past must continue into the 

future. 

We will assume that forecasts are made for mortality and 

fertility rates rather than deaths and births. The denominators 

of these rates are based on population, which is determined at a 

fixed time during the year, while the other statistics in Table 1 

involve the whole year. Thus, the population of several 

categories and/or times must be combined to provide a valid rate 

estimate. 

In this paper the problem of interest is to forecast the 

future probability distribution of population and to determine 

the variances of these forecasts. Forecasting of fertility, 

mortality, and migration rates is viewed as an intermediate step. 

Future population depends only on the present population and 
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future survival, fertility, and migration rates. Thus, future 

population predictions can be based on forecasts of these rates. 

Also, the prediction variance in these rates can be used to 

determine the prediction variance for the future population. 

A new approach to forecasting fertility rates, which 

incorporates the joint behavior of all ages through time, was 

introduced by Bozik and Bell (1987). Their approach is to reduce 

the fertility rates to a lower dimensional vector and to forecast 

this vector using multivariate ARIMA model techniques. These 

-forecasts are then converted to forecasts for the fertility rates 

and the estimated variances are calculated. In this approach 

only-data on the rate in question (e.g.,fertility) is used in 

modelling and forecasting. This simplifies the analysis 

considerably and is optimal under reasonable assumptions, which 

are given in Section 4. 

An important problem is to determine interval estimates for 

future values (called prediction intervals here). Of course, if 

the distribution of future values can be approximated by the 

Gaussian distribution, the prediction intervals can be obtained 

from the mean and the variance. It is not clear that the 

Gaussian approximation will be very good in this case. 

Empirical work indicates that the fertility series is 

non-stationary. Bozik and Bell determine that the first 

difference of the logarithm of the fertility series is 

stationary. If this series is Gaussian, the predictive 
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distribution of future values is the lognormal.distribution. 

In order to determine the predictive distribution of 

population, it is necessary to model the mortality, fertility, 

amd migration series. Since the recursive equations for 

population involve products of the components, it may be 

impossible to determine the predictive distribution of population 

analytically. The distribution could be approximated by 

simulating the component series and using the accounting 

equations to calculate future population values. Quantiles of 

w the simulated distribution can be used as prediction intervals. 

The current population distribution can be used as a starting 

valti?e for the recursion. 

In Section 2 we give a model for the fertility and mortality 

rates. In Section 3 we state the demographic accounting 

equations for one data collection system. In Section 4 we state 

our assumptions about the forecasts of fertility, mortality, and 

migration, and in Section 5 we provide the recursive formulae for 

propogation of the mean and the variance of future values of the 

population. These values can be used to obtain an approximate 

predictive distribution and also can be used to check the moments 

obtained by simulation. In Section 6 an alternative method for 

updating the mean and the variance is given using the extended 

Kalman filter (e.g., Ljung and Soderstrom, 1983, Section 2.2.3). 

Also, the assumptions and the algorithm of the extended Kalman 

filter are compared with those of Section 5. 
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2. Estimation of Rates 

For three of the components (fertility, mortality, and 

emigration) we will assume that models and forecasts have been 

developed for the rates (rather than the events). Following the 

traditional demographic notation we will estimate each rate by 

rate = events/exposure (1) 

The events are assumed to be broken down by age, sex, and time 

interval as in Table I. Exposure is the number of person-years 

-lived in that category during that time period. It is not a 

measured quantity, so it must be estimated. 

'Willekens (1985) defines four data collection plans and 

points out that the plan impacts the estimation of rates. We 

will assume a period-cohort collection plan. Analogous results 

can be obtained using other plans. 

We will make the simplifying assumption that births, deaths, 

immigration, and emigration happen uniformly throughout the year. 

For the period-cohort collection system this allows the exposure 

sLij to be estimated by 

L s ij = (SYij + sYi-l,j-l)/2 (2) 
Estimates of fertility, mortality, and emigration rates can 

be obtained from (l), (2), and Table 1. The influence on 

national population of emigration and death are the same so they 

may be combined. Thus, we define fertility rates srij and 

mortality rates smij (which includes emigration) by 
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srij = sbij/fLij 

and 

smij = (sdij + s"ij)/sLij 

(3) 

(4) * 

The rates defined in (3) and (4) are essentially estimates 

of probabilities (if multiple births in a year are ignored). For 

example, srij is an estimate of spij which is the probability a 

woman in class (i,j) gives birth to a child with sex=s. For a 

woman, who is in class (i,j) for a fraction A of the year, we 

. assume the probability that a child of sex=s is born in that 

portion of the year is p..A. There are 2fLij women in class 
S 1J 

(i,j') for some portion of the year. 

