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I. INTRODUCTION 

For most survey questionnaire forms (especially those administered by an 

interviewer) questions are not asked in a strictly linear fashion. For 

example, if the response to some question is "YES", the interview will follow 

it with a question different from that were the response "NO". If the 

questions on a survey form are numbered sequentially, Ql, Q2,...,QN, then one 

fully completed response form might look Ql-Q5-Q7-Q12-Q50 and another might 

look like Ql-Q8-Q12-Q39-Q50 where N=5D. The remaining questions in each case 

are not missing in the usual sense of missing data, but were not asked and are 

"not applicable" based on the responses provided at an earlier stage and on 

the underlying structure of the questionnaire. These diverse patterns of 

response and interrogation are frequently referred to as skip patterns. 

*A natural mathematical structure for the analysis of skip patterns and 

underlying structure of questionnaires is the directed graph. In this paper, 

we will exploit the graph theoretic structure inherent in questionnaires in 

order to adjust for missing data: that is, we attempt to recognize questions 

that should have been answered but were left blank and based on the pattern of 

responses, differentiate them from non-applicable questions. 

In Section II, we introduce basic definitions and terminology of graph 

theory, establish results that will be needed in the later sections when 

applying graph theoretic analysis to questionnaire forms, and provide 

examples. In Section III, we show how a questionnaire can be viewed as a 

graph and examine its properties from this perspective. In the remaining 

sections, we show how this structure can be employed to impute for missing 

data, analyze skip patterns, and edit questionnaires. In Section IV, we 

describe two computer programs that implement the techniques developed in the 

earlier section, and Section V is a summary. In Appendix I and Appendix II we 

provide samples of output from the computer program based on examples 

discussed in this report. 
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11. OIRECTED GRAPHS 

A. Basic Definitions and Examples 

A (directed) graph is a pair G = (N,A) where N is a finite set, call the 

set of nodes, and A is a set of ordered pairs of nodes whose elements are 

called arcs. A typical arc, A, is written as d = (ni, nj) where ni and nj are 

in N. We say that 5 is an arc from node ni to node nj and that ni and nj are 

the endpoints of & 

Example 1: 

In this graph, the node set is N = {mi: i=l,...,ll) and the 

is {b -j: j=l,..., 15). Note that kg= (m,, mg) and also note 

an arc but (me , "3) is not an arc. 

arc set 

that (m3, mg) is 
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A chain (of length r) is a sequence of arcs and nodes; 

"ki' %I nk29 %29 nk3"*.'%r' nkr+l ; such that the endpoints of 3 are 
i 

nki and nk for i=l,...,r. 
i+l 

In Example 1, the sequence: ml, b2, 

m3, k6 , me, \I0 , mg is a chain. We will at times refer to this chain as a 

set of nodes: { ml, m3, m6, mg 1 or as a set of arcs: {b2, _b6, !I01 

depending upon the context. The node nk (resp., arc a+ ) is called the 
1 1 

initial node (resp., initial arc) of the chain and the node nk (rw. s r+l 

arc a + ) is called the terminal node (resp., arc). In the chain above, ml is 
r 

the initial node and mg is the terminal node, and ~~ is the initial arc 

* and b 
-10 

is the terminal arc. 

cha;n 

A path is a chain in which all nodes are distinct, and the example of a 

above is also a path. A graph in which every chain is a path is called 

acyclic, (that is, the graph contains no cycles). A path properly contained 

in no other path is called a maximal path. That is, m3, m6 mg is a path which 

is not maximal yet ml, m3, m6, mg, ml1 is a maximal path. We end with one 

crucial assumption: for all graphs to be considered here, there exists a 

unique node ns and a unique node nt such that every maximal path has ns as 

initial point and nt as terminal point. In terms of Example 1, ml is our 

unique initial point , and mII is our unique terminal point. These points will 

be called, respectively, a source and a sink, and throughout this report, we 

will deal exclusively with acyclic directed graphs with a source and sink, see 

[2]. For the purposes of this report, we will call the source our initial 

point and the sink our terminal point. 

If ni and nj are nodes (resp., 3 and ~j are arcs) of a graph, and if 

there exists a path with initial node ni (resp., arc 3) and terminal node nj 

(rev., arc Aj)9 we say we have a path from ni to nj (resp., a~ to 3). If we 

have a path from ni to nj (resp. 3 to ~j) we say that ni preceeds nj (resp. 

3 preceeds A-) and that nj succeeds ni. If there is an arc from ni to nj, we 

say that ni is an immediate predecessor to nj and that nj is an immediate 

successor to ni. 
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Definitions: Let G = (N, A) be a graph and let n&N, then 

(a) the (node) cover of n, denoted by CN (n), is the set of imnediate -- 
successors to n, 

(b) the lower (node) ideal of n, denoted by LN (n), is the set of --- 

successors to n along with the node n itself, 

(c) the upper (node) ideal of n, denoted by UN (n), is the set of -- 

predecessors of n along with the node n itself, 

. (d) the (node) ideal of n, denoted by BN (n), is the union of LN (n) and -- 

'N tn)- 

I 

Definition: Let G = (N,A) be a graph and let a, E A, then 

(a) the (arc) cover of A, denoted by CA(a) is the set of immediate 

successors to A, 

(b) the lower (arc) ideal of A, denoted by LA(&), is the set of --- 
successors to &along with the arc aitself, 

(c) the upper (arc) ideal of A, denoted by VA(L), is the set of 

predecessors of aalong with the arc a-itself, 

(d) the (arc) ideal of A, denoted by BA(k), is the union of LA(A) and 

uA (a> l 

Notation: When G = (N,A) is a graph, we will denote the cardinality of N by N 

and the cardinality of A by A. 

Example 2: Referring to the graph of Example 1, we have 

cN(m7) = {m1o' mll) 

LN(m7) = fm7$ mlo9 mll) 



(1 if there is an arc from node ni to node nj 
c,(i,j) = 1 if i=j 

I 0 otherwise. 

Thus, for the graph is Example 1, CN is: 

1 1 1 1 

1 1 

1 1 1 

1 1 

1 

1 

1 

1 

1 

1 

1 1 

1 1 

1 1 

1 1 

1 
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UN(m7) = iml’ m4’ “7) 

BNh7) = tm 1 s mq3 m7, mlO, ml11 

cA(b,g) = 014’ 

LA(b_g) = {b_g’ b-14’ 

. BAbg) = i$ b2s b,49 k59 kg, !14)* 

B. * Representing Graphs by Matrices 

If G = (N,A) is a graph, we can represent G by a matrix, cN, often called 

the (node) incidence matrix. This matrix is square, the rows and columns are 

both indexed by N, and 
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For an arbitrary node, n, the cover of n, G,(n) corresponds to the positive 

positions in row n of (cN -1) where I is the NxN identity matrix. We can also 

define an (arc) incidence matrix of G, cA , as the square matrix whose rows and 

columns are indexed by the arcs of G. We define 

I 
1 if the terminal node of arc a. 

is the initial node of arc a? 
c,(i,j) = 1 i=j -J 

0 otherwise. 

For the graph in Example 1, we obtain the following arc incidence matrix 

below. As with the node incidence matrix the cover of arc acorresponds to 

the positive elements in row aof (CA- ) I where I is the AxA identity matrix. 
w 



. 
L
Y
 

A
U
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If G = (N,A) is a graph, we can also represent G by a matrix, bN, often 

called the (node) ideal matrix. The matrix is square, both rows and columns 

are indexed by N, and 

I 
1 if node ni preceeds node ni 

J bN(i ,j) = 
I 

1 i=j 

0 otherwise. 

