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ABSTRACT 

We present a method for estimating regression models with 

autoregressive integrated moving average (ARIMA) time series errors. 

The method maximizes the likelihood for different groups of 

parameters (AR, regression, and MA) separately within each iteration. 

The idea is to gain numerical efficiency by using generalized least 

squares (GLS) to maximize the likelihood over the regression and the 

autoregressive parameters, leaving only the moving average parameter 

estimates to be obtained by a nonlinear optimization routine. The 

method uses the "exact likelihood" suggested by Hillmer and Tiao 

(1979) that is the exact likelihood for pure moving average models. 

Implementing the method amounts to feeding vectors of the regression 

and lagged dependent variable to routines that calculate exact 

likelihood residuals for pure MA models, and then doing regression 

with these residuals to get the regression and AR parameters. In 

this way the same software used for exact MA likelihood estimation 

may be easily modified and used to estimate models with AR and 

regression effects. 



1. INTRODUCTION 

. 

Estimating regression models with autoregressive-moving average 

(ARMA) errors is computationally intensive because the likelihood 

function is difficult to calculate, especially when the exact form of 

the likelihood is used. This difficulty is a major factor when 

numerical derivatives are used in the nonlinear estimation because 

the likelihood function must be calculated at least twice as many 

times as there are nonlinear parameters. Most computer packages 

calculate estimates of the model parameters by directly maximizing 

the likelihood or approximate likelihood jointly over both the 

regression (B), autoregression (+), and moving average (S) parameters 

to2 can be solved for analytically). Since 9 and 8 are parameters of 

the covariance function of the data, wt, and p are parameters of the 

mean function, this suggests the use of iterative generalized least 

squares (IGLS) to estimate p, 9, and 8. That is, given values for $ 

and 8 at one iteration, the next value for /3 is obtained by GLS; then 

given a value for /3 the regression effects are removed and the 

likelihood is maximized over 9 and 8 only, etc. It also is possible 

to estimate 9 using a three part GLS iteration. 



. 
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IGLS has two advantages. First, the GLS estimation of B given + 

and 6 is a linear least squares problem, while maximizing the 

likelihood jointly over /3, +, and 8 is a nonlinear one. The IGLS 

approach thus reduces the nonlinear optimization problem to 

maximizing over 9 and 8 at each iteration of B. This has the 

potential for significant computational savings. Second, since the 

regression parameter estimates are asymptotically independent of the 

ARMA parameter estimates (Pierce 1971), the final GLS regression 

yields the asymptotic covariance matrix of 6 explicitly. 

Both Jones (1986) and Wincek and Reinsel (1984) have developed 

methods for separately estimating regression models with ARMA errors 

using IGLS. Their methods differ by how the covariance matrix , 2, 

of the data vector, w, is inverted. Jones uses the Kalman filter and 

Wincek & Reinsel use a Cholesky decomposition. The method we propose 

uses Hillmer & Tiao's (1979), hereafter HT, and Ljung & BOX'S (1979) 

exact likelihood residual calculation method. Our method calculates 

exact likelihood residuals (ELR) for both the data, w, and the 

regression variables, X, and does a GLS regression by doing an 

ordinary least squares regression (OLS) on the transformed variables. 

This method would only require slight modifications to existing ARIMA 

model estimation software to include models with regression terms. 
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The rest of this paper will, first, describe the model we are 

attempting to estimate: second, discuss exact maximum likelihood 

estimation for pure moving average models, and finally, show the IGLS 

estimation of regression models with ARMA errors. The IGLS section 

will describe how the likelihood can be rewritten in a GLS framework 

and give examples for specific types of models. 



