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- 
ABSTRACT 

The partitioning of a single space or rap region into triangles or 
*triangular regions has proved to be very useful in numerous 

diverse applications of geographic information systems. 
Triangulated irregular networks (TINS) have been successfully 
used in applications in elevation rodeling and representation, in 
network analysis and routing problems, in land use and 
hydrologic studies, in roadway design and landscape visualization, 
in nearest-neighbor search and zoning problems, and in rany 
other searching, sorting, and spatial data organization problems. 

This paper examines some of the key properties of triangulations 
in general, the Delaunay triangulation in particular, and 
especially focuses on those properties which permit easy 
manipulation and comparison of two data sets that have been 
organized into similarly triangulated data structures. Tools for 
“navigating through” triangulated data sets and for decorposing 
the triangles or for building additional structures upon the 
triangles are shown to behave well under transformations of data 
sets. These transforrations include joint triangulations, the 
sfmlW~eous decomposition of two spaces into triangular regions, 
which has the potential for providing additional TIN applications 
in the two-space case. 

The growing need to overlay two raps (of near-identical or 
different coverages) and to match or compare point features on 
those two raps will sake joint triangulation techniques sore 
important and sore useful every day. Compatible TIN coverages 
on both spaces permit straightforward comparisons between the 
spaces and provide a sound ratheaatical foundation for those 
comparisons. 



1. IDTBODUCTION 

The triangulation of a planar domain-partitioning it into a finite 
family of triangular regions-provides a key tool for automating 
the interplay among (1) finite sets, (2) finite combinatorial 

toPolo43Y. and (3) two-dimensional, infinite-set, continuous 
geometry/topology. A triangulation starts with a finite set of 
points (which will become triangle vertices), then builds a finite 
collection of line segments or triangle edges (recorded as point 
pairs), another finite collection of triangles (recorded or stored 
as point triples), and finite collections (implicit or recorded 
explicitly) of triangle adjacency relations and triangle edge 
inclusion relations. The triangulation begins and ends with 
finite sets; however, the resulting finite collection of 
triangles, edges, and vertices account for all of the infinitely 
many points of the continuous two-space that has been 
triangulated. A triangulation partitions* infinitely many points 

= of space into finitely aany managable sets of points, edges, and 
triangles, each of which requires only fixed storage to describe 
completely. These finitely aany sets are all well behaved, well 
studied, and well understood, and their topological and geometric 
structure lends itself nicely to computerization. 
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Figure 1. A set of points and a triangulation of those points 

The resulting lists used for recording the triangulation are: 

Points: 

U, B, C, D, E, F, 61 
Segments: 

(AB, AD, AE, AF, AG, BC, BF, CD, CF. C6, DG, EF, EG, F6) 
Triangles: 

{ABF, AD6, AEF, AE6, BCF, CDG, CF6, EFG) 

*In order to form a partition in the strict mathematical sense, 
edges do not contain their end points and triangles are open (i.e. 
they do not include their boundary edges or their vertices). 



2. CRNERAL TRIANGDUTION CONSIDERATIONS 

. 

* 

Obtaining a triangulation may be a goal in itself (in order to 
partition all of space in some useful fashion) or it may be an 
intermediate goal (as in generating an elevation model). There 
are many possible triangulations for rost point sets. (Just 
counting all of the possible triangulations for an arbitrary point 
set is a very hard open problem which has been solved in only a 
few special cases. Even the “easy” cases, such as “n points are 
vertices of a convex polygon” have corplex solutions.) 
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Figure 2. A finite set of points and three distinct triangulations 

Sore triangulations, such as the Delaunay triangulation (upper 
right in Figure 21, are more suited for certain applications. 
Host useful triangulations, including the Delaunay triangulation, 
can be built in Mnlogn) worst-case time, where n is the number 
of points on which to triangulate. Uith appropriate data 
structures, triangulations can be searched and updated quickly 
(often in O(lsgn) expected time). This paper describes some of 
those structures. A triangulated data structure will refer to any 
abstract data structure specifically organized to facilitate 
representing and accessing the elements of one or more 
triangulations and their topological and geometric relations. 
Some examples of triangulated data structures are Chris Gold’s 
binary adjacency trees [3 1, David Kirkpatrick’s triangulation 
refinement digraphs [4], and adjacency pointer structures such 
as DIHR or ‘winged edge” and TIGER, with possible enhancements 
to exploit special facts such as: every triangle has exactly 
three vertices and exactly three triangle neighbors. 