Thus, for the graph in Example 1, bN is: 

. ml 

“2 
I 

m3 

m4 

m5 

m6 

m7 

m8 

m9 

m10 

ml1 

ml m2 m3 m4 m5 m6 "7 m8 m9 

11 1111111 

1 1 1 

1 1 1 1 

1 11 

1 

1 

1 

1 

1 

1 

1 

ml0 

1 

1 

1 

1 

1 

ml1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

For an arbitrary node, n, the lower ideal, LN(n) corresponds to the positive 

positions in row n and the upper ideal, UN(n) corresponds to the positive 

entries in column n. 

We can also define an (arc) ideal matrix, bA, which iS aTSO an upper 

triangular square matrix whose rows and columns are indexed by the arcs of 

G. We define 

I 

1 if arc a+ proceeds arc a. 
3 

bA(i ,j) = 1 if i=j 

0 otherwise. 
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For the graph in Example 1, we obtain the arc ideal matrix below. As with the 

node matrix for an arc d, the lower arc ideal corresponds to the positive 

entries in row a -' and the upper arc ideal corresponds to the positive entries 

in column a -' 



. 

I-
- 
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Remark: Starting with the cover matrix, cl,,, one can easily derive the ideal 

matrix, bN. If we let C be the NxN matrix: 

C(i,j) = 
1 if Ci[i,j) > 1 

0 otherwise , 

it is not hard to show that bN W 

is the Nth power of cl,,. 

= C, where N is the number of nodes and c N 

One can, however, introduce a number of programming simplifications. If 

we let D(1) = cN, and 

D(k+l)(i9j) = 

1 if (cND(k))(id > 1 

o otherwise 
, 

for k=l ,...,N-1, one observes that bN = D(N). Thus, we reduce the problem of 

finding bN to one of multiplying two zero-one matrices. Note further that if 

we had let k above range from 1 to M where M N, then D(N) = D(W+I). 

Accordingly, we could have defined E(k) to be a family of NxN zero-one 

matrices where E(I) = cl,, and 

E(k+l)(i9j) = 

1 if (E(k)E(k))(isj) ) 1 

0 otherwise. 

If k ) log2N, then bN = E(k). Thus we need only form E(k+I) for k between 1 

and K where K is the smallest integer greater than or equal to log2 N. For 

example, if there were 1000 questions on a questionnaire, we would only have 

to perform 10 multiplications. More typically, if a questionnaire has only 64 

questions, we would have to perform only 6 multiplications. Of course, since 

we are only dealing with zero-one matrices considerable reductions can be 

realized through bit minipulation and other simplifications. The point is 

that by merely entering the cover matrix , one very easily can obtain the node 

ideal matrix, bN. Similar observations apply to the arc cover and ideal 

matrices. 
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Remark: It can be conceptually convenient to think of the (node) bi- -- 
ideal matrix, J N, of a graph G. The matrix, JN, is a square matrix, both rows 

and columns are indexed by N, and 

J&W = 
1 if bN(i,j) = 1 or bN(j,i) = 1 

0 otherwise. 

Note that JN is a symmetric matrix and that node i is in the ideal of node j 

if and only if, JN(i,j) # 0. 

. If og is a finite set of zero-one vectors (that is, each component 
’ ie1 

iS a zero or one) and 3 = (viI,vi2,***,viN), We Can de f ine the 

pro%Jct II I$ to be the zero-one vector 2 = (uI,...,uN) 
ie1 

all j=l,...,N. If ri denotes the ith row of the node bi 

then the non-zero elements in the vector ri correspond t 

where u.= n v.. for 
J ie1 lJ 

-ideal matrix, JN, 

o nodes in the ideal 

of node ni. If IniliE* is a set of nodes, then the non-zero coordinates 

of II rn 
is1 i 

corresponds to nodes in a of the ideals BN(ni) for ie1 . That 

is, if {nil is an arbitrary set of nodes, 
ie1 

then R BN (ni) corresponds to 
ic1 

coordinates equal to one in each of the rows r, . Identical considerations 
i 

apply in finding the intersection of a set of arc ideals as well as upper and 

lower ideals. 

c. Further Definitions Needed for Skip Patterns 

Definition: Let G = (N,A) be a graph, M N, and S A, we say that S is a 

consistent set of arcs if 2 e BA(b-) for all a,,k E S. We say that M is a 

consistent set of nodes if m E BN(n) for all m, n L M. A set of arcs or nodes 

that is not consistent is called inconsistent. 
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Example 3: Referring to the graph of Example 1, the set of arcs 

is not consistent, but the set 

S = I3 9 b5 9 59’ bl4) 

is consistent. 

If S is a consistent subset of arcs, one can order the elements of 

S = {ziI = i=l,..., n) such that 3 proceeds %+1 for i=l,...,n-1. For any 

- k=l ,...,n-1, if the terminal point of 3 is different from the initial point 

of &+l there exists a chain of arcs %,...,L 
k 

such that the initial point of 

L1 equals the terminal point of ok, and the terminal point of t 
-"k 

equals the 

initial point of Jk+l. Thus, every consistent set of arcs can be embedded in 

a chain C. If either the source or sink of G is not in C, we can form a chain 

from the source to il and a chain from s+, to the sink thus embedding the 

original consistent set of arcs in a maximal chain. Thus we have shown the 

following. 

Proposition 1: Let G = (N,A) be a graph and S C A. The set S is consistent 

if and only if there exists at least one maximal chain containing S. 

Definition: If G = (N,A) is a graph and SC A, define 

B(S) = n BAb)* 
SES - 

Example 4: Referring to Example 1, let 
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Remark: The set B(S) need not be consistent even if S is consistent as can be 

seen from Example 4. 

Proposition 2: Let G = (N,A) be a graph and S C A. 

(i) B(S) consists of all arcs a E A such that {c, s) is consistent for 

all 2 E s. 

(ii) If S is consistent, the B(S) consists of all arcs ; E A such 

that {a) U S is consistent. 

(iii) If S is consistent, then for 5 E B(S) there exists a maximal chain 
. 

containing {a) V S. 

fiv) The set S is consistent if and only if S C B(S). Accordingly, every 

maximal chain containing S is contained in B(S). 

Proof: 

U > 

(ii) 

If a E B(S), then d E BA($ for all s E S, SO {i, S) is 

consistent. If {a_, 21 is consistent for all S, E S , then a E BA(f) - 
for all 2 E s SOLE B(S). 

Follows from (i). 

(iii) Follows from (ii) and Proposition 1. 

(iv) If S is consistent, and t E S, then {t_, 2) is consistent for all 

2 E S, so t E B(S) by (i). If SC B(S) and s,, t, E S, then {i, t} is 

consistent since ; E B(S) , hence t, E BA(s) . The last assertion 

follows from (i). 

Proposition 3: Let G = (N,A) be a graph and S A be a consistent set of 

arcs. The set B(S) is consistent if and only if B(S) is a maximal chain. In 

this case, B(S) is the unique maximal chain containing S. 
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Proof: Assume B(S) is consistent and let C be a maximal chain containing 

B(S). Since S is consistent, S CB(S) and so S C C. Hence, C CB(S) by \ 

Proposition 2 (iv), thus C = B(S). Going the other direction, we need only 

note that every chain is consistent. 

Lemma 1: Let G = (N,A) be a graph and E C F C A. 

(i) B(F)C B(E). 

(ii) If F is consistent, then E is consistent and F C B(E). 

Proof: 

. 
(i) B(F) = n BA(f) c n BA(e) = B(E) . 

faF ec.E 
* 

The containment holds since the index of the second intersection is a 

subset of the index of the first 

(ii) It is clear that E is consistent. Thus E C B(E) (Proposition 2, 

(iv)) and F C B(F) by (i) above. 

