BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION REPORT SERIES SRD Research Report Number: Census/SRD/RR-87/28
Shape Representation for Linear Features in Automated Cartography
by
Alan Saalfeld Statistical Research Division Bureau of the Census
This series contains research reports, written by or in
cooperation with staff members of the Statistical Research
Division, whose content may be of interest to the general
statistical research community. The views reflected in these
reports are not necessarily those of the Census Bureau nor do
they necessarily represent Census Bureau statistical policy or
practice. Inquiries may be addressed to the author
Report or teries Coordinator, Statistical Research Division, Bureau
of the Census, Washington, D.C. 20233 .
Recommended by: Tom 0'Reagan
Report completed: September, 1986
Report issued: October 1, 1987

SHAPE REPRESENTATION FOR LIMEAR FEATURES IN AUTOMATED CARTOGRAPHY

Alan Sealfeld
Statistical Research Division
Bureau of the Census
Meshington. DC 20233
(301) 763-7530

Abstract

The graphic image produced from a digital file such as a GBF/DIME file may be greatly enhanced by utilizing sufficiently detalied shape information on each line segment. This paper presents a method of structuring shape records to reduce storage requirements and improve appearance of the drawn image. The shape records described here are independent of the map position of the segment. A standardized shape is defined and stored as a curve between two larbitrarily fixed) points in the plane. A standardized shape is moved to any other position in the plane and is scaled up or down prior to drawing by an elementary transformation called a similitude. The operation of transforming a standardized shape to any position is computationally fast and simple. Although the number of standardized shapes is infinite. small collection of shapes provides good approximations to most shapes encountered in maps. Several important properties of standardized shape representations are examined. including invariance under transformations. independence of topological structure, easy interchangability with other shape representations. and independence of drawing precision.

INTRODUCTION

To a mathematician, the notion of shape is defined by a fanily of transformations of space called similitudes. Two flgures in space have the same shape if one figure can be transformed into the other by one of these similitudes. In o plane, the family of similitudes consists of translations, scalings, and rotations, and combinations of these three types of movements. Sometimes a mathematician will include reflections in his family of similitudes, but because these transformations reverse orientation, they will not be included in the shape-preserving transformations studied here. Two figures with the same shape are called similar. For example, any two circles are similar because one may be moved into congruence with the other by ocaling followed by trensiations and any two stralght line segments have the same shape because efther one may be moved into elignment with the other by acaling followed by a rotation and e transiation.

The fact that any two ilne segments are similar also means that any line segment is similar to or has the same shape as the line segment in the plane from (0,0) to (1,0): and this fact allows us to refer to segments or curves in atandard position. Every non-closed directed curve (that is. curve whose end points are distinct and ordered) has atraight-line segment associated with it. namely. the directed segment linking its distinct end-points in order. There is a unique similitude of the plane which transforms the first end-point of the segment to (0,0) and also transforms the second end-point of the segment to (1,0). We say that this similitude moves the curve to standard position. Note that two directed curves of the same shape have the same standard position curve and two curves of different shapes have different standard position curves. If the order of the end-points changes, the standard position curve undergoes a rotation of 180°.

Figure 1. Curves of the same shope and essociated segments (one curve in standard position).

After we describe how to transform segments (and, hence, curves) to standard position and from standard position, we will focus on comparing curves in standard position in order to establish a distance measure between curves end. hence, between shapes. Because there is a one-to-one correspondence between shapes and standard-position curves. we can study all shapes simply by exemining all curves between $(0,0)$ and (1,0).

TRANSFORHATIONS TO AND FROM STANDARD POSITION

Arithmetic of complex mubers provides a handy set of tools for describing similitudes or shape-preserving
transformations of the plane. We will use the coordinate representation (x, y) and the complex representation $x+y$ i interchangably in the text that follows to describe the transformations of interest to us. Addition of a fixed complex number to all complex numbers transforms the plane of complex numbers by a transiation. Multiplication of all numbers by a fixed complex number produces a combined scaling and rotation of the plane. The scaling factor is equal to the magnitude of the fixed complex number: and the angle of rotation is equal to the direction of the vector of the fixed complex number doing the multiplication.

Figure 2. Addition of e+Bi produces translation.

Fig. 3. Multiplying by atil causes scaling and rotation.
The inverse transformation of adition of a+Bi is subtraction of (a+8l). or addition of (-a-si).

The inverse transformation of multipifcation by atei is division by etif. or multiplication by (etbi)-1, or by $(a-81) /\left(a^{2}+8^{2}\right)$. which is the complex conjugate of +81 divided by the norm squared of etbl.

The shape-preserving transformetion. T. of the segment Joining $(0,0)$ and (1,0) to the line segment from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2} \cdot y_{2}\right)$ can be described as follows:

$$
\text { Let } \Delta=\left(\Delta_{1}, \Delta_{2}\right)=\left(x_{2}-x_{2}, y_{2}-y_{1}\right) \text {. }
$$

Let H_{4} be the transformation that corresponds to complex multipifcation by $\left(A_{1}+A_{2}\right)$)

$$
H_{1}(x, y)=\left(x A_{1}-y A_{2}, y A_{1}+x A_{2}\right) .
$$

Let A_{1} be the transformation that corresponds to the addition of the complex number $\left(x_{1}+y_{1} i\right)$ s

$$
A_{1}(x, y)=\left(x+x_{2}, y+y_{1}\right)
$$

Then $T=A_{1} \cdot M_{A}$ where composition means that the transformation M_{Δ} is applied first, then A_{2} is applied.