Using this notation the numerator of srij can be represented 

2fLij 
b 
s ij =kzl Bernoulli(A k spij) (5) 

where Ak is the random fraction of the year that the kth woman is 

in class (i,j). From previous assumptions the random variables 

{xk} are a sample from a distribution uniformly distributed 

between 0 and I. Thus, the mean and variance of Ak are 0.5 and 

l/l2 respectively. If we also assume independence, then from (5) 

E(sbij) = fLij SPij 

and 

(6) 

(7) 

It follows from (6) and (7) that srij is an unbiased estimate of 

spij with 
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A similar definition can be made for the survival probabilities 

and the same method can be used to demonstrate that the ratio 

estimates are unbiased. 

Since (8) is small, we can use srij as a surrogate for spij' 

The simplest model for spij is that it is constant over time (for 

each j). Due to changes in the role of women in American society 

this will not be the case, but the changes should be gradual. 

This gradual change may be captured in some ARIMA model. 

. The standard (e.g., Box and Jenkins, (1970)) ARIMA model 

formulation assumes a constant variance for the series. Because 

of (8) we know that this is false, but small deviations from 

constant variance may not cause problems. 

The number of live births ( b.. = 
T ‘J 

fbij+ mbij) may not be 

broken down by sex - rather the total may be reported. Previous 

demographic studies have shown that the ratio of male to female 

births is approximately constant ;1cross age groups, time, and 

cultures; and the value of this ratio is g = 1.05. Thus, if only 

the total births are given, the male and female rates can be 

estimated by mrij = Trij g/(g+l) and frij =Trij/(g+l), where T'ij 

is the overall fertility rate ignoring the sex. 
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3. The Accounting Eauations 

By specializing Willeken and Drewes' results (1984) to the 

case of no internal migration, the demographic accounting 

equations can be stated 

yi = Xi yi-l + Fi wi (9) 

where yT 
= (fYF,,YT) 9 ET = (f~~>,~~) 2 with sYT = (gYi0 - - l ,sYid) 

and swF = 
9 

( g"iO9"'9g"id ). Equation (9) is formally identical to 

the state equation of the Kalman filter (1960), but as in many 

. social science problems the matrices are unknown. Thus, the 

Kalman updating equations cannot be used without some 

modfiication. 

Now we state the equations which are used to determine Xi and 

F . . 
1 

The equations are most easily stated in three categories: 

newborns (j=O), open-ended category (j=d), and middle categories 

(l<j<d-1). 

Categories (l<i<d-1) 
. 

All people in category j were either in category j-l in the 

previous period or immigrated during the period. The basic 

recursive equation can be stated 

SYij = s'ij syi-l,j-1 + sfij s"ij (10) 

where 
s'ij and f.. 

s 13 
are both functions of the mortality rate. In 

fact, sSij = (l- smij/2)/(l+smij/2) and sfij = (l+sSij)/2. By a 

Taylor expansion we have that 

9% = l- smij + O(sm~j > 
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Ignoring the remainder term in (11) we see that 
s'ij can be 

interpreted as a survival probability. Since the immigrants are 

only present for half a year on the average, their survival 

function is larger than the natives. 

Cateqorv 0 

All survivors in this category were born either to natives 

or to immigrants. In either case three things must occur 

simultaneously 

(i) the woman must survive until the birth 

-(ii) the woman must give birth to a child of a specified sex 

(iii) the baby must survive the rest of the year 

For dative women the probabilities of the three events are ff.. 
1J' 

srij9 and sfiO respectively. We define 
sqij as the product of 

these three probabilities 

sqij = f f ij srij sfiO (12) 

which measures the frequency of surviving infants arising from 

native women in category j. A similar expression is valid for 

frequency of infants arising from immigrants with a multiplier of 

0.5 to reflect their random entry into the country. The number 

of survivors in category 0 can be written as a sum over the 

categories of women 

syiO =C . sqij (fY. i-1,j + f"ij PI 
J 

(13) 

Category d 

The open ended category is the only one for which people can 

remain in the same category in successive years. Using similar 
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arguments to the middle categories the basic equation can be 

shown to be 

.sYid = ii (9 
j=d-l s ij s'i-1,j + f.. 

s 1~ s"ij > 

Equations (lo)-(14) determine the matrices Xi and F. 