2. MODEL DESCRIPTION 

Regression models with autoregressive-moving average (ARMA) 

errors for equally spaced data can be described by, 

+(B) Wt - X;P) = O(B)e(BS)at t = 1 to n. (2.1) 

- Here wt is a covariance stationary time series, possible differenced; 

Xi is a row vector from X, an n x k matrix of possibly differenced 

reiression variables: 
at 

is the innovation error--assumed to be iid 

N(0,a2). #(B) is a p-order autoregressive operator, 

~(B)=1-~1B-~2B2-~3B3- l ** -#pBp, 

where B is the backshift or lag operator. Powers of B represent the 

length of the lag, B1yt=yt_i. #(B) need not include all the lags 

Il*ooIPI so it could thus allow for seasonal lags. We are excluding 

multiplicative seasonal AR operators, +(B)O(B'), however. 

e(B) is a q-order regular moving average operator, 

e(B)=l-e,B-0,B2-e3B3- l . . -BqBq. 
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e(B') is a Q-order seasonal moving average operator with seasonal 

period s, 

The roots of both the regular and seasonal moving average operators 

must lie on or outside the unit circle and have no common roots with 

q the autoregressive operator. The roots of the autoregressive 

operator are unconstrained however. 
* 

Ljung and Box (1979) and HT document the importance of using 

exact likelihood methods for the estimation of moving average 

parameters. We follow HTls approach of conditioning on 

w1f . . . . wP 
for estimating AR parameters. We do this for three 

reasons. First, exact AR likelihood estimation imposes an assumption 

of stationarity that is unnecessary. In fact, we may wish to use the 

estimation procedure to check for the presence of unit or explosive 

AR roots. Exact AR likelihood estimation falls apart as the boundary 

of the stationarity region is approached. Second, the potential 

benefits of exact AR estimation derive from the use of the stationary 

distribution for the first p observations. Even when there is no 

concern about unit or explosive AR roots, it is not clear to us that 

this assumption is warranted. It certainly cannot be checked with 

the data, and if it is wrong it seems the results from exact AR 

estimation could be worse than those from conditional AR estimation. 
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Third, even if the stationarity assumption holds, the benefits of 

exact AR estimation are likely to be meager for series of moderate 

length, as noted by HT. 



3. EXACT MA LIKELIHOOD EVALUATION 

We review the method for exact likelihood estimation for MA 

models. In this section we will derive the exact form of the 

likelihood for pure MA models, as proposed by HT and Ljung and Box 

(1976), then, in a later section we will generalize the model to 

include regression terms. For simplicity, in the remaining sections 

T we will discuss models with only regular MA terms, B(B), not the full 

MA operator, e(B)B(B). See HT for details on how to handle 

mu&iplicative seasonal models efficiently. First, we will give an 

overview of the derivation. 

The exact likelihood (density of the data) is obtained by 

relating the data to a set of iid innovations through a linear 

transformation. Let a = (a,, l l l , a,)' be the vector of 

innovations shown in equation (2.1), 

a* = (almqf a2-qf l l l , a+, a01 ‘ be the initial innovations, 

assumed to be from the same stocastic process as the a's, so 

a* - N(0,a21). Let w = (wl,...,wn)' be the data vector that is also 

defined in (2.1), and let w* = (w I 
l-q' w2-q, l l l , wBlf wo) I be 

artificial initial values prior to the period of observations. As 

described in Ljung and Box (1976), we can define w* by linearly 

relating it to a* by an arbitrary lower triangular system such that, 

IJl, the jacobian of the transformation between [a$, a']' and 
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[w:, WI]' is 1. The transformation from a to w and our choice of 

triangular system will be described below. This transformation 

allows us to rewrite the exact likelihood in terms of w and w*, 

PW,fW = ??(a,,a) IJI = p(a,,a). (3.1) 

Now, the joint density, p(w*,w), can be factored as 

. 

P(w)P(w*lw) = P(w*,w). (3.2) 

We obtain the desired unconditional density, p(w), (the exact 

likelihood), by obtaining an expression for p(w,,w) and identifying 

p(w) and p(w,lw) from this expression. 

The joint density can also be factored into a density of the 

data given the initial conditions and a density of the intitial 

conditions, 

Pwlw*)Pw*) = PW,fW l 

p(wlw,) is the density used in conditional least squares (CLS) 

estimation. CLS estimation assumes that p(w,) = 1 for some given 

initial values usually w* = 0. The exact density is not conditional 

on the initial values. Now we will review the derivation in detail. 
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The pure MA model is defined as follows: 

wt 
= a(B) t = 1, l ** ,n, 

or 

wt = -eqateq -eq-lat,q,l - l *o -elate1 +at 

(3.3) 

. 

