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The problem of initializing the Kalman filter for nonstationary time series 

models is considered. Ansley and Kohn (1985a) and Kohn and Ansley (1986) develop 

a "modified Ka lman filter" for use with nonstationary models to produce estimates 

from what they call a "transformat ion approach". We show the same results can be 

obtained with a suitable in itialization of the ordinary Kalman filter. Assuming 

there are d starting values for the nonstationary series, we initialize the Kalman 

filter using data through t ime d with the transformation approach estimate of the 

state vector and its associated error covariance matrix at time d. We give 

details of the initialization for ARIMA models, ARIMA component models, and 

dynamic linear models. We present an example to illustrate how the results may 

differ from results obtained under more naive initializations that have been 

Abstract 

* 

suggested. 

Keywords: modified Kalman filter, starting values, ARIMA model, ARIMA 

component model, dynamic linear model. 



1. Introduction 

The Kalman filter and variations of it have been widely advocated in recent 

years for time series filtering, prediction, interpolation, signal extraction, and 

likelihood evaluation. The algorithms requ re two things: (1) a known 

state-space model suitable for the problem, and (2) an estimate of the initial 

state vector and the variance of the error n this estimate. For stationary time 

series models the usual initialization uses the unconditional mean and variance of 

series models this approach is not available 

covariances change over time and are typical 

slate mean and covariance. 

the initial state (see Akaike (1978) and Jones (1980).) For nonstationary time 

since uncond itional means and 

ly only calculable given the initial 

initializing the Kalman filter for nonstationary time series models. These 

include (1) letting the variance of the initial state be "large" (Harvey and 

Phi llips 1979, Burridge and Wallis 1985); (2) usi ng the information filter with 

the inverse of the initial state variance set to 0 (Kitagawa 1981); (3) augmenting 

the state vector for the differenced data with d observations (when differencing 

is of order d) and initializing at time d since the augmented part of the state 

vector is then known exactly (Harvey and Pierse 1984, also Harvey 1981 and Jones 

1985); and (4) running the Kalman filter with initial state estimate and variance 

0, and then computing an adjustment to yield results invariant to the mean and 

variance of the initial state (DeJong 1988). There are problems with 

Various approaches have been taken to dealing with the difficulties of 
* 

implementation and justification for al 1 these approaches. Ansley and Kohn 

(1985a), hereafter AK, point out that 1 etting the initial variance be "large" is 

subject to numerical difficulties, and that the information filter cannot be used 

for all problems, such as an ARIMA (autoregressive-integrated-moving average) 

model of order (p, d, q) with p t d < q t 1. The Harvey and Pierse (1984) 

approach does not directly apply to component models. Also, their augmented state 
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vector can be considerably larger than needed. (In the "airline model" of Box and 

Jenkins (1976), the dimension would be 27, much larger than the minimum dimension 

of 14.) DeJong's (1988) approach appears to require substantial computation, 

since it involves running the Kalman filter for an additional vector and square 

matrix of the same dimension as the state vector. While DeJong's (1988) approach 

has some justification, in many cases it goes too far (as do (1) and (2)), since 

we are not completely ignorant regarding assumptions about the initial state 

vector, only about the part due to the nonstationary starting values. 

The most rigorous approach to dealing with the problems of initializing the 

K'alman filter in the nonstationary case is that of AK and Kohn and Ansley (1986). 

They present a "modified Kalman filter" that allows the variance of the part of 
* 

the initial state due to the nonstationary starting values to be infinite. They 

provide justification for their approach by showing it produces the same results 

as a "transformation approach" that eliminates the effect of the nonstationary 

starting values. (They also note the Harvey and Pierse (1984) approach will give 

the same results in problems where it applies). Kohn and Ansley (1987) show that 

the transformation approach estimate has minimum mean squared error (MMSE) among 

all linear estimates that eliminate the effect of the starting values. The 

transformation approach estimate is appealing because the estimate with MMSE among 

all linear estimates will depend on assumptions about the starting values (see 

Bell (1984) and Result 2 in section 4 later), and it is these starting values 

about which we have no basis for assumptions in the nonstationary case. A 

drawback to the modified Kalman filter is the "modified" part; existing Kalman 

filter software cannot be used. It is also conceptually complex because, as 

pointed out by AK, in letting the variance of the starting values go to infinity 

one cannot interchange the filtering and limiting operations. 
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The primary objectives of this paper are to show how the ordinary Kalman 

filter can be initialized to yield the transformation approach estimates of AK and 

to provide specific details of our initialization for ARIMA models, ARIMA 

component models and dynamic linear models. If d starting values are required for 

the nonstati 

transformat 

time d, and 

these quanti 

u'se the modi 

1, . . . . d. 
* 

onary series Y(t), then we initia 

on approach estimate of the state 

the variance of the error in this 

ties is not difficult. In genera 

ize the Kalman filter with the 

vector at time d using data through 

estimate. Direct computation of 

, our approach avoids the need to 

need to do any recursions at times fied Kalman filter and avo ids the 

Section 2 sets up the basic problem and notation, and section 3 reviews the 

transformation approach and gives our initialization of the Kalman filter in the 

general nonstationary case. Section 4 establishes invariance and optimality 

results that are of interest in their own right, and provides a simple proof that 

our initialization approach in fact yields the transformation approach estimates. 