Before looking at specific triangulations and sose useful data 
structures in detail, this paper focuses on a specific application 
of triangulations that will be generalized later. Suppose that a 
triangulation is given and fixed for the aoaent. Rerbership of 
any point in space in any triangle is well-defined-the point is 
either in the triangle or not in the triangle-and easily checked. 
Fur thersore, if the point is in the triangle, its position in the 
triangle with respect to the three vertices can also be precisely 
defined. This well-defined position permits functions to be 
extended over an entire triangle when the functions are only 
defined at the three vertices. Furthersore this extension by 
triangles agrees on triangle overlap, and thus gives an extension 
to the whole space. The ability’ of a triangulation to extend 
point functions to all of space is a very useful property. 

a 3. FUNCTION ERTENSION PROPERTIES OF TRIANGULATIONS 

Elevation models and their classic utilization of triangulation 
methods typify the function-extension property of triangulation 
applications: elevations are measured at discrete sites in order 
to estimate elevations everywhere on a surface. Estimation at all 
non-measured sites is accomplished by averaging measured values 
at “nearby” sites; and the triangulation effectively determines 
(1) which sites are ‘nearby’ and (2) how those -nearby- sites 
should be weighted to produce the desired average. The triangle 
to which a non-measured site belongs assigns it three neighboring 
vertices of “nearby” sites: the relative nearness to each of those 
sites deterrines the weight that each vertex elevation should be 
given. A rule of linear interpolation is easiest to describe and 
to illustrate: Suppose that the point q belongs to the triangle 
determined by plr pg. and p,. Then q can be expressed uniquely as: 

9 = alp1 + azpz + a3P3 

where a1 + a2 + as = 1: and aI, a2, and aj are all non-negative. 
The unique al, ag, and a, are called the convex coordinates of q. 

If each p 
the eleva t 

has associated elevation si, for i = 1, 2, 3, then 
ion at q (call it eq) is given by: 

eQ 
= ale1 + a2e2 + a,e,, for the sase al, az, and a3 

This interpolation computation gives consistent results on shared 
triangle edges. It also works for vector-valued functions, not 
just scalar functions such as elevation. In particular, vector- 
valued functions are interpolated to produce a special class of 
transformations called triangulation raps 171 end rubber-sheeting 
transformations [lo] of the plane for rap conflation [83. 
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Figure 3. Linear interpolation of elevation over a triangle 

*4. DESIRABLE PROPERTIES OF DELADNAY TRIANGDLATIONS 

Dany triangulation packages in operation in geographic information 
systems, in computer-aided engineering, and elsewhere build 
Delaunay triangulations rather than some other type of 
triangulation. This section reviews some of the important 
properties of the Delaunay triangulation that make it most 
suitable for numerous applications (see also [6]). 

1. A Delaunay triangulation on a set of points is a triangulation 
such that the circumcircle of any triangle (the circle passing 
through the three triangle vertices) contains no point of the set 
in its interior. This circle property fully determines a Delaunay 
triangulation. A Delaunay triangulation always exists. 

Figure 4. A Delaunay triangulation with circumcircles drawn 



. 

2. If no four points of the set are co-circular (i. e. lie on the 

same circle), then the Delaunay triangulation is unique. A 
Delaunay triangulation is always unique up to diagonal swapping 
within polygons whose vertices are co-circular. 

3. Furthermore, if no four points are co-circular, then an edge 
will belong to the (unique) Delaunay triangulation if and only if 
there exists a disk containing both endpoints of the edge and no 
other point of the vertex set. 

.” 

Figure 5. The disk/edge separation property illustrated 

4. Because the circle property (1) and disk property (3) fully 
determine the Delaunay triangulation, the Delaunay triangulation 
of a point set will remain invariant under any transformation of 
the point set that preserves circles and circle containment. 
Rigid motions, scalings, reflections, and combinations of the 
three movements all preserve circles and circle containment. 