Notice that the equations for w1 to wq require a, so we include q 

mote equations to account for the initial conditions. We use 

Tunnicliffe-Wilsonts (1983) choice of triangular system relating w* 

to a, which is 

w2-q 
=-e a 

1 l-q + a2-q 

wzwq = -e2 a 
1-q 

- 8 
1 a2-q + a3-q 

. 

. 

. 

(3.4) 

w. = -8 q-1 cllmq -eq-2 a2-q - l ** - ep-1 + a() 
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Equations 3.3 and 3.4 in matrix form are, 

* 

wl-q 

w2-q 
. . . 

wO 
W-B- 

w1 
. . . 

W _n. 

= 

1 

-el 
. . 
. 

-8 
q-1 

-8 
4 
. . 

A 

1 

. 
. 

. 

-8 
q-2 

-8 
q-1 

. . . -e2 -el i 

. . . -e3 -e2 -el 1 

. . . 0 . . . -8 . ..-e 
q 

r 
al-q 

a2-q 
. . . 

aO 
B--B 

al 
. . . 
a 
_n _ 

and so in an obvious notation 

The innovations and the initial innovations are related to the data 

and initial values by the inverse transformation, 

(3.5) 

where A -1 is a matrix of a finite series of 1~ weights from the 

expansion r(B) = l r.B3 = O(B)'l, where r. 
j=O 3 

= 1 (Tunnicliffe-Wilson 

1983) 
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A-l = 

1 

Y l 
(3.6) 

The r-weights are obtained by equating coefficients in e(B)r(B) = 1. 

To separate the equations relating to the initial conditions from 
* 

those relating to the data, we partition A-l so the first q columns 

are labelled G and the remaining n columns are labelled H. (3.5) can 

be rewritten, 

or 

Gw, + Hw = __ a* [ 1 a 

The transformation of the densities in (3.1) now can be 

described more fully. 

-[ai I a’1 “2 /2a 
[ I 

2 

a 
p(a,,a) = (2ra2) - (n+q) /2 e 

implies 
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p(w*,w) = (27ra2) -(n+q)/2 e 
-(Gw,+ Hw)'(Gw,+ Hw)/2a2 

for w and w*. We can see from (3.6) that 1~~~1 has unit Jacobian. 

Next, from regression theory or by completing the square the joint 

sum of squares can be partitioned, 

. (Gw,+ Hw)'(Gw,+ Hw) = (G;,+ Hw)'(G;,+ Hw) + (w*- &,)'G'G(w,- &,) 

* 
where G* = -(GIG) -lG,Hw is the conditional mean and (G8G)'1~2 is the 

conditional covariance of w* given w. Now the the joint density, 

p(w*,w) = (2ra2) 
-n/2,-[(Gw,+ Hw)'(Gf;,+ Hw)+(w,- G,)'GfG(w,- t;,)]/202 

I 

can be factored according to (3.2) and the factors are, 

p(w) = (2ra2)-n'21GfG(-1/2e -(G$*+ Hw)'(G;*+ Hw)/2a2 

(3.7) 

and 

p(w,lw) = (2ra2)-q/21GfG11/2e-(W*’ G,) ‘G’GW,- Q*)/202 

p(w) is the unconditional density of the data which is the 

likelihood. Note in (3.7) that G and H are functions of 8. 
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The joint sum of squares, (Gk,+Hw)'(G&,+Hw), is a quadratic form 

that can be rewritten in terms of w, using 

(G;,+Hw) = Hw - G(G'G)-1G'Hw = (I-G(G'G)-'G')Hw. 

Let C = (I-G(G'G) -lG')H where I-G(G'G)-lG1 is idempotent, thus 

w C’C = H'(I-G(G'G) -lG')H 

an: (C'C)-la2 is the covariance matrix of w. Note that C is the 

linear transformation of the data to the exact likelihood residuals, 

ELR's, 

:* [ 1 -- ii =CW. 
Finally, the unconditional density, (3.7)‘ can be written 

p(w) = (2a02)-n/21G'G,-1/2e-w'CICw/2~2. 