Sections 5 and 6 give specifics for our initialization of the Kalman filter with 

ARIMA component models (that for ARIMA models follows as a special case) and a 

dynamic linear model, respectively. Most of the paper assumes that none of the 

first d data points are missing, though any pattern of missing data subsequent to 

time d is allowed. Section 7 discusses extension of our approach to the case when 

some of the first d data points are missing. While our approach has some 

limit ations in this case, it should be kept in mind that many time series problems 

do not involve missing data, and still more do not involve missing data in the 

first d time periods. (Here d is the order of the "differencing" operator; with 

only first differencing (d=l) this is assured.) Section 8 gives an example to 
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illustrate potential differences between our approach and more naive 

initializations as discussed above. 

For simplicity in what follows we shall assume all random variables are 

normal with mean 0. Nonzero means are easily handled by subtracting them off. If 

we do not have normality we simply replace conditional expectations by linear 

projections, and optimality results refer only to linear estimators. We will deal 

only with univariate observations, Y(t), though the ideas extend easily to the 

case of Y(t) a vector. 

2. Preliminaries . 

We will consider the usual state space mode 

vector%(t) and scalar observations Y(t): 

xv+u = Ewgt) + Gwgt) 

1 with the f x 1 state 

(2.1) 

w> = ~‘W~W) •t 7(t). (2.2) 

We are concerned with situations where the state vector at each time point depends 

linearly upon a d x 1 vector of "starting values" 2, along with elements of 

stationary time series (hereafter, stationary elements). Then, as in AK, the 

state vector may be written as 

X(t) = W)g + v(t) (2.3) 

where g(t) is an f x d (nonrandom) matrix and y(t) an f x 1 random vector. Also 

Y(t) = A'(t)2 t w(t) (2.4) 

where A'(t) = H'(t)!(t), while v(t) and o(t) are linear combinations of stationary 

elements. For most of the paper we assume that the n values Y(l), . . . . Y(d), 

Y&-&l)' -**, Y(t,) are observed so that none of the first d values of Y(t) are 

missing. Collecting (2.4) for t=l, . . . . t, we write 
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where 1 = [Y UL --*, W,)l’, 0 = b(l), . . . . w&J 

rows A’(l), . . . . /j’(t,). 

(2.5) 

I’, and the n x d matrix A has 

Let the notation Yi for isj denote the vector of observations [Y(ti), . . . . 

y(tj)l’Y in particular, !A= [Y(l), . . . . Y(d)]' and gi = [o(l), . . . . dd)l’. 

We make the notational convention that terms with 13 or ~3, etc., are not present 

in the expressions where they appear if i>j. Terms with vectors or matrices with 

a zero dimension are also not present. Such "terms not present" can generally be 

taken as 0 (appropriately dimensioned), as should be clear where this occurs. t 

These conventions allow the expressions given here to apply directly to various 

particuilar cases, including the stationary case. 

3. The Transformation Approach and Initializinq the Kalman Filter 

AK define the transformation approach in general as follows. Let the non- 

singular n x n transformation matrix d = [JI' J2']' be such that JIA is a d x d 

nonsingular matrix and J2A = 0. Let ZI = J,v = JIAg t $0, and z2 = J2H = J2g 

(note (2.5)). Let X be a random variable for which, 

x = CJ'TJ t c 

with < a linear combination of stationary elements and CJ a d x 1 vector in the 

space spanned by A(l), . . . . A(t,). For any b such that CJ = A'b, we have - - 

X - t~'l = (cJ'~ t <) - t~'(& t 0) = < - b'o. - - The transformation approach estimate 

of X using v that eliminates 12 is defined as 

ji = b'Y t E(X - b'Y]Z2) = b'x t E(c - j?'4Z2) - - - - 

(3.1) 

with Var(X - !?) = Var(< - b'wlL2). - - 
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These can be computed since the covariance structure of (0, <) is known. Kohn and 

Ansley (1986) observe that the result (3.1) is invariant to alternative choices of 

the transformat on matrix J and vector b satisfying the given conditions. 

We can eas i ly apply these results to estimation of the state vector X(t). 

Let Ad be the d x d matrix composed of the first d rows of 6. Assuming that the 

matrix Ad is nonsingular (as will be true in the cases we consider here), a trans- 

formation satisfying our requirements is 

-A &+l . . . 