Proposition 4: Let G = (N,A) be a graph and SC A. Then 

(i> S C W(S)), 

(ii) B(S) = WWW)) s 

(iii) if S is consistent, then B(B(S)) C B(S). 

Proof: 

(i) 9 E B(B(S)) if {t_, CJ} is consistent for all t E B(S) . But, 

ifsES, then (2, t,} is consistent for all ! E B(S) . Thus 

2 E-B(B(S)) and so S C B(B(S)). 

(ii) By (i) and the Lemma, B(B(B(S))) CB(S). Since TC B(B(T)) for all 

subsets T CA, letting T = B(S), we have by (i) B(S) C B(B(B(S))). 

The result follows. 
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(iii) Since S is consistent, S C B(S), so B (B(S)) C: B(S) by the Lemma. 

Proposition 5: Let G = (N,A) be a graph and S CA. The set S is consistent 

if and only if B(B(S)) is consistent. 

Proof: If B(B(S)) is consistent, then according to Lemma 1 and Proposition 4, 

S is consistent since S C B(B(S)). If S is consistent, then B(B(S)) c B(S) 

by Proposition 4. Let b,I, b2 E B(B(S)). Since blE B(S) and 

k2c W(S)), I$ b21 is consistent. That is, B(B(S)) is consistent. 

Proposition 6: Let G = (N,A) be a graph, S CA a consistent set of arcs, and 

C* the family of all maximal chains containing S. Then 

*(i) u +C = B(S), 
CEC 

(ii) 
cc* 

C = B(B(S)) . 

Proof: 

(i) Follows from Proposition 2, parts (iii) and (iv). 

(ii) Let c E Cf. By repeated applications of Lemma 1, we have B(B(S))C 

B(W)). Since C is a maximal chain, by Proposition 2, we have C = 

B(C) = B (B(C)); that is, 

W(S))C n * C . 
CEC 

Let 4 E 9 ,$, and let b E B(S) be arbitrary. There exists a chain containing 
CEC 

band S, so {b) U S is consistent. Thus, there exists a chain CI E C* such 

that {b) U S Ccl. But c E Cl and hence {b, 51 is consistent. Since 

b E B(S) was arbitrary, c c B(B(S)); hence 

n *C CWW) . 
CEC 
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Corollary: Let G = (N,A) be a graph and let S CA be a consistent set of 

arcs. Then B(B(S)) consists of those arcs that must be in every maximal chain 

containing S. 

Definition: Let G = (N,A) be a graph and SC A. Define P(S) to be the set of 

nodes occuring either as an initial or terminal point of some arc in S. 

Proposition 7: 

Then P(S) is a 

with every node in P(S). 

Let G = (N,A) be a graph and SC A a consistent set of arcs. 

consistent set of nodes and every node in P(B(S)) is consistent 

Proof: Clear. 
. 

Example 5: Referring to Example 1, let 
* 

S = ib2, 341. 

Then P(S) = imls m3, mgs ml11 

and P(B(S)) = {ml S m3S m5S m6S mgS m11) l 

Definition: Let G = (N,A) be a graph and SC A be a consistent set of arcs. 

We say that WEN is a waist point of G if every maximal chain in G contains 

w. We say that WREN is a waist point of S if every maximal chain containing S 

also contains ws. We denote the waist points of G by W(G) and the waist 

points of S by W(S). 

Remark: Looking ahead to the graph drawn in Figure 2 (page 26), the only 

waist nodes (other than the source and sink) are node ml1 and m13. 

Lemma 2: Let G = (N,A) be a graph and let C be a maximal chain in G. 

Denoting the points of C by P(C), then 

n p(l&)) = �tc) l 

ZEC 
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Proof: Let PEP(C) and let t = (p,q) E C. Then (_s,t) is consistent for 

all 2 E c , so 4 E IA(z) for all s E C , so t E n P(IA(s)) , hence 
sE:c - 

n ‘tl&)) 3pP(c)* 
SEC 

To go the other way, assume p E N, pkP(C). After relabeling, represent the 

chain C by the sequence of nodes and arcs: nl, ~~~ n2, ~,...,~-l, nk, where 

Ai = (ni s "i+l) for i=l,..,k-1. Note that both CnUN(p) and CnL,,,(p) are non- 

empty. Let 

a = Max(i (niECnuN(p)) 

. 

8 = Min {iIniECflLN(p)l. 

SinTe G is an acyclic directed graph, a < 6 and we consider the arc 

a =(n n 
-a a' 

a+l). We will show that p t P(IA(ia)) by writing 

‘( lAba)) = UN(na)u LN(na+l 1’ 

If p were in UN(na), then na E LN(p), which is impossible since 

a<8 = Min{i lniEC n LN(p)). 

If p were in L,,,(na+I), then na+I E UN(p), which is impossible since 

a+l>a = Max{i Ini& n U,(p)) . 

ThUS, p b P( IA , SO p k n P( I&)) 0 Hence n p( IA(:) c p(c)* 

SEC SEC 

Theorem 1: Let G = (N,A) be a graph and let C* be the family of maximal 

cnains in G. Then 

W(G) = n, p(c) = n p(IA(g). 
CEC SEA 

Proof: The first equality is the aetinition of W(G), so we need only show the 

second. 
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. 

Let p 6 n * 

least one max 161 F 

P(C), and let 2 E A be arbitrary. Since IA(s) contains at - 
chain, CI, p E P(C1) C P(IA(s_)), and since rwas arbitrary, 

n* CEC 
p(c)’ n p(l&))* 

SEA 

Let p 8 n P(IA(s)) and let CI be an arbitrary maximal chain. Then 
SEA - 

n ‘(IA(:)) c n p(IAb)) = ‘tcl) 
SEA zEcl - 

by Lemma 2. Since Cl was arbitrary. 

n p(lAb)) c n * p(c) 
SEA - CEC 

and ihe result is proven. 

Lemma 3: Let G = (N,A) be a graph, SC A a consistent subset of arcs, and C a 

maximal chain containing S. Then 

n [P(lA(r))n p(w)] = n p(lA(s_))* 
SEC ZEC 

Proof: Note first that 

n [p(lA((s) n W(S))1 = WWh n p(lA(:)) . 
SEC SEC 

But 

WW) n c n p(I,q(~_))l = n p(I&)) 
SEC ZEC 

since 

n p(lA(:)) = P(C) C P(B(S)) 
ZEC 

by Proposition 2(iv). 

Theorem 2: If G = (N,A) is an acyclic directed graph with a source and sink 

and S CA is a consistent set of arcs, then P(S) C P(B(S)) and 
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Gs = (P(B(S)), B(S)) is an acyclic directed graph with source and sink which 

is a subgraph of G = (N,A). Furthermore, G and Gs have the same source and 

sink. The node incidence matrix of Gs is the node matrix of G with rows and 

columns deleted corresponding to nodes not in P(B(S)). The same applies to 

the arc incidence matrix. The waist points of Gs correspond to the waist 

points of S. 

Theorem 3: Let G = (N,A) be a graph, S C A a consistent subset of arcs, and 

C* the family of maximal chains containing S. Then 

w(s) = n * P(c) = n 
CEC S_&S) 

p(l&))* 

Proof: By observing that CC B(S) for all Ccc* , this theorem then can be 

proved in a manner similar to the proof of Theorem 2. An alternate approach 

is To appeal to Theorem 2 and view this result as a corollary. 

Remark: It is 

to find all the 

considering all 

columns of the 

heorem 3 that provides a computationally efficient procedure 

waist points of a consistent set of arcs, S. Instead of 

maximal chains containing S, one needs only consider rows and 

deal matrix bA of G corresponding to elements of S. 