(3.8) 

(3.9) 

This is the likelihood that is maximized for exact likelihood 

estimation of pure MA models. We can maximize the exact likelihood 

by minimizing the deviance, a monotonically decreasing function of 

P(O) I 
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deviance = IGIG/ '/"(w8CfC!w/n). 

Sections 1 and 2 of the appendix includes a derivation of the 

deviance and a step-by-step description of the pure MA model 

likelihood calculation. 



4. IGLS ESTIMATION OF REGRESSION MODELS WITH ARMA ERRORS 

Oberhofer & Kmenta (1974) prove a theorem reguarding iterative 

procedures for obtaining maximum likelihood estimates when direct 

maximization with respect to all the parameters is difficult. The 

theorem applies to regression models with ARMA errors and the result 

shows that jointly maximizing the likelihood over B, $, and 0 can be 

done by iteratively maximizing 

visa-versa, i.e. 
* 

max ufw,e) 
8,9,e 

4.1. REGRESSION MODELS WITH AR 

Conditional least squares estimation of regression models with 

autoregressive errors provides a simple example of IGLS estimation. 

it over p given + and 8 and 

= max (max L(p,*,e)) 
he B 

ERRORS 

Jointly estimating /3 and + is a nonlinear problem but estimating each 

seperately is two linear problems. First, let wf = 9(B)wt, and 

fl 

Xt = $(B)X& , t=p+l, l ** ,n, where f denotes AR filtering. The 

likelihood in terms of p given 9 is, 

uPI+) = ma21 -(n-p)/2,-(wf-XfP)' (wf-XfP)/2a2 (4 1) 
. 

and the solution for B is 
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;(i) = (,f(U ,,f(i) )-I xf(i) ,wf (i) 
(4.2) 

where i indicates the iteration. The likelihood in terms of 9 given 

p is 

u9lm = Pa21 -(n-p)/2e-(z-Zo)'(z-Z+)/202 (4.3) 

. 

where z 
t = wt-X$3 for t = 1, l a* ,n, and the columns of Z are the 

la& of z = 
(Zp+l� l ** I zn) l 

The solution for $ is 

;(i) = (,(i) ‘,(i+-1 ,(i),,(i) 
(4.4) 

where, again, i indicates the iteration. (4.1) is maximized to get a 

new estimate of /3 for a given $, then (4.3) is maximized to get a new 

estimate of 9 for the given $. Note that in both cases the 

regression is calculated easily by doing an OLS regression on the 

transformed variables. In (4.2)‘ the transformation is the AR 

filter, and in (4.4) transformation is to the regression residuals by 

(I-X(X,X) -lx, ) . So a difficult nonlinear problem is reduced to a 

procedure that iterates between two simple linear regressions. Also, 

since the regression and AR parameter estimates are asymptotically 

independent (Pierce 1971) their asymptotic variances are obtained 

from the regressions directly after estimates have converged, 
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and 

v=(9) = (Z’Z)%T2. 

. 4.2. REGRESSION MODELS WITH MA ERRORS 

For regression models with MA errors we modify (3.9)‘ the exact 

density for pure MA models, to include regression effects, 

P(W) = (2m02) 'n/21GIGp2e 
-(w-J@)'CfC(w-J@)/2a2 (4 5) . 

For given 8 this is maximized over /3 at 

i+ = (X‘C‘C x)-lxfcfcw 

the GLS estimate. At each iteration, a new value of 8 is obtained by 

fixing j3, thus updating the inverse covariance matrix, 2 -1 = p&2; 

then a new p is obtained with updated covariance matrix. These 

iterations continue until convergence. 
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Note, as was shown in 3.8, that C linearly transforms both w and 

X into estimates of exact likelihood residuals, ELR's, 6 = Cw and 

ii = cx. After the transformation to ELR's, the i can be obtained by 

an OLS regression of c on I, 

ii = (jj’%) -lo’;;. 