From (2.3) and (2.5), X(t) - g(t)[/Id' CI]! does not involve 2. Here the f x n 

matrix g(t)[IIdl 01 plays the role of b in (3.1) (since we are estimating an f x 1 

vector). The transformation approach estimate of the state X(t) based upon the 

data v is then 

with Var[x(t) - $t]n)] = Var[c(t) - ~(t)IId1w~]~2]. 

Notice that 

(3.2) reduce 

Var[x(t) - 5 

if d=O the g(t)fio'ld term in (3.2) is not present, and the results 

to the usual stationary case results, $(t]n) = E[X(t)]Y], and 

>lVl* (tin)] = Var[x(t 

The only restriction on 

!!& Our approach to initia 

From (2.3) write X(d) = gg t 

dependence on d in 2 and v. 

present in (3.2) and we have 

t or n above is n 2 d (so that fi in (2.4) contains 

lizing the Kalman filter is to use (3.2) with t=n=d. 

y where for convenience in notation we suppress the 

Then using only the data $ = Ad2 t pi, z2 is not 

(3.2) 
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$(dld) = Wd'~;, 
(3.3) 

Var[!?(d)-X(dld)] = Var(v - WdIgfi ). 

Use of (3.3) applies the transformation approach of AK to the smallest set of 

observations that will allow removal of the dependence of the state vector on 

22. Once the estimate and covariance matrix in (3.3) are computed, the ordinary 

Kalman filter can be used for the remaining estimated state vectors and covariance 

matrices. In the next section we show that this approach in fact produces the 

transformation approach estimates. Notice that if there are any missing values 

iubsequent to time d, the Kalman filter can handle them as in Jones (1980). In 

sectiorl,7 we discuss how the approach can be extended to the case of missing data 

in the first d observations. 

4. Properties of the Estimates 

The "starting values" 12 that are eliminated by the transformation approach 

are random variables used to "start-up" a stochastic difference equation such as 

an ARIMA model. Since there are multiple choices for starting values (some 

examples will be given shortly), this raises the question of whether the 

transformation approach results are the same for different choices of starting 

values 12 to eliminate. To consider this let g2 be an alternative d x 1 random 

vector of starting values, such that 

222 = 9 f 

where is a x d matrix and is a 

stationary elements. v and using 

. -2 

x linear combination 

(4.1). as = fice1g2 

(0 - and X $"!-l1/2 + - g'c-lf), us ing = (Y', - we see 

(4.1) 
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that X - b'Y does not depend on 92, in fact X - b'! = { - b'o as before. So the I- 

transformation approach estimate of X eliminating 22 is 2, = b'Y t E(< - l~'wlZ2) 

= jz. We thus have the following. 

Result 1: 

The transformation approach estimates (3.1) and (3.2) are invariant to 

alternative choices of starting values 7~ as in (4.1). 

Examoles: 

(1) For an ARIMA (p,d,q) model with observations beginning at t=l: 

(a) Kohn and Ansley (1986) use TJ = [Y(l-d), . . . . Y(O)]' and Ansley and Kohn 
w 

(1985b) use 7~ = [Y(O), . . . . Y(l-d)]’ 

(b)* In section 5 we use r~ = [Y(l), . . . . Y(d)]'. 

(c) An obvious alternative is 2 = [Y(j), . . . . Y(jtd-l)]' for any j before, 

during, or after the observed data. 

(2) For ARIMA component models (see section 5 for notation) with 

observations beginning at t=l: 

(a) Bell (1984) uses 32 = [',' !*'I' with 2, = [S(l), . . . . S(ds)]', 

N, = WL . . . , WW, 

(b) Kohn and Ansley (1987) use 2, = [S(l-ds), . . . . S(O)]' and 

,* = [N(l-dn), . . . . N(O)]'. N 

(c) In section 5 we use 2, = [S(d-dstl), . . . . S(d)]' and 

,* = [N(d-dn+l), . . . . N(d)]'. N 

(d) If there are no common roots in 6,(B) and 6,(B), another choice is 

g = CW), a*-, Y(d)]' (see (5.11)). 

That these alternative choices of starting values satisfy (4.1) may be seen from 

results given in section 5. 

The next result concerns optimality of the transformation approach estimate i 

of (3.1) (or g(t]n) of (3.2)). Consider the following assumption. 
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Assumption A: The vector 1: is independent of 2 and 5‘. (For estimating z(t) 

replace c by v(t).) 

We can easily prove that the transformation approach estimate is MMSE among 

& linear estimates under Assumption A, and then use this result to provide a 

simple proof of a result of Kohn and Ansley (1987) that the 

approach estimate always MMSE those linear that eliminate 

effect of values. 

Result 

Assume we the state model (2.1) (2.2) with of Y(l),..., 

observed. Then Under Assumption AK's transformation yields 

* 
the MMSE linear estimate !? = E(X]Y) (or $t]n) = E[X(t)]Y]). (b) (Kohn and Ansley 

ing v such that X-X does 1987, Theorem 2.1) Let 

not depend on g. Then 

X = ji almost surely. 