1 

1 

fG OT 
x. = 
1 

fs. 0 
1 

F. = 
1 

* 

f&2 oT 
F fi 0 

OT - msp2 
F. mi I 

where qT 
T 

= (fc&,s& and igi 
2 

= (gqi0,g9il,..,s9id),a"d the 

d x d+l dimensional matrices s’i and sFi are given by 

(14) 

In fact, 

(15) 

(16) 

s. = 
91 

s'il 0 0 0 

0 
ss12 0 0 

. . . . 

. . . . 
0 0 

s'i,d-1 s'id 

In the sequel it will be useful to have the representation 

sfil 0 

sFi = 0 
sf12 

. . 

0 0 

0 0 

0 0 

. . 

. . 

sfi,d-1 sfid 

(17) 

(18) 
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XT i = XT&) = XT i 

FT i 

= (kli a . .kDi) (19) 

where r*=(r-,si) with r. 
-1 -1 -1 

=( fXi,mXi) and sZi=(srio,sril,- "grid 7 > 

and a similar definition for s, where D=2(d+l). Also we define 

ZT = (ET-l,WT) 
so that (9) can be stated 

yi = Kigi (21) - 

Equation (9) shows that yn+k can be calculated if y, and 

!n+l,...'%+k are known where ei = (ri,Si,"i). The use of s 
-i 

- rather than mi or f. 
-1 

is somewhat arbitrary since the three are 

related by l-l transformations. 
a Since Xi and Fi are nonlinear 

functions of m -i7 it will prove convenient to use one of the other 

two vectors. The survival model could be obtained by combining 

models for emigration and mortality. 

After models are obtained for the three components of (8,)' 

simulation can be used to approximate the distribution of y,+k' 

One can generate M independent replicates of {&n+l,...,dn+k} and 

calculate G+k using (9) for each replicate. The empirical 

distribution of these M replicates should be close to the 

(unknown) distribution of G+k' 
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4. Comnonent Forecasts 

In this section we will assume that forecast means and 

variances are available for the next L values of the components 

of Ji. The notation is given in Table 2 where 8 (n)=(81’82’ * * ,&J 

and similar definitions are made for g cn>, ,cn>, wcn) and yen> 7 . 

Table 2: Notation for Forecasts 

auantitv (l<i<L) Mean Variance Data Used 

fertility: %+i %+i c 
S+i 

p) 

-survival: %+i s -n+i c 
%+i 

@) 

immigration: wn+i ii -n+i c 
%+i 

"(4 

population: ~+i %+i c 
x 

yw 
n+i 

We forecast future values using data Q (4 = (y(n) e(n)> '- 

available at time n. If we assume a square error loss function, 

the optimal forecast of a parameter is its conditional 

expectation given D (4 . Thus, for example, the optimal forecast 

of r -n+i is E(Xn+ilD (4 )* Table 2 shows that the forecast of m+i 

has been obtained from G+i = E(G+ilr @I). Th' is assumption 

eliminates complicated modelling of joint multivariate time 

series and is valid under the following two assumptions 

(Al) dn+i and ~(~+~-l) are conditionally independent given & (4 

for all izl for all n. 

(A2) The three component series of 8(") are independent. - 
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Under these assumptions we have, for example, 

E(G+i IQ(")) 

(Al) w 
= E(G+i[J(")) = E(r * I~(~))=m+i (22) 

-n+i 

where the assumptions used to establish the equality have been 

shown. If i!J -n+i = E(Bn+;ID(")) - th en a similar argument 

establishes 

3 -n+i = ( r s w -n+i'-n+i'-n+i > (23) 

Also, we define Kn+i = E(Kn+ilIJ(n)) then by (19) and (23) this 

can be shown to be K(~+i). This equality would not be valid if 

"i replaced si as a component in Bi. 
. 

Now we give a brief discussion of the assumptions. We have 

assuged that the three components of Bn were independent in (A2). 

While fertility and mortality should be roughly independent, they 

have a small correlation with immigration. Since immigration 

influences the composition of the population, it could influence 

future fertility and mortality rates. Whether the immigration 

data is sufficiently accurate to model and to exploit this 

relationship is not clear. 