. In section 2 the appendix show how and 2 obtained 

recursively. the regression are asymptotically 

from the parameter estimates, the q q covariance 

of 8 obtained from inverse of negative Hessian 

the likelihood (Kendall and 1973) and k x 

covariance matrix p is from the 

4.3. REGRESSION WITH ARMA 

In this we discuss approaches to 

regression models ARMA errors: by maximizing 

over B, and 8 nonlinear least (2)‘ by 

two stage where #, 0 are jointly by 

least squares p is by iterative regression, and 

by a stage process only 8 estimated by 

least squares both j3 9 are by separate 

regressions, i.e. 
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max w,wu = 
iv+,e 

max @ax w,+,ee) = max (max (max L(p,+,e))) 

The two stage procedure is similar to the regression with MA errors 

except now both the AR and MA parameters are jointly estimated by 

nonlinear least squares. By letting the n-p x n matrix, L, represent 
e 

the linear AR filter, 

-+P 
-9p-1 - l o* -#1 1 

L= -$p - l ** -f#2 -9, 1 I 

. . . 

. . . 

. 

_ 0 
. . . 

-;, - . . . 
1,1 1 

the joint likelihood (4.5) can be modified to include AR terms, 

p(W) = (2,,2)-(n-P)/21,,,l-1/2e-(w-~) fL’c’cL(w-~)/202~ 

The GLS regression estimate for B is 

b = (x'L'c'cLx)-lx'L'c'cLw, 

and the covariance matrix of i is 

var(iG = (X'L'C'CLX)~la2. (4.6) 
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Notice that these are regression results with the data w and 

regression variables X filtered by both the AR filter (9(B)-L) and 

MA-ELR filter (C). 

The three stage method is similar to the regression models with 

AR errors but at the begining of each iteration, estimates of the 0's 

are obtained by nonlinear least squares, and the ELR's are taken as 

part of the transformation for each GLS. For each iteration's j3 GLS 

the ELR's are taken after the AR filtering and for each iteration's 

9-GLS the ELR's are taken after the regression residual 

tr&sformation. Since the step-by-step procedure for this method is 

fairly involved it is included in section 3 of the appendix. Note 

that if there are no regression variables this scheme yields an 

interative GLS approach to maximum likelihood estimation of pure 

ARIMA models. 

In cases where 9 and 8 might be highly correlated the three 

stage method may become less efficient relative to the other methods. 

This is likely to occur when there are + and 0 parameters at the same 

lags, such as an ARIMA (l,O,l) model. Three step estimation for 

models with regular AR and seasonal MA parameters or visa-versa may 

still be computationally efficient compared to the two stage method 

because we would suspect that there would be little correlation 

between regular and seasonal parameters. Also, the 9 and 8 

parameters cannot be assumed to be independent from each other so we 

cannot get the covariance matrix of $ directly, but the covariance 

matrix of i is still (4.6.) 



5. CONCLUSION 

The IGLS method has the potential for large computational 

savings because p and possibly 9 are estimated linearly with GLS 

regressions. For highly correlated the AR and MA parameters, 9 and 

0, we think the IGLS computational efficiency might degrade compared 

to the joint nonlinear estimation of the ARMA parameters. Also, 

because the ARMA parameters are not asymptotically independent their 

variances and covariances cannot be obtained from a separate explicit 

fo&nula. Finally, the IGLS method requires only slight modification 

of existing routines in exact likelihood estimation packages for 

ARIMA models since the same routines used to calculate the exact 

likelihood residuals of the data are used on the regression 

variables. 



APPENDIX 

1. Derivation of the deviance of the exact likelihood for pure MA 
models 

= (2ra2) -n/2~GIGI-1/2e-w'C'Cw/2~2 

Take the derivative of L with respect to a2, set it equal to 
zero, and solve. The result is 

a2 = w'ClCw/n. 
II Substitute this back into the likelihood, 

L(e) = (2r(w,CfCw/n))-n'2~GfG~WI'2e-n'2. 

Then get a transformation of the likelihood that is as free 
a possible from unnecessary constants; this is called the 
deviance, 

(2re/N)L(t3)-2/N = (WVCW) 1~1~1 ‘In. 