Remark: The results in Theorems 1 and 3 and some of the preceeding discussion 

might suggest that if S is a consistent set of arcs then 

n p(l&)) 
+(S) . 

is equal to 

pm 

S_sB( s> 

$,(~)I l 

This is not the case however as has been seen from the following example. Let 

G be represented by the graph: 



* 

Let the 

and 

consistent set S = {a_,), so B(S) = A, the full arc set. Then 

n P 
_SEB( s> 

(IA(:)) = inlS "2' "5) 

P( n 
q~B(s) 

IA( = (�1� �2) l 

Remark: Let G = (N,A) be a graph and let SC A be a consistent set of arcs. 

We can think of B(S) as the saturation of S and 

as the localization of G at S. There is a one-one, onto correspondence 

between the maximal chains of G containing S (hence contained in B(S)) and the 

maximal chains in Gs. In particular, if S is a maximal consistent set of 

arcs, then GS consists of a single (maximal) chain. 

Remark: If G = (N,A) is an acyclic directed graph with source and sink, we 

can induce a partial ordering on the arcs of G. We say that for a, b 8 A, - - 
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g G b, if a, E LA(k). 

Viewed this way, a set of arcs S C A is consistent if and only if all elements 

of S are comparable under the partial ordering. Furthermore, each element of 

B(S) is comparable with every element of S and every subset of A all of whose 

elements are comparable with S are contained in B(S). 

Remark: It is quite easy to determine if SC B(S) by examing zero-one 

vectors; and hence, whether a set of arcs is consistent. In addition, given a 

set of arcs, S, one can easily find P(S), P(B(S)), B(B(S)) as well as all 

other constructs needed for the skip pattern analysis by using the rows and 

columns of the ideal matrix manipulating zero-one vectors. . 

III. 6RAPHS AND QUESTIONNAIRES 
* 

A. Deriving a Graph from a Questionnaire 

In most survey questionnaire forms, questions are not answered in a strictly 

linear fashion. That is, based on the response to a question, if the 

respondent answered one way he/she would be asked one subsequent question yet 

if he/she responded differently the respondent would be asked a different 

following question. 

Example 6: (Taken from Wave I Questionnaire from the Survey of Income and 

Program Participation): 

Question 3a. Responses 

Were there any weeks in the - Yes (Skip to 3c) 

4-month period when . . . wanted a job? - No (Skip to 9a) 

The rules guiding the sequence of questions asked based on responses furnished 

is often referred to as a skip pattern. In the analysis of a questionnaire 

both for purposes of design and subsequent data analysis, the underlying skip 

pattern plays a major role. In this report, we will show how the analysis of 

a questionnaire skip pattern can be used in the area of edit and imputation. 
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Our first objective is to show how a questionnaire can be represented as 

an acyclic (directed) graph with source and sink. For each question on a 

questionnaire we associate a node in an associated graph, that is, 

if {Qi} i=l,..., n is the set of questions, we have a set of nodes, 

INi) i=l,..., n where question Qi corresponds to node Ni. If some response to 

question Qt allows a set of questions (Qs}SES to be asked next, we set up the 

arc from node Nt to each node {NSlsCS. We identify each possible response to 

question Qt with an arc from node Nt. In order to make this correspondence 

complete, we must introduce one "dummy question" on the questionnaire. This 

dummy question will require no response, - and it is viewed as following all 

otherwise final questions on the questionnaire. That is, if any question has, 

. in fact, no follow-up on the questionnaire itself and would terminate an 

interview, we act as if after asking a terminal question we "skip" to the 

dump question. By adding this dummy question, we have a map from the set of 

questionnaires to the set of acyclic directed graphs having a source and sink, 

where for each questionnaire, questions correspond to nodes and response 

choices correspond to arcs. The first and last questions correspond to the 

source and sink (initial and terminal node) of the graph. We will have 

exactly one more node on the graph than questions on the questionnaire (due to 

the dummy question corresponding to the terminal node). 

For each question there may be several responses that require the same 

"next" question to be asked. When this occurs, we treat each of these 

responses as being equivalent and recode them to so indicate. Thus, in the 

map from questionnaires to graphs as described above each equivalence class of 

responses corresponds to a single arc and questions correspond to nodes. 

Example 7: (Taken from Wave I Questionnaire from the Survey of Income and 

Program Participation) 

Question Rll Responses 

What is . ..'s martial status? -- Married (Skip to 17) 

-- Widowed (Skip to 19a) 

-- Never Married (Skip to R12) 

-- Divorced (Skip to 18) 

-- Separated (Skip to 18) 
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Note that responses "divorced" or "separated" both direct next asking question 

Question 18, and are treated as equivalent for skip pattern analysis. They 

both correspond to the arc from Question Rll to Question 18. 

Example 8: The following is a slightly modified extract from the 1979 

Research Panel, Income Survey Development Program (ISDP) questionnaire. 

Questions Responses 

2a. During the period outlined on -- Yes 

this calendar, did... do any -- No 
. 

work at a job or a business? 

2c.*Did . ..do any temporary, part- -- Yes 

time, or seasonal work even -- No 

for a few days during this 

period? 

2e. What were the main reasons... -- Taking care of home 

did not work at a job during and family 

this 3-month period? -- Going to school 

-- Could not find work 

-- Didn't want to work 

-- Retired 

-- Too old to work 

-- Ill, injured, or disabled 

-- Other - Specify 

(Skip to 3a) 

(Skip to 2c) 

(Skip to 3a) 

(Skip to 2e) 

~(Skip to 2f) 

2f. During the 3-month period -- Yes (Skip to 29) 

did . ..spend any time looking -- No (Skip to 2h) 

for work? 

29. How many weeks did...spend -- Number of weeks 

looking for work? -- All 

-- DK 1 

(Skip to 3d) 
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2h. Did... want a regular job, 

either full or part time, at 

any time during this period? 

2i. What were the reasons... did 

not look for work during this 

period? 

3a. Were there any full weeks 

during this 3-month period in 

which . ..did not have a job or 

business (exclude temporary 

layoff)? 

3b. During the weeks when...did 

not have a job or business, 

did . ..spend any time looking 

for work? 

3c. How many weeks did..spend 

looking for work? 

3d. During the 3-month period 

did . ..receive any unemploy- 

ment or other compensation 

because of layoff, slack work, 

or strike? 

-- Yes 

-- No 

-- UK 

-- Believes no work available 

in line of work or area 

-- Couldn't find any work 

-- Lacks necessary schooling, 

training experience 

-- Employers think 

too old or too young 

-- Can't arrange child care 

-- Family responsibilities 

-- Going to school 

-- Other 

(Skip to 2i) 

(Skip to 3d) 

(Skip to 3d) 

-- Yes (Skip to 3b) 

-- No 

-- DK 

-- Yes 

-- No 

-- Number of weeks 

-- All 

-- DK 

-- Yes 

-- No 

(Skip to 3d) 

(Skip to 3c) 

(Skip to 3d) 

(Skip to 3d) 

(Skip to 3e) 

(Skip to 3f) 
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3e. What was the source of this 

compensation? 

3f. Did . ..receive any income 

during these 3 months to make 

up for pay lost because of 

illness or injury? 
. 

39. What was the source of this 
I 
income? 

End (Dummy Question) 

-- Unemployment from 

the State or local 

unemployment office 

-- Supplemental Unemploy- 

ments Benefits 

-- Union strike benefits 

-- Other - Specify 

-- Yes 

-- No 

-- DK t 

-- Worker's compensation 

-- State temporary sick- 

ness or disability 

-- Own accident, dis- 

ability, sickness 

insurance policy 

-- Other source or don't 

know 

I (Skip to 3f) 

(Skip to 39) 

(Skip to END) 

) (Skip to END) 

- Final node for this segment 

(no response required) 

When we draw the graph associated with this questionnaire, we get Figure 1. 