Obviously, {y,) and (8,) are dependent. In fact, yn+k can 

be calculated exactly from yn and {&n+l,...k+k}. We expect that 

future values of (4) should be dependent on previous values. 

Assumption (Al) says that knowledge of future values of the 

population will not make future rates any more predictability 

than they would be using only the previous rates. 

All the series of Table 2 are necessarily positive. An 

approach which utilizes this fact should produce better forecasts 
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as it will not forecast negative values even in the distant 

future. Although the Box-Cox (1964) family of transformations 

could be employed, we will use the log transformation for each of 

the components. 

The component series are then modelled and forecast using 

standard (e.g., ARIMA model) techniques. The resulting mean and 

covariance matrix are appropriate for the transformed data. If 

the transformed data are approximately Gaussian, the following 

result can be used to obtain the moments of the untransformed 

- series. If y=log(x_) - 
T 

N(,u,C) where fi = 

then 
* 

E(xi) = eXp(j4i + uii/2) (24) 

Var(xi) = E2(xi)(exp(~ii)-1) (25) 

cov(xi,xj) = eXP(Uij) (26) 

Equations (24)-(26) can be applied to find the moments of T-n+i, 

for example, with k = E(~+iJr (4 ) and C=Cov(<+il~ cn)) where 
* 

%n = log(r-J. 
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5. Mean and Variance Pronanation 

In this section we obtain recursive forecasts for G+i and 

c 
if n+i 

using the forecasts of the three components in Table 2. 

The following lemma is useful in the derivation of the recursion. 

Lemma 1: Kn+i and s+i are independent given D(n). - 

We use p as a generic symbol for a density or distribution, where 

the argument of p defines the random variable. From (Al) with 

'i=l we can show that 

P(8n+iID(")7~+17...7Yn+i_1) = P(' *I'(")) (27) 

It fillows from (27) that 

-n+i - 

and 

P(@n+iID("),Yn+i-1) = P($+i(8(")) (28) 

P(Wn+ilD(n)7Yn+i-l) = P(!n+ijd(")) 

Thus, by (28)' (29)' and (A2) we have 

(29) 

P(G+ilG+i,- I+)) = 
P(&+ilXn+i-~‘- D(")) P(!niiIg(n)) 

P(Wn+ilD("),Zn+i-1) = p(Un+i I?(“)) 

= P(Zn+il'(")) - (30) 

Equation (30) shows that zn+i and Zn+i are independent given 

DC"). Since K n+i is a function Of 7 
-n+i' it is also independent 

Of Zn+i given D("), - which completes the proof of the lemma. 

The recursion for the mean update is given by the following 

corollary. 
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Corollary: Y, +i 
= Xn+iG+i-l + Fn+iwn+i = Kn+iZn+i for i>l 

with G = yn 

Proof: Applying Lemma 1 we have that 

%+i = E(K n+i~+il~(n)) = E(Kn+iID(n))E(~+iJD(n)) = K .z n+i-n+i 

where 'n+i = K(7+i). 

The next lemma will be used to calculate the recursive form of 

the covariance update. 

-Lemma 2: Let KT = (klc.. .kD) be independent of z with z = E(z), 

Cov(z) = Cz, K = E(K), and Suv = Cov(Q,k) for l<u,v<D then 
- 

a 
Cov(Kz) = KIIzKT + K (31) 

- 

where H = E(K-K)l?(K-K)T = (huv) with huv=Tr(I'Suv), and l?=ET+Xz. 
- 

Proof: By the independence assumption E(Kg)=KZ. Also, the two 

summands in the decomposition Kg-Kg = K(gG)+(K-K)Z are 

uncorrelated and have covariance matrices KCzKT+H1 and H2 

respectively with Hl=(Tr(ZzSuV)) and H2=(iTSuvE). Since H=Hl+H2, 

this completes the proof. 

Now we give a recursive method to calculate the covariance 

matrix of the forecast. By Lemma 1 Kn+i is independent of G+i 

given D(n). - Thus, with C 
%+i 

=diag(C 
z 

7x 
Wn+i) f 

rom Lemma 2 we 
n+i-1 

have that 

c 
YL 

=K .C KT .+H 
n+i n+l %+i n+l 

n+i (32) 
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where 

H n+i'E(Kn+i-Kn+i)rn+i(K K .)T=(h n+i- n+r uv n+i)'(Tr(rn+iSuv n+i)) 

with rn+i = Cz - -T 
7 

_n,i+%+i%+i and S 
uv,n+i = Cov(~ n+i,lL, ~+iln(n)). 