X be any linear estimator of X us 

Var(X-2) 5 Var(X-X) with equality 
A 

holding if and only if 

(An analogous result holds for x(tln).) 

Proof: To prove (a) notice from X - b'Y = < -- - b'o and (3.1) it follows that X - 2 - - 

= I - b'w - E(c - b'olZ2). c, g, and z2 = J2g are independent of z1 = I$,~!!, - - - - 

under Assumption A, so X - ? is independent of II. But < - b'g - E(< - b'wlg2) 

is orthogonal to, and thus independent of z2. Since 1 = J-l[$ Z,']' we have 

1 independent of X - ? proving !? = E(XIY). Similarly f(t]n) = E(&t)l'f). 

To prove (b) notice that it holds under Assumption A since then i is MMSE. 

But since X - !? and X - X depend only on w and c (not g), and Assumption A does 

not deal with the covariance structure of (w, 0, result (b) holds in general. 

It holds similarly for x(tln) in the sense that Var(X(t) - X(tlW - 

Var(X(t) - i(tln)) is positive semi-definite for suitable i(tln). QED 

Result 2(a) tells us when the transformation approach estimate is optimal, 

but says nothing about the suitability of Assumption A in any particular 

application. (Bell (1984) discusses consequences of Assumption A and an 

alternative assumption in the signal extraction problem with the entire sequence 

W!, t = 0, 2 1, + 2, . . . available.) Result 2(b) is appealing because there is 
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typically no basis for explicit assumptions about the starting values 2. In such 

cases one cannot hope to obtain optimal estimates and it is sensible to consider 

sub-optimal estimates whose error covariances are known (the class X), rather than 

guess at assumptions for the starting values in an effort an effort to 

achieve the optimal estimates. Result 2(b) establishes that i is optimal 

within this restricted class of estimates. 

We can use Result 2 to establish the equivalence of the transformation 

approach and our initialization coupled with use of the ordinary Kalman filter. 

By Result 2(a), under Assumption A, $dld) in (3.3) is the optimal 

e‘stimate, E[X(d)lYd]. Subsequent application of a Kalman filter/smoother 

will yield optimal estimators and their error covariances for every successive 
I 

state. Now since both the transformation approach and the Kalman filter/smoother 

initialized by (3.3) produce MMSE estimates under Assumption A, they must coincide 

under that assumption. But since neither of these approaches uses assumptions 

about TJ in deriving the estimators, they must produce the same results regardless 

of what is true of the starting values 22. We thus have the following. 

Result 3 

If we have the state space model (2.1) and (2.2) with all of Y(l),..., Y(d) 

observed, then the Kalman filter initialized by (3.3) yields the transformation 

approach estimates of X(t) using $ for t>d. Applying a Kalman smoother yields 

the transformation approach estimates of X(t) using II. 

5. Initialization of an ARIMA Components Model 

this section we show how to apply the initialization ideas of Section 3 in In 

a signa 

In part 

1 extraction framework where the 

icular, suppose the observed ser 

Y(t) = S(t) t N(t). 

component models are of the ARIMA form. 

es Y(t) satisfies 

(5.1) 
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The model the component given 6,(B)S(t) U(t) $,(B)U(t) 

Bs(B)b(t) S,(B) 1 S,IB ... 6, is polynomial the 

operator (BS(t) S(t-1)) degree whose are the circle, 

= - - - psBps a in of ps zeros 
, 

the circle, = - - - qsBqs a in of 

degree whose are or the circle, b(t) white 

ilarly, the for noise be by variance Sim 

= and 

V(t) uncorrelated 

(B)V(t) = @n(B)c(t) * We assume the time series U(t) and 

ith each other. The polynomials S,(B), 4,(B), and O,(B) 

aYe of degrees dn, pn, and qn respectively, and are defined in an analogous way to 

the corresponding signal component polynomials. We assume that S,(B) and 6,(B) 
* 

have no common zeros. Let is(B) = 1 - i,IB - em. - ~s,pstdsBPStds = &,(B)+,(B), a 

polynomial of degree pstds, and similarly in(B) = &,(B)$,(B), a polynomial of 

degree pntdn. 

Following Kohn and Ansley (1986) a state space representation for S(t) of 

minimal degree fs = max(pstds,qstl) is 

(5.2) 

S(tt1) = &tl) 

In (5.2) the fs x 1 state vector has the components X,I(t) = S(t) and 

pstds - 
Xsi(t) = 1 $,jS(t-lti-j) - ;" 0,jb(t-lti-j) for i=2, . . . . fs. 

j=i j=i-1 

The fs x 1 vectors Iis = (1, 0, . ..O)' and 5 = (1, -OS1 
, 

. . . -0, fs-l)’ and 
, 

the fs x fs matrix 

as,1 l l 

. . 