By renumbering the nodes and arcs we have the graph in Figure 2. Note, for 

example, that node mg in Figure 2 corresponds to question 3.b in the 

questionnaire , and arc a3 in Figure 2 corresponds to a "Yes" response to 

Note also that there are fourteen genuine questions on the 

questionnaire but fifteen nodes on the graph. The fifteenth node corresponds 

to the dummy question. Following these figures we include the node and the 

arc incidence matrices for this graph and the arc and ideal matrices. 
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Figure 1 



-26- 

m4 A a a 

. . . II 
a12 

P 0 m9 

Figure 2 



. 

* 

c 

c 

w
 

c 
c 

c 
c 

c 

c 
c 

c 

c 

C
 

C
 

L 

c 

c 
c 

c 

c 
c 

I- 
c 

. 

c 
w

 

c 

c 
L 

C
 

c 
I- 

C
 

c 
C

 

L 
c 



t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

1 

t 

t 

t 

I 

t 

t 

t 

t 

t 

cz. 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

I 

% 

-99z- 

t 

1 

t 

t 

t 

t 

t 

t 

1 

t 

t 

I 

t 

t 

t 

t 

t 

t 

t 

t 

OZU 

t 

I 

t 

t 

t 

1 

t 

t 

t 

I 

t 

t 

t 

1 

t 

t 

t 

t 

et&l 

t 

t 

t 

t 

t 

t 

t 

t 

t 

t 

I 

t 

t 

I 

t 

t 

t 

81s 

t 

t 

t 

t 

t 

t 

I 

t 

1 

t 

t 

1 

I 

t 

t 

t 

1 

Lb 

t 

t t 

t 

t t t t 

f 

t 

t 

t 

t 

t t t t t 

t t t t t I 

I I t t I 

918 PI8 r1u ET@ ztn It@ 

t 

t 

t 

t 

I 

Oh 

1 

t 

t 

t 

1 

6’3 

t 

t 

t 

t 

t 

80 

t 

t 

t 

I 

h 

t 

t t 

t I 

’ 8 
1 I 

98 ‘h 



. 

33
33

33
33

33
33

33
3 

z 
z 

t;
 

E
l 

E
 

=:
 

C
D

 
00

 
4 

Q
, 

en
 

A
 

w
 

c3
 

* 

C
L
 

C
L
 

3 
0
1
 3 

Q
,
 3 

4
 



ml 

ml 1 

m2 

m3 

“4 

m5 

m6 

m7 

m8 

m9 

ml0 

mll 

ml2 

m13 

m14 

ml5 

m2 

1 

1 

m3 

1 

1 

1 

m4 

1 

1 

1 

1 

m5 

1 

1 

1 

1 

1 

Node Ideal Matrix For Example 8 -26d- 

m6 m7 m8 m9 

1 1 1 1 

1 1 1 1 

1 1 

1 1 

11 

1 

1 1 

1 

m10 ,Vl 

II l 
1 

1 1 

1 

1 

1 

1 

1 

1 1 

1 1 

1 1 

1 

‘m12 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

m13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

m14 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

m15 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 



-27- 

B. Analysis of Response Forms: Missing Items and Consistent Responses 

Given an unanswered data item on a questionnaire, either it is missing 

and needs to be imputed, or the question is not applicable by virtue of other 

responses and the underlying skip pattern for the questionnaire. 

For example, to use an extreme case, suppose on the ISDP segment in 

Example 8, a respondent answered question 2a with the response "NO", 3a with 

the response "YES", and that's all. What could be said about this 

questionnaire? One notes that questions 2e, 2f, 29, 2h, and 2i are not 

applicable. Questions 2c, 3b, 3d, and 3f are missing and must be imputed. 

~ Questions 3c, 3e and 3g have an undetermined status which depends on the 

responses, respectively of 3b, 3d, and 3f which are missing and must be 

impuJed. Furthermore, the response to question 2c must be imputed as a "YES". 

As a second example, suppose a questionnaire was filled in as follows: 

Question 2a with response "YES", Question 3a with response\"NO", Question 3d 

with response "NO", and Question 3f with response "NO". It is then clear that 

this questionnaire is complete , and all missing responses are not applicable. 

Through a analysis of the underlying skip pattern of a questionnaire, one 

can determine, for many questions, which response variables are missing and 

must be imputed and which are not applicable. For some of the variables that 

are missing and must be imputed, a unique valid imputation can be recognized 

based solely on the structure of the skip pattern. Of course, such an 

analysis will not resolve all missing values. The deterministic information 

uncovered by the skip pattern analysis must be followed by survey-specific 

imputation procedures. That is, given that Question 3b is missing and must be 

imputed in the first example above, we cannot determine a value to be imputed 

solely by an analysis of the skip pattern. In some sense, this skip pattern 

analysis can be thought of as a preprocessor for response forms with blanks, 

the output of which is a questionnaire having fewer indeterminate blanks and 

some deterministic imputations. 
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Examole 9: 

. 

Let us consider another example where the responses to the ISPD 

questionnaire extract are: 

Question 2a ---- response "NO" 

Question 2c ---- response "YES" 

Question 2e ---- response "(any)" 

Question 2f ---- response "NO" 

Question 2h ---- response "YES" 

Question 3f ---- response "YES" 

Note the response of "YES" to question 2c is inconsistent with the fact that 

Questions 2e, 2f and 2h were also responded to. There is an inconsistency in 

the recorded response form and it is easily detected by looking at the 

questionnaire graph Figure 1. Clearly, if we delete the response of "YES" to 

QueTtion 2c and impute the response "NO", the revised questionnaire will be 

consistent. 

We could also have observed this by shifting our focus to the graph in 

Figure 2. We consider the response arcs 

c!29 i!3’ a59 a79 ag’ a20? 

and observe the following inconsistent pairs: 

By "deleting" arc 2 and "imputing" arc a we obtain a consistent arc set, 

namely: 

Remark: The term "inconsistent" when used to discuss the questionnaire is 

used in its usual sense, but when applied to the arc sets it is used as in the 

definition of Section II. The terminology in Section II for graphs was chosen 

to mirror common usage in discussing questionnaires and response forms. 
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The essence of the methods in this report revolves about the following 

observation: given that question K is responded to, in order for question L 

to also be responded to, L must either follow K or preceed K based on a 

questionnaire skip pattern. Thus, in the graph derived from the 

questionnaire, node L must either follow node K or preceed node K where the 

words "preceed" and "follow" are applied as graph terminology introduced in 

Section II. That is, nK must be in the ideal generated by nL, (and hence nL 

must be in the ideal generated by nK) in order that question L and question K 

are simultaneously present on some questionnaire response form. Accordingly, 

if iniliEI is a set of consistent responses, then a node, nK, that is sin 

the intersection of the ideals BN(ni) must be non-applicable. 

. Considering only nodes does not suffice , and we must also consider arcs 

that preceed and follow a reported arc. For example, in the ISDP 

quesJionnaire above (Example 9), if question 2c was responded to with a 

response of "YES", i.e., arc 3 was answered, then arc 3 cannot be answered, 

nor could arc 2. Both of these arcs fail to be in the arc ideal of 3, 

B/&j) l 
Accordingly, arcs 3 and 3 do not constitute viable responses when 

3 is treated as a valid response (and conversely). Thus, we must examine the 

structure of arc relations as well as node relations, and this will be treated 

in the following sections. 
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IV. GRAPH THEORETIC ANALYSIS OF QUESTIONNAIRE STRUCTURE 

In this section, we will describe methodologies and programs to implement 

graph theoretic procedures for analysis of skip patterns in questionnaires. 

The first program to be described will start with a questionnaire and will 

form the graph theoretic constructions needed to examine skip patterns. The 

second program is used to edit response forms using the skip pattern structure 

of the questionnaire. 