7 7 

From (15)' (16)' and (19) the DxD dimensional matrix Kn+i is 

given by 

K n+i = 

. 

fd OT 

S fi 0 
f&2 oT 
F fi 0 

fg: OT OT 

0 s 
,9T12 

mi 0 F. mi 

(33) 

where D=2(d+l) and Kn+i is calculated by replacing 7n+i with 7n+i 

in (33). Now we sketch the calculation of Suv n+i for l<u,v<D. 
7 

For all rows of Kn+i except the first and the (d+2)nd the 

maximum number of non-zero elements is 2 ,and the elements are 

linear functions of 
sfn+i,j' Thus, covariances of the elements 

of any two pairs of these D-2 rous can be obtained easily from 

'f n+ i * 
Because the two complicated rows (1 and d+2) involve 

products of elements of fn+i, it is convenient to use it rather 

than G+i. Their covariance matrices are related by 

Cfn+i='~n+i'4. 

The elements of rows 1 and d+2 are products of elements of 

%+i' Since sq,+i j involves a product 
7 ffn+i,j ffn+i,07 

var(fqn+i,j ) will in general involve mixed moments of order four. 

The mixed moments of order three or more are all 0 for the 

multivariate Gaussian distribution, which we assume in the sequel 
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for the distribution of the mortality rates. We will use the 

following well known results on quadratic forms (e.g., Searle, 

1971, Chap. 2) to derive Lemma 3. If 1~ _ N(y,C), 

(a) E (zTPr> = Tr(PC) + kTPy 

(b) Var(zTPx) = 2 Tr(PQ2 + 4kTPCP14 

T 
(c) Cov(xTPlx,zTP2s) = 2 Tr(PlCP2C) + 4,~ PlCP2k 

Using an obvious notation the following are obtained from (a)-(c) 

E(x x.) = 
OJ pOpj + uOj (34) 

2 
Var(XoXj) = ~00+2~~j+fl~j+~~fljj2~O/Xj~Oj+~~~OO (35) 

. 
cov(xoxj ,xoxk)=2(~ Oj uOk+"OOujk)+P~uj j+PO(Pk"Ok+Pj uOk)+pj&"()O 

(36) 

Equa;ions (34)-(36) are used in the derivation of Lemma 3. The 

lemma is stated for females, but a similar one can be obtained 

for males. 

Lemma 3. Under the assumption of normality of fn+i we have . 

Var(fqn+i, j =(lrj j > (,(rOj)+TO~j)2+(r~+u(rjj))var(ffn+i 0 ffn+i j) 7 7 

with Var(ff n+i,O ffn+i,j 
+Tguf +2f r.u +r?u 

jj 0 J fOj J fOO 

Cov(fqn+i,k7fqn+i,j 
0 j 

> (~k~OfufOk)+(urjk+rj'k) 

[2(Of Uf +Uf 
j0 k0 

Uf 
00 jk 

)+rzbf +fO(‘kgf “j~fOk)+‘jTkuf 1 
jk 0 j 00 

Proof: Since we state the results for females, it is possible to 

suppress the sex variable. We do this in places to simplify the 

notation. Using the standard conditioning argument 
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Var(fqn+i,j )=E(Var(fqn+i,j Ifrn+i j))+Var(E(f9n+i j lfrn+i j>> 7 7 7 
It follows from (34) that 

0 ffn+i j) 7 

So Var(fqn +i,J frn+i,j =gr ' 1 > jjfOfJ Oj 
( r r.+uf )2 

A1so7 Var(fqn+i j Ifrn+i j)‘frz+i jvar(ffn+i j ffn+i 0) so the 

variance assertion is obtained b; applying ;35). 
, 

Similarly for 

the covariance we have 

'Ov(fqn+i,j fqn+i,k )=Cov(E( r .I r 
f n+i,J f n+i,J *) pE(fqn+i kIfrn+i k)) . 