5. The Delaunay triangulation is the planar graph dual to the 
Voronoi diagram which delimits planar regions according to their 
nearest point in the vertex set. The Voronoi dual is a useful 
structure for nearest neighbor searches; and it may be obtained 
from the Delaunay triangulation in O(n) time and vice versa. 

Figure 6. A Delaunay triangulation and its Voronoi dual 



6. The Delaunay triangulation maximizes the minimum angle of all 
the angles that are present in the triangulation. This property 
is useful if very small angles can cause problems, as in the 
distortion resulting from piecwise linear homeomorphism of narrow 
triangles. Although the Delaunay triangulation does not minimize 
the maximum angle, it does tend to eliminate very large angles 
simply by enforcing the supplementary relation of three angles of 
a triangle, namely, they must add to 180 degrees; and if the 
smaller angles are not too small, then the largest angle cannot be 
too large. There are applications such as finite element analysis 
which seek to avoid large angles; and for these applications, the 
Delaunay triangulation gives good results. 

7. The Delaunay triangulation (when unique) produces the 
lexicographically largest increasing sequence of angles possible 
in any triangulation. This means that if the angles of the 

,Delaunay triangulation are listed in non-decreasing order: 

and if any other triangulation has its angles ordered similarly: 

where a, and B 
\ 

are the first term for which the sequences differ, 

then a, > B,. 

This property is a generalization of property (5). It may also 
be used to extend the definition of Delaunay triangulation to 
specify further the case of four or more co-circular points. 

8. A Delaunay triangulation may be updated locally with addition 
or deletion of vertices. The local update affects only triangles 
whose circumcircles contain the update point. An update can be 
accomplished with an incremental algorithm that adds a vertex in 
O(logn) average-case time and removes a vertex in O(1) 
(constant) expected time when (1) vertices are in general position 
and (2) appropriate topological linkages are efficiently encoded 
in the data structure. 

9. A B(n.Iogn) worst-case divide-and-conquer algorithm exists for 
building the Delaunay triangulation. The nlogn factor arises from 
sorting the data, which seems to be a necessary pre-processing 
step for any triangulation, and especially for the Delaunay 
triangulation which depends entirely on local behavior of 
vertices. After pre-processing the vertices to group them 
locally, the Delaunay triangulation may be found in expected 
linear O(n) time. 



5. STRUCTURES FOR BUILDING AND NAVIGATING TRIANGULATIONS 

. 

Christopher Gold once remarked in a talk on triangulations that 
topological structure is too valuable to throw away. The Bureau 
of the Census has always affirmed the preeminence of topology as 
well for its general cell-based map model. The TIN programs 
developed by Environmental Systems Research Institute generate 
their triangulations as topological structures, complete with 
information about adjacency among the nodes, the edges and the 
triangles themselves. An awareness of the advantages of making 
topology a part of the triangulated data structure has made 
advocates of many users. A triangulation has topology; and the 
prevailing philosophy is to store that topology in an explicit, 
accessible format along with other triangulation information. As 
an example of an alternative approach, a triangulation may consist 
of something as minimal as an edge list-where verifying the fact 
that the edges actually constitute a triangulation or determining 

a which edges belong to which triangles are left to the user. Vhile 
topology is clearly constructible at a cost, many of the newly 
developed applications of triangulations, such as flow analysis, 
require ready network construction and traversal; and these can 
only be accomplished efficiently with full topological linkages. 

Topology of triangles is somewhat simpler than topology of 

polygons, although in many ways it is the same. An n-sided 
polygon may have up to n distinct neighbors, each sharing an 
edge. A triangle may have only three. In terms of fixed-field 
data records, this characteristic is helpful. A triangle also has 
exactly three vertices and three edges, again useful from the 
fixed-field data record aspect. Geometry of triangles is even 
more constraining. A triangle is a rigid body in the sense that 
it is the only polygon that is fully specified by its side 
lengths. It is also the only polygon whose interior points can be 
expressed uniquely as a convex combination of its vertices. This 

last fact makes all ordered triangles affinely equivalent-any 
triangle with ordered vertices may by mapped onto any other 
triangle with ordered vertices by an affine rap that sends the 
three vertices of the first triangle to the corresponding vertices 
of the other triangle. The affine map in question merely uses the 
same coefficients to form the convex combinations of vertices. 