A. GRAPH 1 -- Questionnaire Structure 

In the first program, call it GRAPH 1, we read in the questionnaire and 

set up the basic graph theoretic constructs. Before using this program, a 

user will number each question on the questionnaire, and the only restriction 

is that if Question K follows Question L, then K is greater than L. 

* A user first enters into the program the number of questions in the 

questionnaire, N. The program forms the set of nodes, one for each question 

and the program then prompts the user, one node at a time, to specify the 

nodes that are the immediate successors. The program then sets up a node 

incidence matrix cN and arc incidence matrix cA based on the infOrt’IIatiOn 

provided. 

After creating the ideal matrix, bN, from the incidence matrix cN9 and 

the ide,al matrix bA, from the incidence matrix CA, the program SUpplieS 

diagnostic information about the questionnaire. Recall that since each 

question is numbered, when we speak of question 7 and node 7 we mean the same 

thing. The program provides the following information. 

(a) It prints out the input information as a check. 

(b) For each question it lists the questions immediately following. 

(c) For each arc, it tells which nodes the arc goes between. 

(d) For each node, (respectively, arc) it lists all questions 

(respectively, response) that follow (not necessarily immediately). 

(e) For each node, (respectively, arc) it lists all questions 

(respectively, responses) that preceed it. 

(f) It lists all possible response patterns. That is, it lists all 

possible complete questionnaires if the user requests. 
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. 

We entered the ISDP questionnaire extract into this program and 

we have the computer generated diagnostics for this graph. 

B. GRAPH 2 -- Analysis of Response Forms 

in Append ix I 

The arc ideal matrix and the node ideal matrix created in GRAPH 1 are passed 

to a second program , call it GRAPH 2, which will analyze survey response 

forms. Survey response forms are entered into this program, one response 

record at a time. 

The program will first determine if all responses on a record are 

consistent (with respect to the skip pattern structure), and if not, the 

program will select a set of responses to delete so that the remaining 

responses are mutually consistent. The criterion built into the system is to 

dele$.e as few responses as possible so that the remaining are mutually 

consistent. In fact, one can assign preferance factors (weights) to each 

field so that the system will locate a weighted minimal set of fields to 

delete. These weights are to be provided by the user before the system is 

executed. After responses causing inconsistencies (if any) have been deleted 

they are treated as not reported. The remaining responses on the record are 

mutually consistent. 

After a record has been processed through the program GRAPH 2, each field 

will be assigned one of four status flags: 

(4 valid response, 

(b) not applicable, 

(c) missing and must be imputed, 

(d) status cannot be determined. 

Below we present the procedures embedded in GRAPH 2. In this discussion we 

will use the following notation: 

N = set of all nodes, 

Rf = set of reported nodes, 

R = set of mutually consistent reported nodes, 

M = set of nodes which must be imputed, 
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. 

U = set of nodes whose status cannot be determined, 

A = set of all arcs, 

Q* = set of reported arcs (i.e., arcs corresponding to a 

reported response), 

Q = set of valid reported arcs (i.e., arcs corresponding to a 

set of mutually consistent reported responses). 

When we read in a questionnaire, the program records the questions responded 

to and the responses provided. That is, we have a list of reported nodes, R*, 

and a set of reported arcs, Q*. If Q*C B(Q*) the questionnaire is consistent 

(Proposition 2) so we set R=R* and Q=Q* and proceed to examine the non- 

reported nodes. 

If Q*+ B(Q*), we compile a listing of all pairs of mutually inconsistent 

responses. As noted in Section II, two responses , &and b, are inconsistent 

if 2 d BA(b_) l We delete a (weighted) minimal set of response arcs so that 

the remaining will be mutually consistent. The consistent arcs form the set 

Q, and R consists of initial points of arcs in Q. The remaining nodes, N-R, 

are considered not reported. 

At this stage, we have a consistent set of reported arcs, Q, and a set of 

consistent nodes, R. The set of arcs containing all possible valid responses 

is B(Q) (Proposition 2), and the set consisting of all nodes that can possibly 

be applicable is P(B(Q)) (Proposition 7). Hence, the nodes which are not 

applicable are N-P(B(Q)), and we denote this set by L. 

'To determine the nodes that are missing and must be imputed, we find the 

set of waist nodes of Q (Theorem 3). Note that each maximal chain corresponds 

to a completed response form. The set of waist nodes are those nodes that 

must line on every maximal chain containing Q and, hence, correspond to 

questions that must be answered given that questions corresponding to Q were 

answered. Thus the set of nodes that are missing and must be imputed, M, are 

those nodes in 

n 
gNQ) 

P(BA((I) > 
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. 

. 

other than the valid reported nodes. Hence M = n 
g&Q) 

P(BA(g) bR. 

The status of the remaining nodes cannot be determined. Whether they are 

missing and must be imputed or are not applicable depends on responses to the 

nodes currently missing and yet to be imputed. Denoting these undeterminable 

nodes by U, we have 

U =N-R-M-L. 

Example 10: Returning to Example 9, 

Q* = (a_,, a,39 a_59 $7’ a_99 a20Is so 

The arc set Q* is inconsistent with inconsistent pairs 

By deleting response a3, all inconsistencies are removed, and we have: 

R = {m 1 9 m38 m4s m69 ml3) 

W(Q)) = {ml, m2, m3’ m 4 , m6s m 7 , m 11’ m12' m13' m14' m15) 

N-P(B(Q)) = (m5, m8, mg9 mlo) l 

Thus the non-applicable questions are: 

L = 0-n 
5 
, m8, mgs ml01 . 
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By directly computing 

n 
geB(Q) 

P(BA(g))-R 

one finds that the missing nodes are: 

M = {m2, m7’ ml19 m14, ml51 . 

The set of nodes with status undetermined is 

. U= N-R-M-L 

whi(;h, in this example is: 

U = {ml21 . 

One observes further that the responses to the following questions can be 

inferred: 

Question Response 

2c (node m2) 

2i (node "7) 

39 (node m14) 

NO (arc 3) 

(ANY) (arc ~1) 

(ANY) (arc >l). 

Since we cannot determine the response to question 3d (node mll) the response 

status of question 3e (node m12) is undetermined. 

Remark: Examples 9 and 10 as well as the two examples on page 27 were run 

through the GRAPH 2 program, and the output is in Appendix II. 

Remark: It is interesting to observe how one can obtain some of these results 

by drawing upon the localization graph GQ and the information in Theorem 2 and 

the Remarks following. For GQ = (P(B(Q)), B(Q)), we have the following graph 

in Figure 3. It is clear that all nodes in GQ are waist nodes except ml20 
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Thus, the waist nodes are; {m,, m7, mll, m14, m15), so each of these nodes 

(with the exception of node m15) corresponds to a question that is missing and 

must be imputed. The node ml2 is not a waist node and thus has the status 

undetermined, and it cannot be determined without knowing the response to node 

mll, which is missing and must be imputed. Note that there is only a single 

arc leading from node m2, and that corresponds to a "NO" response to question 

2c, hence we have an implied imputation. 
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C. Method for Determining Responses to Delete on an Inconsistent 

Questionnaire 

Given an inconsistent response form, our objective is to identify a subset of 

responses and change only them so that all remaining responses are mutually 

consistent. We denote those responses targeted for change as a deletion 

set. As a rule, the goal is to change as few responses as possible (and hence 

retain as many reported values as possible). By assigning weights (preference 

factors) one can delete a weighted minimal set of responses. 