Es= : 

is,fs-1 0 0 l I* 1 
- G,fs 0 o***o 
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where $s j 
7 

= 0 for j > pstds and 0, j = 0 for j > qs. In an analogous manner a 
, 

state space representation for N(t) of degree fn = max(pntdn, qntl) is 

XnCttl) = EnXntt) + gncCt+l) 
(5.3) 

N(tt1) = +X(ttl) 

From (5.1), (5.2), and (5.3) it follows that a state space representation for Y(t) 

is 

gttl) = m(t) t Gg(ttl) 

Y(tt1) = H'X(tt1) - - . 

where h) = [X;(t), &WI, g(t) = [b(t),c(t)l, ;‘= [tik, $1, * 
and 5 = diag((;,, 5,) where diag (A, I$ denotes a block diagonal 

F = diag (E],, F,), 

matrix of 

awropr iate dimensions. From the way the state vectors are defi ned we can write 

X,(t) = @;+l-rs t 8 bt+I-qs -s-t 

X,(t) = QnN;+l-rn t 0 P-qn -n-t 

(5.4) 

(5.5) 

where rs=max(pstds,l), rn=max(pntdn,l), and the fs x rs matrix gs and the 

fs x qs matrix es are given by 

is = 

0 0 

i s,rs is,rs- 

? i s,rs . 
. 

0 0 

. . . 0 1’ 

1 
. . . 

is,2 O 

. . . 
is,3 O 

. . . i 0 s,rs 

g(fs-rs) x rs 

OS = 

0 0 

-8 s,qs , -0, qs- 

0 -8 
s,qs . . 

. . . 0 

1 
. . . 

-es 1 , 
. . . 

-8s 2 , 

-8 
s,qs 

O(fs-qs-1) x qs 

. . 

. . 

0 0 

(5.6) 
. 

The fn x rn matrix Ip, and the fn r( qn matrix en are defined analogously. From 
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(5.5) then 

(5.7) 

where LI = diag (Ip_,, $) and ?I = diag (es, en). 

Given the models for S(t) and N(t) there are ds starting values for S(t) and 

dn starting values for N(t) needed. We shall take 5, = [S(dtl-ds),...,S(d)]' 

where d = ds t dn as the starting values for S(t), and ti, = [N(dtl-dn),...,N(d)]’ 

as the starting values for N(t). Given 6,(B), following Bell(1984) we define the 

quantities 

j=t t=l, . . . . ds 

j+t t=l, . . . . ds 

s,l A;,t-l + *+- + %,ds A;,t-ds if t > ds 

s,l A;,ttI + *** + 's,ds A;,ttds iftI0. 

Let &) = [A; t,...,A&l, , 
and define the values ti by equating coefficients of 

Bj in (Ei t c;B t .$B* t...)hs(B) = 1. In the same way given 6,(B) we define 

An(t) and ES. Then we have that 

if t=dntl,...,d 

ift>d 

&(t-dn)S, t (-l)Ps 
dn-t 
Jo -$J(t+ds+i > if t 5 dn 

where ps is the number of times (1-B) appears in 6,(B). An analogous 

representation holds for N(t). 

Making use of (5.8) and the analog for N(t), one can 

dtl-rs 
Sd 

dtl-rn 
Nd 

t 

S 

Crs 0 

0 
n 

Cm 1 
show that 

(5.8) 

Urns -d 

vi" 

(5.9) 
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where the rs x ds matrix fi:s and the rs x (rs-ds) matrix C& are 

& = 

A&-P 

. 

. 

. 

4; (0) 

(5.10) 

and ms = dtl-rstds. The rn x dn matrix $,, and the rn x (rn-dn) matrix $., are 

d'efined analogously, and mn = dtl-rntdn. Furthermore, from (5.1) and using (5.8) 

and the analog for N(t), we write $, = $, t I$, as 
* 

S -* 
!; = !d I I t s dst 

C&j 
N -* 

where the d x d matrix fid = [$ /$ 

matrix $ given by 

n dntl 
+ i&J (5.11) 

3 with the d x ds matrix /Ai and the d x (d-ds) 

- ids 

0 0 � l l 

cds x d-ds 

The d x dn matrix $ and the d x (d-dn) matrix $ are sim 

be shown by the same arguments as in Bell(1982) that when 

common zeros Ad will be nonsingular. 

. 

ilarly def 

6,(B) and 

ined. It can 

S,(B) have no 
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We will initialize the Kalman filter at time d so that making use of (5.7) 

when t=d and the relationship in (5.9) we have that 

X(d) = 2 
Ud 
ms- 

+ e, 

!g" 

dtl-qs 
bd 

dtl-qn 
cd 

(5.12) 

^ -- 

where g = t1 diag($,, A:,) = diag(?,A;,, $,I$,). By comparing (5.11) and 

(5.12) we can estimate X(d) by 

. &d(d) = ?A&;. 