Figure 7. Affine map between triangles 
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The l ffine maps between triangles described above induce 
coherent maps between a triangulated space and a space with 
distinguished points corresponding to the vertices of the 
triangulated space. Such a map is called a triangulation map; 
and the image of the triangles may or may not triangulate the 
irage space. A straightforward test involving preservation of 
triangle orientation has been devised to determine if the image 
space is also triangulated 173; and if both spaces are 
triangulated by the corresponding triangles, then the 
triangulation map produces a joint triangulation. A joint 
triangulation is a topological homeomorphism-a one-to-one 
bicontinuous association of all points in one planar region with 
the points of another. Homeomorphic functions do not fold or 
tear a space when they transform it. A joint triangulation 
permits a finite description and storage of the homeomorphisa 
relationship involving infinitely many points, just as an ordinary 
triangulation partitions infinitely many points into finitely many 
sets that can be manipulated by the computer. 

* 

Joint triangulations can be used to produce overlays which are 
aligned at arbitrarily many points [8]. The remaining points will 
maintain their topological relationships and produce the 
rubber-sheet effect desired. Non-linear rubber-sheeting, also 
popular for alignment tasks, is computationally more complex and 
MY even run a risk of failing to preserve topology. In any 
case, verifying or proving that topology is preserved by 
non-linear adjustments is usually harder than doing so in the 
piecewise linear case. Three key results of a study of joint 
triangulations are stated here (for proofs see 173): 

1. A triangulation map can be tested for homeomorphism (joint 
triangulation) in linear time. 

2. Al though it is not always possible to extend a finite rap from 
n distinct points to II distinct points to a joint triangulation of 
their convex hulls, it is always possible to augment the associated 
pairs of n points, giving a finite map of n + m distinct points to 
n + a distinct points (which sends the original n points to the 
corresponding original D points) in such a way that one can then 
find a joint triangulation of the augmented sets. 

3. Joint triangulations exist for which one triangulation is 
Delaunay and the other is not. It is not always possible to find 
a joint triangulation which is Delaunay in either space. However, 
by permitting augmentation of the vertex set, one may guarantee 
the existence of a joint triangulation for which the first 
triangulation is Delaunay. It may even be possible, with 
augmentation, to guarantee a joint triangulation involving two 
Delaunay triangulations, although it is not known at this time. 



6, SOME PRACTICAL EXPERIEJKES 

Census Bureau researchers have found that, in their applications, 
the following information has proved useful for manipulating a 
triangulated data structure: 

1. TIGER-like topology. 

A. Files of D-cells, l-cells, and 2-cells. 
B. O-cells with coordinates, pointers to “first l-cell.” 
C. l-cells pointing to -ton and afrom” D-cells, “left” and 

“right” 2-tells, and four other l-cells. 
D. 2-cells (triangles) pointing to three O-cells, 

three l-cells, and three neighboring 2-tells. 

For direct spatial search queries, structures with O(logn) access 
*time are available. The Census Bureau stores Peano-key 

sequences in B-trees for logarithmic access. 

2. Vertices in Peano-key order accessed through a B-tree. 

For neighborhood searching, coefficients of the straight line 
equation describing an edge permit a quick test to determine on 
which side of the line a point lies. The test consists of 
plugging the point’s coordinates into the line formula and 
computing the sign of the expression. 

3. Coefficients of the line equation of each l-cell. 

For building or maintaining a Delaunay triangulation, the 
circumcircle centers and radii are also useful data points [9]. 
(For computational purposes, the square of the radius is more 
easily computed and is often kept in the data structure). 

4. Radius (squared) and center of circumcircle, with centers in 
Peano-key order stored in a B-tree. 

Other tree-like structures to record adjacency of triangles or 
history of evolution in the case of incremental construction have 
been mentioned in the introductory section. Depending on 

applications, these additional structures may be well worth the 
overhead to store and raintain them. For recurring search 

applications with limited or local update requirements for the 
triangulation, a triangle-based directory of data points may be an 
efficient search tool [8]. 
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