In the setting of skip pattern analysis one determines a deletion set, D, 

in the following manner. Consider all inconsistent pairs of responses and let 

* D be a subset of responses such that at least one response from each failed 

pair is in D. For Example 9, the pairs of inconsistent responses are: 

* 

(3' 3) 

(J!p 3) 

(a'g* 

The singleton set {i,) = D has the required property (i.e., 3 is an element 

in each failing pair) so that {a_,] = D is a deletion set. Thus, by "deleting" 

the response 3 (i.e., the response to question 2c) all remaining responses 

are consistent with respect to the underlying skip pattern. Of course, for 

more complex patterns of inconsistencies, the choice of deletion set is not 

quite so obvious. 

In the program GRAPH 2, in order to determine the responses to delete on 

an inconsistent questionnaire, we construct the failed edit graph. The failed 

edit graph is an undirected graph used to represent inconsistencies on a 

questionnaire. The nodes on the failed edit graph correspond to responses on 

the questionnaire involved in an inconsistency, (i.e., to inconsistent 

response arcs on the questionnaire graph). Arcs on the failed edit graph 

correspond to inconsistent pairs of arcs on the original questionnaire. That 
. 
ls, if Land bare reported arcs on the questionnaire, and c t BA(b), then 

there are nodes on the failed edit graph for aand for b, and there is an arc 

between the nodes Land k 
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Using the Example 9, the failed edit graph is: 

By removing node 3 in the failed edit graph above (corresponding to response 

3 on the original graph) all other responses are mutually consistent. 

The failed edit graph is disconnected by removing a set of nodes and by 

removing all arcs incident with a deleted node. When no arcs are left, the 

graph is said to be totally disconnected, and the nodes removed correspond to 

responses to be deleted. All other remaining responses will be mutually 

consistent. 

* There are a variety of ways to determine a minimal disconnecting set for 

a graph; one can employ a set covering procedure, devise reasonable heuristic 

algorithms, or rely on strictly graph-theoretic methods. For the program 

GRAPH 2 , we have taken the last option , and the procedure embedded into this 

program can be thought of as a clique generating approach. We briefly 

describe below the approach taken in GRAPH 2. 

Let G = (V,H) be an arbitrary graph (not necessarily connected) and 

let G' = (V,fl) be the complementary graph. That is, the nodes of i: are the 

same as those of G, but (vI,v2) is an arc in R if and only if (vI,v,) is not 

an arc in Ii. If G = (V,H) is an arbitrary graph, a clique is a set of nodes, 

W, of V such that if wI,w2, E W then (w1,w2) is an arc in H. A maximal clique 

is a clique properly contained in no other clique. If we attach weights to 

each vertex of a graph and define the weight of a clique to be the sum of the 

weights of the elements in the clique, we can define a maximal weighted 

clique. Clearly all maximal weighted cliques are maximal cliques (assuming 

all weights are positive). 

A minimal (weighted) disconnecting set of a graph G corresponds to the 

complement of a maximal (weighted) clique in the complement graph, G . Thus, 

given an edit failing record, r, to find the minimal deletion set, form the 

failed edit graph, G, and find a maximal (weighted) clique, C, in 6 . The 

minimal (weighted) deletion set then corresponds to V-C. 
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Cliques have been extensively studied, and exact algorithms exist to find 

all maximal cliques for an arbitrary graph. We have programmed into GRAPH 2 

an algorithm to find all maximal cliques of a graph as described in [3]. 

Having all maximal cliques of a graph, one can easily determine all maximal 

weighted cliques and hence weighted minimal deletion sets. By having all 

minimal weighted deletion sets for an edit failing record, a user of the edit 

methodology has the option of selecting from among all alternative sets of 

fields to delete on edit failing records. 

Remark: It is likely that a "reasonable heuristic" may be preferable in this 

program to the clique generation procedure referred to above. The process of 

disconnecting the failed edit graph is carried out in an external subroutine 
. 
of GRAPH 2. It would be quite easy to swap the currently residing graph 

disconnecting routine in favor of any other. Such a replacement would not 

al te?the flow or the underlying logic of GRAPH 2 nor alter the program 

performance. An example of a heuristic technique to disconnect the failed 

edit graph is given in [l]. This procedure was developed to disconnect the 

failed edit graph when editing economic data under ratio edits. 

V. SUUMARY 

The objective of this report has been to describe a methodology and 

programs to implement it for the analysis of skip patterns in 

questionnaires. The methods and programs can be employed to analyze the 

underlying skip pattern structure for questionnaires during the design process 

and to analyze the skip patterns on individual questionnaire response forms. 

The underlying skip pattern structure of questionnaires is often very 

complex, and current techniques to deal with them are often quite complicated, 

ad hoc, and accordingly, error prone. Typically, for each survey instrument 

having a complex skip pattern, special purpose specifications for the analysis 

of response forms are written and computer code is developed from these 

specifications. We have described in this report two structured, parameter 

driven programs that can be employed to (1) provide users with a better 

understanding of the basic questionnaire and (2) to use in editing 

questionnaire forms. 
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In the early sections of this report we present the appropriate 

mathematical model, namely, the directed graph, and establish relationships 

within a graph that will be needed in later sections. We next show how these 

graph theoretic constructs have a simple representation in terms of zero-one 

matrices. In the next two sections we showed how a questionnaire and its skip 

pattern structure can be modeled as a directed graph and we showed how the 

graph theoretic relationships developed earlier apply. Finally, two computer 

programs that implement the procedures discussed earlier are described, and 

samples of computer generated analysis from these programs are included in 

Appendixes I and II. 

The program, GRAPH II, described above for editing skip patterns in 

questionnaire forms is not meant to be a comprehensive edit and imputation 

package. Its primary goal is to recognize non-applicable questions on a 

response form and differentiate them from responses that are missing and must 

be imputed. In the process of doing this , one frequently can discover 

deterministic imputations for selected missing items. In addition, if any 

inconsistencies (with respect to the skip pattern) appear on a response form 

they will be detected by this program and a minimal set of responses will be 

deleted so that the remaining are consistent. After all inconsistencies on a 

record have been resolved and missing fields have been flagged as non- 

applicable or needing imputation, survey specific imputation routines can be 

brought to bear in the creation of a complete and consistent record. 

Using the program GRAPH 1 by itself to analyze skip pattern structure, or 

using it in conjunction with GRAPH 2 to analyze response forms can enhance 

operations for processing surveys whose questionnaires have a complex 

underlying skip pattern. 



41 

REFERENCES 

Cl1 Greenberg, B. (1981). Developing an Edit System for Industry 

Statistics. Computer Science and Statistics: Proceedings of the 13th 

Symposium of the Interface, 11-16. Springer-Verlag, New York. 

lx1 Harary, F. (1969). Graph Theory. Addison-Wesley, New York. 

c31 Mulligan, G.D. and Cornell D.G. (1972). Corrections to Bierstone's 

. Algorithm for Generating Cliques. Journal of the Association for 

Computing Machinery. 19, 2. 244-7. 