+E(Cov(fqn +i,j,f%+i,k)lfrn+i,j'fm+i,k)= ' ' 

a 'Ov(frn+i j (ffj 7 f'O+"f 
0 j 

) 'frn+i k(f'k f'O+"fOk))+ 7 

E(p n+i,j frn+i,k COV(ff n+i,j f n+i,07ffn+i, f 
ffn+i,O)) * 

Since COV(fr,+i j ,frn+i k)=ur. 7 E(fr,+i j frn+i k)=O -* 7 7 
Jk 7 7 rjk 

+frJ f’k 

the covariance assertion follows. 
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6. Extended Kalman Filter 

In this section we give an approximate solution to the 

forecasting problem using the extended Kalman filter (EKF). In 

this approach the non-linear system (9) is linearized using a 

first order Taylor expansion. The Kalman filter algorithm can be 

applied to the resulting equations. The approach is simpler and 

the assumptions are weaker than that of Section 5, but the means 

and variances are only approximations. 

. As in Section 4 we assume that independent multivariate 

models have been developed for the three components of 4. Also, 

we a'ssume that each component model can be represented in state 

space form. This will be the case if ABIMA models are developed 

for the components (e.g., Akaike, 1974). 

Let Gk denote the state variable representation for the kth 

component of en for k=l,2,3 so that 

r 
ynl 

e -n = [ S -n -n W -n I[ = 0 0 10.. 0.. o...ol .01 .01 0 0 10.. 0.. 0.. .oio .oh 40 o...o o...o o...o 1 [ 1 In2 = By, (37) 

%3 

The state equation for 

(38) %+l = A% + WG+~ 

where A=diag(A17A2,A3), W=diag(W1,W2,W3), ~,'=(~~~,~~2,~~3), and 

{s} are independent and identical N(Q,C) random errors with 

C=diag(Xl,Z2,E3). It is clear from (37) and (38) that the 

components of dn are independent (e.g., (A2) of Section 4)). 
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6.1 Linearization of the Pooulation Eauations 

In order to apply the Kalman algorithm it is necessary to 

linearize (9). We expand these in a first order Taylor series in 

&=(qBl ,&) about ii&=<i& ,&J. These equations can be written 

%=K& + 'n C&-i&> (39) 

where 

and 

'n = ('n 'n> (40) 

. D n = D(f,> = CDnr Dng Fn> = (&CKnEn) 
-n 

kCKnZn) Fn> C4') 

where Fn is given by (16). Equation (39) can be written 
a 

JGl= -D; i& + Gn 4, (42) 

where 

(44) 

= Co ‘nr ‘ng O> (43) 
The matrices D ir and Dig are determined in an obvious 

fashion and are given by equations (44)-(52) 

T 
fai GT 

D. ir = 0 0 

OT T 
mai 

0 0 

where a?=( 
s-1 gai07gQi17"'7gaid ) with 

saij=sfiO ffij f*ij 

and 

sxij = syi-l,j-1 + swiji2 

(45) 

(46) 
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D. = 
1s 

with 

gXi = 

I fS fXi 

sxil 0 0 0 

0 9x12 0 0 

. . 
0 0 

. . 

. . 
s*i,d-1 sXid 

and * 

T 

where 

s7ij=sfi0 srij f*ij 

and 

LT = (0.5 ffiO ~ 0 mrij fXij 7 7. . .o) 

(47) 

(48) 

6.2 Recursions for ForecastinK Usinn the EKF 

Combining (38) and (42) the equations for the extended 

Kalman filter can be written 

4 n+l= o 
[ 

0 Is 
nr o ins z] [ :-l]i[ zn in]4n+[ i]Cn+l (53) 

which can be stated in matrix form as 
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4l +1 = 4; G + iRn 4 + w* G+l (54) 
A recursion for the forecast mean and covariance follows easily 

from (54). In fact, 

%I +i+l = ('n+i-'Z+i)k+i 
and 

c~n+i+l = Rn+i'~n+iRZ+i+w*'~n+i+lw 
*T 

(55) 

(56) 

Comparison of (55) and (56) with the results of Section 5 

indicates that 

(i) the updating formula for G+i using the EKF coincides with 

. the procedure of Section 5. 

(ii) the updating formula for X 
z 

using the EKF does not 
a n+i 

coincide with procedure of Section 5. 

(iii) Cov(~+i-l,~n+i)7 which is computed from (56)' will not in . 

general be 0. This shows that assumption (Al) is not required 

using the EKF. 

Now we briefly discuss the starting values for the recursion 

(4 using data D . Some of the components of I,,...,@, will be 

missing (e.g., I,+~). A useful approximation to the best 

starting values for the recursions, which are obtained using the 

EKF algorithm, may be obtained using 

Zn= and 0 0 

0 WX WT I (57) 
e -n+l 
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