Let ks = min(ms,dstl) and kn = min(mn,dntl), and define the r 
I 

if = [grs x (ms-ks)' CIs], the d x (dtl-ks) matrix c?j = [ed x 

(5.13) 

x (dtl-ks) matrix 

(dstl-ks)' C& 

the rn x (dtl-kn) matrix $, = [or, x (mn-kn)Y $,,I and the d x (dtl-kn) matrix 

ii = [gd x (dntl-kn)’ 
$1, then it can be shown that 

Var[XW) - &d/d)] = bj diag[Var(iis), Var($")] lj' 

t diag[oi $J3;, &&I + 9 + 9’ (5.14) 

- - 
-s -n 

-1 - 
where lj = diag(ts, $.,){diag(Crs, &,) - diag($,, $n)Ad [$ $I> and 

In (5.14) Var(LJ,ks) is a covariance matrix from the ARMA(ps,qs) model for U(t), and 

Var(y!j") is a covariance matrix from the ARMA(pn,qn) model for V(t). McLeod 

(1975, 1977) shows how to compute such covariances. Cov(lJis, bitI-qs) contains 

the elements 



- 16 - 

i 

0 ifj >t 
CWJWLbW) = 

'itit- j ifj St 

with (J$ t $TB t.. .) = $'(B) = S,(B)$sI(B), and Cov(~~", ~j"-~~) contains the 

similarly defined elements Cov(V(t),c(j)). We thus have our initialization for 

ARIMA component models. 

Result 4 (Initialization of the Kalman Filter/Smoother for ARIMA 

Component Models and Siqnal Extraction): 

Let Y(t) = S(t) t N(t) where the components S(t) and N(t) satisfy the ARIMA 

iodels following (5.1), with state space representations for S(t), N(t), and Y(t) 

in (5.Q, (5.3), and (5.4). Then the same results as the transformation approach 

(and AK's modified Kalman filter/smoother) are obtained by initializing the 

ordinary Kalman filter/smoother at time d with $(dld) = HI&'y!j (see (5.13) and 

definitions preceding) and error covariance matrix given by (5.14). 

Special Case: A Simple ARIMA Model 

The preceding results easily specialize to provide an initialization of the 

Kalman filter for a simple ARIMA model, t(B)&(B)Y(t) = Q(B)a(t) (to eliminate 

?l=!$ * Drop N(t) from consideration so Y(t) = S(t), let S(B)Y(t) = W(t) = U(t), 

and drop the "s" indication from all relevant quantities since they now refer to 

w> * Now S(B) = 6,(B), in which case Ad = I. Then the estimate (5.13) becomes 

(5.15) 

where ?I corresponds to 4(B) = $(B)&(B) as in (5.6), and fir = [!(I-p),... A(O), 

id]' with the A(t) defined from S(B) as in (5.10). Also (5.11) reduces to yd = Sd 

and $C, corresponds to PJ, so (5.14) reduces to 
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VarP(d) - g(d]d)] = q,~Var[#!$~'~I't of ee' 
(5.16) 

where 8 corresponds to O(B) as in (5.6), C is obtained from S(B) as in (5.10), 

r=max(ptd,l), and m = 2dtl-r. 

The covariance initialization (5.16) is, apart from slight differences in 

notation and approach, the same as the initialization of the stationary part of 

the modified Kalman filter at time 0 given in Ansley and Kohn (1985b, section 4). 

?hey give an expression (Ansley and Kohn 1985b, (2.11)) for X(O) that is analogous 

to (5.u) for one component, but with everything translated back d units in time, 

including defining 12 = [Y(O)), . . . . Y(l-d)]'. By initializing at time d, we avoid 

the need to do any recursions at times t = 1, . . .,d, and avoid the need to use the 

modified Kalman filter. If there are no missing observations, then the 

transformation approach results for likelihood evaluation can be obtained by 

simply differencing the data and working wi 

= S(B)Y(t) (note AK, p. 1290). 

In using (5.15) and (5.16), we assume 

This is essentially assuming that the time 

th the stationary ARIMA model for W(t) 

the stationary distribution for Wi 

series W(t) started in the remote past. 

However, we may wish to investigate the possibility that one or more zeros of 4(B) 

may be on or inside the unit circle. Enforcing the stationary assumption on 4(B) 

presents theoretical and computational difficulties in this case. When we are not 

willing to make the stationarity assumption for W(t), we can incorporate 4(B) into 

6(B) and use (5.15) and (5.16) with i(B) replacing S(B) and $(B)=l. Here we need 

r=ptd starting values for Y(t), say 12 = 1:. We now initialize the Kalman filter 

at time t=r, and the results (5.15) and (5.16) simplify to $r]r) = g,Y'i and 
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Var[x(r) - g(rlr)] = o!$,'. A similar approach can be used with the ARIMA 

components model to avoid the stationarity assumption on U(t) or V(t) or both. 