APPENDIX I 

On the following pages, we show the output generated by GRAPH 1 when the 

questionnaire in Example 8 was entered and run. The diagnostic information is 

potentially valuable for examining the questionnaire structure for design and 
. 

subsequent analysis. 
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I.1 

question 

did vou work 
part-time work 
whv no work 
look for work 
weeks lookinq 
want a ‘ob 
whv no 1 ook 

~~~a~~~e 

uncmolovment 
source _ . . 

number of 
node different 
number: 

: 

responses : 

5 

: 

6” 
i 

ii 
: 

9 ; 

ii i 

income for iniur E 

the mnnber of nodes is 15 

tt!Lnmtv auestionl 
source . _ _ 

none 

questions 
isx3iatelv 
fo.$.lo~ing: 

3 8 

t 6 
11 

7 11 
11 

9 11 
10 11 
11 
12 13 
13 
14 15 
15 

none 



_--., 

the number of arcs is 22 

arc 1 Qoes from node 1 to node 8 
arc 2 goes from node 1 to node 2 
arc 3 ooes from node 2 to node 8 
arc 
arc 
arc 
arc 
arc 
arc 
arc 
arc 
arc 
arc 

4 goes from node 2 to node 3 
5 qoes from node 3 to node 4 6 
6 goes from node 4 to node 5 
7 aoes from node 4 to node 6 
8 goes from node 5 to node 11 
9 aoes from node 6 to node 7 
10 goes from node 6 to node 11 
11 cloes from node 7 to node 11 
12 goes from node 8 to node 9 
13 ooes from node 8 to node 11 

arc 14 cjoes 
arc 15 cioes 
arc 16 goes 
arc 17 aoes 
arc 18 goes 
arc 19 aoes 
arc 20 
arc 21 

goes 
aoes 

arc 22 goes 

‘ram node 9 to node 10 
‘t-01 node 9 to node 11 
:rom node 10 to node 11 
‘ram node 11 to node 12 
:rom node 11 to node 13 
kom node 12 to node 13 
:rom node 13 to node 14 
Yom node 13 to node 15 
kom node 14 to node 15 

I.2 



I.3 

2 2c. Dart-time work 

3 2e. why no work 

4 2f. look for work 

5 

6 

7 

8 

9 3b. weeks lookina 

10 3c. how many weeks 

11 3d. unemployment 

12 

13 

14 39. source 

15 (dummy question) 

question name 

2a. did you work 

20. weeks lookina 

2h. want a iob 

2i. why no look 

3a. weeks no job 

3e. source 

3f. income for iniur 

response 

res 1: ves 
res 2: no 

res 1: anv 

res 1: ves 
res 2: no 

res 1: any 

FE t : yes : no-c% 

res 1: anv 

res 1: ves 
res 2: no-dk 

f=; if g . 

res 1: anv 

res 1: ves 
res 2: no 

res 1: any 

res 1: yes 
res 2: no-dk 

res 1: anv 
none 

arc , 
8 number 

5 

6 
7 

8 

1: 

11 

12 
13 

16 

:x 

19 

22 
none 

ski 
Dat R 

skiv to 8 
skip to 2 

$$ g !j 

skio to 4 

skio to 5 
skip to 6 

skip to 11 

skip to 7 
skin to 11 

skio to 11 

skio to 9 
skip to 11 

skip to 10 
skin to 11 

skio to 11 

skin to 12 
skip to 13 

skip to 13 

skip to 14 
skit, to 15 

skin to 15 
none 



.- I. 

question 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

potential subsequent questions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 3 4 5 6 7 8 9 10 11 12 13 14 

3 4 5 6 7 11 12 13 14 

4 5 6 7 11 12 13 14 

5 11 12 13 14 

6 7 11 12 13 14 

7 11 12 13 14 

8 9 10.11 12 13 14 

9 10 11 12 13 14 

10 11 12 13 14 

11 12 13 14 

12 13 14 

13 14 

14 



_- 

question 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

potential preceeding questions 

1 

12 

123 

12 34 

12 345 

12 3 4 6 

123467 

128 

1289 

12 8 910 

1 2 3 4 5 6 7 8 91011 

1 2 3 4 5 6 7 8 9101112 

1 2 3 4 5 6 7 8 910111213 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

? 

I.5 



arc potential subsequent arcs 

1: 1 12 13 14 15 16 

2: 2 3 4 5 6 7 

3: 3 12 13 14 15 16 

4: 456789 

5: 5 6 7 8 9 10 

6: 6 8 17 18 19 20 

7: 7 9 10 11 17 18 

8: 8 17 18 19 20 21 

9: 9 11 17 18 19 20 

10: 10 17 18 19 20 21 

11: 11 17 18 19 20 21 

12: 12 14 15 16 17 18 

13: 13 17 18 19 20 21 

14: 14 16 17 18 19 20 

15: 15 17 18 19 20 21 

16: 16 17 18 19 20 21 

17: 17 19 20 21 22 

18: 18 20 21 22 

19: 19 20 21 22 

20: 20 22 

21: 21 

22: 22 

17 18 19 20 21 22 . 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

17 18 19 20 21 22 
6 

10 11 17 18 19 20 21 22 

11 17 18 19 20 21 22 

21 22 

19 20 21 22 

22 

21 22 L 

22 

22 

19 20 21 22 

22 

21 22 

22 

22 



arc 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

potential preceeding arcs 

1 
1 

‘ 

2 3 

2 4 

2 4 5 

2 4 5 6 

2 4 5 7 

2 4 5 6 8 

2 4 5 7 9 

2 4 5 7 10 

2 4 5 7 9 11 

12 3 12 

12 3 13 

12 3 12 14 

12 3 12 15 

12 3 12 14 16 

12 3 4 5 6 

12 3 4 5 6 

123456 

123456 

123456 

123456 

I.7 

7 8 9 10 11 12 13 14 15 16 17 

7 8 9 10 11 12 13 14 15 16 18 

7 8 9 10 11 12 13 14 15 16 17 19 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 

7 8 9 10 11 12 13 14 15 16 17 18 19 21 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 



APPENDIX II 

On the following three pages, we display three possible response records run 

through GRAPH 2. The first two response forms corresponds to the examples on 

page 27, and the last response form corresponds to Example 9 on page 28 and 

continued as Example 10 on pages 33 through 34. 
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respondent II 1 

--responses on forr-- 

question name node 
number 

response 
arc 

response & ;;z~,bnse 
orovi ded 

2a. did you work 
2c. cart-time work i : 

no 
ves : 

2e. why no work 
2f. look for work 

1: 

F 
any 

;K 
i 

23:: KZrn~ #Z iniur 209 ves i 

the followina oairs of resoonse arcs are inconsistent: 

I ; 
3 

the fo:1oui 
; 

pairs of points have inconsistent arcs l minating from them: 

5 

the deleted restmnse arcs are: 3 

resoonses have been deleted for aoestions: 2 

the edited auestionairo is below. a * indicates nossiblo imoutation values 

node resoonse status valid resnonse 
number codes 

i 
valid response 
missina, to be 

t 
valid response 
val i d resoonse 

i 

6 
7 

valid response 
nissina. to be 

11 
12 

missing; to be 
status undetern 

i 
i 
Ii 

-, 

II.1 

2 
muted * 2 

t 

llmlted * i 

~!z” 
* 1 2 

11: valid response 
missina, to be imvuted * i 

the inawlicable auestions are: 5 8 9 10 



respondent (I 2 

--responses on form-- 

question name 

2a. did you work 
3a. weeks no iob 

node 
number 

response 
arc 

t3 1; 

response 
vrovided 

&response 
code 

no 
ves f 

the edited guestionaire is below. a 

node 
number 

resoonse status 

the inappl icable questions are: 3 

val i d response 
missina, to be imwted 
val i d response 
missina, to be imouted 
status undeterminable 
missina, to be imouted 
status undeterminable 
missina, to be imwuted 
status undeterminable 

* indicates Dossible imUtatiOn values 

valid resoonse 
codes 

* f 

* i 2 

*12 

*12 

4 5 6 7 



respondent I 3 II.3 

the edited questionaire is below. a * indicates possible imvutation values 

,--responses on forw- 

question name node 
number 

response response 
arc vrovi ded 

“~m5onse 

2a. did you work 
3a. weeks no job ii 

1 
Kik ; 

33:: YKZ°Kntniur i13 
no 
no-dk f 

node resvonse status val i d resvonse 
number codes 

ii 
valid response 
valid resvonse ; 

11 
13 

val i d response 
valid resvonse if 

the inavvlicable westions are: 2 3 4 5 6 7 9 10 12 14 