Now, the deviance is a monotonically decreasing function of 
JL (0) I so minimizing the deviance will maximize the 
likelihood. 
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2. Step-by-step calculation of the exact likelihood (or deviance) 
for pure MA models. Also, steps A through F calculate the ELR's 

of w and the columns of X, so if w is w in A then 2 is 2; in step 

F and is a Xet, a column of X is w in step a, then ~.i is i in 

step F. 

A. Obtain the CLS residuals, a0 = Hw, by the recursion, 

. 

B. 

* 

sot 
= 0, t = l-q,...,0 

e(B)aot = wt, t = 1, l . . ,n 

Obtain elements of G'G by (1) calculating the a-weights, (2) 
calculating sum of squares and cross products of the 
r-weights which are the first row and column of GIG, and (3) 
calculating the remaining elements by subtracting single 
r-weight products from the upper back diagonal element, 
starting from the first row or column elements. Now in more 
detail, the n+q r-weights are obtained by the recursion, 

(1-e,b-e2b2- l ** -eqbq) (rg+rlb+r2b2+ l ** +?r 
b�+q 

1 1, 
= 

n+q 

for all b. The sum of squares and cross products of the r 
n+q-j 

weights, 7.. = 
13 kzirkrk-if are obtained from the recursion, 

(1-e,b-1-e2b-2- l ** -8qb-q) (+Y~ 

= (Sg+~~b+a2bZ: 

o+~o 
I 
lbl+vo 2b2+ l ** +T~ n+q-lbn+q-l) 

I f 
l ** +?r 

n+q-1 
bn+q-l 

1‘ 

for all b, where the first q 7. .Is, 7. o to 7 
13 o,q-1' are the 

first row and column elements (since 7:. = 7.. 
13 

and in 

particular 7 
0,j = 'j o) of G'G = [7ijl. TheA'the remaining 

elements are obtained by a diagonal recursion, 

Xl = 7i-l,j-1 - "n+q-i"n+q-j' 
i = 1, l . . , q-l, 
j = 1, l . . , q-l 
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C. Obtain G'HW = Gfao by a recursion, 

(+b-e2b2- .** -eqbq)(no+nlb-1+n2b-2+ 0.0 +nn+q-lb-n+q-l) = 

(a0,1-q+a0,2-q b+a 0 3-qb2, l ** +aofnb n+q-1 1‘ - I 

D. 

. 
E. 

* 

F. 

for all b, and [nt] = G'Hw = Gfao for nt, t= 0 l ** q-l. 

Solve the regression equation, (GIG);, = G'Hw, (e.g. using a 

Cholesky decomposition of G'G) and get IG'GI at the same 
time. 

Obtain the ELR's by the recursion, 

6(B)it = wt , t = l-q, l ** ,n 

where the first q elements of wt are G* as shown in (3.4)‘ 

and i t = 0 for t < l-q. 

n 

Obtain the deviance = ~G'GI~/" 1 it. 

t=1-q 
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3. Step-by-step description of the estimation of regression models 
with ARMA errors using a three stage procedure with GLS 
regressions to obtain estimates of both j3 and 9. The initial 

"(0) regression parameter estimates, j3 are OLS regression 
estimates (9 = 0, 8 = 0); the initia; AR parameter estimates, 
p, are regression estimates of z (0) =w-xp '"(O) on Z. 

A. 

* 

B. 

C. 

D. 

Estimate the MA parameters, ;(i) , using 

(i-1) = w 

Zt t 

_ x;pW1) 

Zt 
f(i-l) = +tiB1) (B)z(i'l) 

t 

is ARMM?, 9) 

is MJUq) 

Estimate $(i) by nonlinear least squares 

A (i) Estimate the regression parameters, /3 

Wt 
f tiB1) = ,# tiB1) (B)w 

t 

xf(i-l) I = +tiB1) (B)Xl 

t t 

wf = &),f(i-11, jif = cWxf 

is regression + MA(q) 

is regression 

Estimate the autoregression parameters, 30) 

(i) 
Zt =w t t=p+l, l ** , n is ARMJQ?, 9) 

,(i) = columns that are the lags of z (0 

-,(i) = &),(i), $i) = &),(i) 

Check for convergence and repeat steps A - C until iteration 
converges. 
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