6. Initialization of a Dynamic Linear Model 

In this section we illustrate how the initialization ideas of section 3 apply 

in the framework of a regression model with time varying parameters. In 

particular, suppose for t = 1, . . . . n that 

w> = H’W &W + y(t) (6.1) 

ect, = y(t-1) t L(t). (6.2) 

Here Y(t) is an observed dependent variable, l-J'(t) is a known 1 x d vector of 
* 

independent variables, &(t) is a d x 1 vector of time dependent parameters (the 

unknown state vector), E is a known d x d matrix, the y(t) are iid normal random 

variables with mean zero and variance o2 
Y' 

and the i(t) are iid d x 1 normal random 

vectors with mean 0 and Var[L(t)] = Cr. Equations (6.1) and (6.2) are a 

particular case of the dynamic linear model of Harrison and Stevens (1976), and 

the time varying parameter regression model of Machak, Spivey, and Wrobleski 

(1985). Following the approach of section 3 we let the starting values be 

!I = &W (6.3) 

Then it follows directly from (6.1) to (6.3) that 

(6.4) 

where the d x d matrix Ad = [(E') -(wi(l), . ..) ([')-'t-l(d)] where (E')-' denotes 

the matrix [(F')-I]' > the d x (d-1)d matrix 



jj’ WE -1 

0 
. 
. 

ii 

0 

H’ UK 
-2 

l ** jj’(l)[ -(d-l) 

tJ'(2)[-I l ** H'(2)! 
-(d-2) 

1 
. . 

!& = . . 

;W-UE -1 . . . 
0 . . . 0 I 

the vector 5: = [~'(2), . . . . g'(d)]', and 1: = [y(l), . . . . y(d)]'. Then, assuming 

/id is nonsingular, the transformation approach estimate of &(d) based upon I!, is 

;(d/d) = Ad' 1; . (6.5) 

it is easily verified that 

V*r L&(d) - ;(dlW = $&j + 0; &-j)@$) (6.6) 
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where the (i,j)th element of cd = Var(~d&-&) is given by 

d-i 

4!fl 
H'(i)~-~~,(E')-(e+i-j)H(j) if 1 5 j I i I d-l 

i-l 
ij = 

0 ifl<j<i=d 

n ji 
ifl<i<j<d 

The initialization (6.5) and (6.6) is easily computed, and the Kalman filter can 

then be used with the remaining data to compute transformation approach estimates 

of the state vector g(t) for likelihood evaluation when estimating ay and Cc, or 

for prediction. 

7. Extension to the Case of Missinq Data in the First d Time Points 

If Y(t) is missing for one or more time points in t = 1, . . . . d, then we do 

not have all the rows of the Ad matrix defined in Section 3, and we cannot simply 

use data observed up to time d to eliminate 2. We can use the first d observed 

data points, Y(tI), . . . . Y(td), to eliminate the effects Of 2 if Ad = 
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[Au+ 7 -**,j?(td)l' is nonsingular. But this Ad may be singular depending on the 

pattern of missing data and the model in section 5, or depending on the 

independent variables and the model in section 6. 

To handle the general case of Ad singular, we need to find the first m for 

which Am = [A(tl), . . . , A(t,)]' has full column rank. Then collecting the 

relations (2.4) for t = tl, . . . . t, (assume t, I n) we have 

(7.1) 

where Am is m x d and has rank d I m. We apply the transformation approach 

d?rectly to Ym. 

To-do this let Am = Q [I 4 
be the Q-R decomposition of b (Dongarra, et. al 

1979, Chapter 9) where Q is an m x m orthogonal matrix and ,R is a d x d 

nonsingular upper triangular matrix. Partition Q as [Q1 Q2] where CJ1 is m x d and 

Q2 is m x (m-d). We define a transformation from $, to z1 and z2: 

Here z1 = 2 t (&Am)“&~~, and z2 = &WA does not depend on 2. (Note 

(7.2) 

Q2A, = Q2QlR = 0.) From (2.3) we can initialize the Kalman filter at t=t, with 

i(tmltm) = H(tm)(&,fim)-l & xi + E [f(tm)Iz,I, 

where ECtm) = ftt) - Qtt)(AI(l fim)-l& $!A’ The analogues to Results 2 and 3 follow 
immed iately (with z1 replacing $!, in Assumption A). The QR decomposition 

simpl ifies the computations since (&Am)-'&, = _R-'Q;. 

Var@(t,) - ~(t,lt,)) = Var(f(t,) I$) 

(7.3) 

(7.4) 
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The Kalman filter initialized with (7.3) and (7.4) produces transformation 

approach estimates &tit), g(ttlIt), and their error variances, only for t 2 t,. 

This is sufficient for problems such as prediction or signal extraction that use 

all the data $,. If m > d, use of (7.3) and (7.4) leaves out some terms needed 

for likelihood evaluation as in Kohn and Ansley (1986). This can be accounted for 

by augmenting the transformation (7.2) to include 

r I 1 

A(tm+l) 
. 

The desired likelihood function is p(z,, z3) = P(Z~)P(Z~IZ~) where 

p(Z,,z,), ~(5~) and p(z3Iz2) are respectively the joint density of z2 and z3, the 

marginal density of z2, and the conditional density of z3 given z2. The Kalman 

filter initialized with (7.3) and (7.4) can be used to compute p(z3Iz2)' so we 

must additionally compute p(Z,) directly, which is not computationally burdensome 

unless m is large relative to d. Notice that if m=d then z2 disappears from (7.2) 

and use of the Kalman filter initialized by (7.3) and (7.4) 

is all we need. 

It is diff 

(7.4) since the 

location of the 

expressions for the evaluation of (7.3) and 

will depend on the model involved and the 

Specific problems are best handled on a case 

icult to give general 

form of the results 

missing data, etc. 

by a case basis. The ability to directly handle arbitrary patterns of missing 

data and the case of Ad singular is the primary advantage of the modified Kalman 

filter of AK. 
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Note on Transformation Aonroach Likelihoods 

AK (Theorem 5.1) makes an important point about transformation approach 

likelihoods, namely, that they are defined only up to multiplicative constants. 

For this reason, we did not bother to include the Jacobian of the transformation 

(7.2), which is jt?I-', in the likelihood defined above. The same consideration 

the Jacobian of the also applies to the previous case of Ad nonsingular, for which 

transformation given in section 3 would be lbdl-'. Excluding 

likelihood for the ARIMA component models of section 5, and us 

Ifidl-' from the 

ing the 

initialization of Result 4, results in precisely the same likelihood as that for 

ihe differenced data. This points out that the likelihoods are invariant to 

differqpt transformations or, conversely, to different choices of starting values 

to eliminate, & up to the multiplicative constants. As long as Am does not 

depend on model parameters (as assumed by AK), leaving out the Jacobian poses no 

problem for model estimation. If Am does depend on model parameters, however, 

this matter may merit more thought. (Such dependence occurs in ARIMA component 

models with AR operators handled as discussed at the end of section 5 to avoid 

assuming stationarity.) Even so, at least for the case of Ad nonsingular, we can 

avoid problems by choosing to always eliminate starting values ldl, since the 

Jacobian of the transformation analogous to that given in section 3 will then not 

depend on the model parameters. The results are again the same as using the 

initialization of result 4 and excluding lAdl-1 from the likelihood. 

8. Example 

Here we present an example to illustrate the potential differences between 

the initialization in this paper and more naive initializations as are discussed 

in the introduction. In Bell and Hillmer (1984, pp. 310-313) we considered the 

model (l-.26B)(l-B)(l-B12)Y(t) = (1-.88B12)a(t) with c$ = 16150 for the time 

series of employed males aged 20 and older in nonagricultural industries, using 
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data from the U.S. Bureau of Labor Statistics for the period January 1965 through 

August 197#9(176 observations). The "canonical decomposition" considered there 

has Y(t) = S(t) t N(t), with the seasonal and nonseasonal components following the 

models: 

(1 t B t 0.. t Bl')S(t) = 8 
S 
(B)b(t) 2 a,, = 82.11 

(1 - .26B)(l - B)2N(t) = (1 - .990B t .001B2)c(t) o; = 14412 

where es(B), a polynomial in B of degree 11, is given in the paper. These 

component models are consistent with the model given for Y(t). Subsequently, 

gurridge and Wallis (1985) considered this example to illustrate how the Kalman 

filter/smoother could be used to produce signal extraction variances for seasonal 
I 

adjustment. They initialized the Kalman filter at the first time point (t=l in 

our notation, t=O in theirs) with an initial state estimate of 0 and a "large" 

initial variance of P(110) = 10121. 

Figure 1 shows how the initialization affects the innovation variances, 

Var(Y(t) It-l), from the Kalman filter. Using the Kalman filter with the component 

models and the initialization (5.13)-(5.14) produces the same results as using the 

ARIMA model for Y(t) and the initialization (5.15)-(5.16), or the modified Kalman 

filter of AK suitably initialized, or using the stationary model for the 

differenced data (1-B)(l-B12)Y(t) and the usual initialization of the Kalman 

filter in the stationary case. The resulting logIOVar(Y(t)lt-1) for t = 14, . . . , 

176 are shown as the dotted line in Figure 1. The correspond ing results w ith the 

initialization used by Burridge and Wallis are the solid line in Figure 1. There 

appear to be important differences in the results, especially in the first half of 

the series. Interestingly, if the initialization P(OI0) = 10121 is used instead 

and compared to the results from the initialization of this paper, visually a 

pattern similar to that in Figure 1 appears, but the magnitude of the difference 
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appears only about half as great. This shows that the choice between alternative 

ways of initializing with a "large" covariance matrix is not as innocuous as it 

may seem. 
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