Figure 4. Composition of M_{Δ} followed by A_{1}. Explicitiy, In terms of x_{1}, y_{1}, u_{2}, and u_{2}, we have:

$$
T(x, y)=\left(x \Delta_{1}-y \Delta_{2}+x_{3}, y \Delta_{1}+x \Delta_{2}+y_{1}\right) .
$$

The inverse shape-preserving transformation, $T-1$, of
the line segment from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ to the segment Joining (0.0) and (1.0) can similariy be expressed as follows:

$$
T^{-1}=N_{4}^{-2} \cdot A_{2}^{-1}
$$

- As noted above, the inverse of addition is subtraction; and the inverse of multiplication is division or multiplication by the complex conjugate divided by the norm squared.

Figure 5. Composition of A_{1}^{-1} followed by M_{4}^{-1}.
As with T. we have an explicit expression for $T^{-1}(x, y)$:
$\left(\left(\left(x-x_{1}\right) \Delta_{1}-\left(y-y_{1}\right) \Delta_{2}\right) \cdot\left(\left(y-y_{1}\right) \Delta_{1}+\left(x-x_{1}\right) \Delta_{2}\right)\right) /\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)$.
COMPARING CURVES IN STANDARD POSITION
Once two curves have been placed in standard position, they may be compared by some measures of their distance from one another. One simple measure of distance is to compute the area or areas between the curves. If the curves are close, then the area between them will be small. The area between the curves may nevertheless be small if one or both of the curves have spikes; hence, the area measure is not always the best measure of closeness of curves.

Figure 6. Area difference measures curve closeness.
Another measure of closeness of curves derives from the mathematical notions of closeness of functions. If two curves are expressed as functions (t) and $f(t)$ parametrized by the same normalized parameter t, then there are several fundemental measures for describing distance between the curves wich are known in function theory as the L_{p} measures $:$

$$
\sec \cdot \mathrm{C}=\left[\sec (t)-c(t) \theta^{P} d t\right]^{1 / P}
$$

where the norm \quad within the integral refers to a measure of distance between two points in the plane.

The L_{2} norm (that is L, when $=2$) is easily computed for curves which afe polygonal ilines and this norm corresponds to averaging the usual Euclidean distance between corresponding points in the plane. A closed formula for calculating the $L_{2} d i s t a n c e$ between two polygonal lines is included es an appendix.

Figure 7. The L_{2} norm averages distances between corresponding points on two parametrized curves.

The Linking lines in Figure 7 illustrate that distances are not always measured to the nearest point on the other curve nor always in a vertical direction.

The primary reason for studying nearness of curves to each other lies in reducing the number of curves used to attain a representative set of curves. If all curves drawn in a particular application are very close to arcs of circles, for example, and if the precision of drawing required is within that closeness tolerance, then the family of arcs of circles will suffice for representing the curves needed for the application.

Map drawing does not require uniform precision in representing curve features. The precision required varies with the scale and the application. Because of data set constreints and equipment ilmitations such as penplotter operating characteristics, the curves of automated cartography are almost always polyoonal ilnes. often intended to be epproximations to smooth curves. For this reason, polygonal lines have a special role in our study of curve types and in our search for a representative fanily of curves in standard position.

SMALL REPRESENTATIVE FAMILIES OF CURVES

In a conventional approach to storing curve data used by both the Bureau of the Census and the United States Geological Survey, every different curved line segment has associated with it its own linked list of coordinate pair records (one for every distingulshed point on the curve) and possibly a rule or an algorithm for stringing the curve points together (such as a spline fit or some other smooth fit). The number of curve point coordinate peir records is proportional to the number of 1 -cell or
segment records on the file. Larger maps require proportionately larger curve point files; and the time needed to access each curve ifst increases with map size.

A small representative curve list eliminates the curve point file and its linkages entirely. A small ilst of standard-position curves has the same fast access time for large maps as well as small maps. A standard-position curve need not be ilmited by a particular storage precision. The same standard-position curve may be transformed with different degrees of precision (that is. it may be evaluated at more or fewer points) depending on the size of the transformed image, the mechanical drawing instrument's precision, and the application and appearance requirements of the map beling drawn.

Two methods for constructing a small representative curve family for maps are outlined below.

Method 1. Stetisticel Selection

Fhis method will be implemented at the Bureau of the Census as part of an experiment in 1986. This method uses a complete curve file for a map in the current linked-list coordinate peir format. First all of the curve lists are converted to standard-position curves by the appropriate $T-1$ transformation described in an earlier section. After all of the curves have been given - format that makes distance comparisons posifble, cluster analysis is performed on the set of standard-position curves to group them into clusters of curves, all of which are close to other members of the same cluster. The number of clusters may be forced (predetermined or adjusted after looking at preliminary results) or the clusters may be self-selecting if the map used in the experiment has a few distinctive types of curves. After clusters have been identified. one centrally located member from each cluster will be selected to become the representative of the cluster; and the map is redrawn using the representative in place of other cluster members. The maps will then be checked for appearance changes and possible inconsistencies due to curve intersections. Computer requirements for the two operations will also be evaluated in the course of the experiment.

Method IL. Dense fenilifes and epproximation theory
The second method chooses a family of representative curves without regard for the particular distribution of curves on a single map. This second appraach uses several principles of approximation theory to determine a growing family of curves which may be used to approximate any other curve of a larger family with any precision desired. The growing famlly of curves used for the approximating is an infinite family, but we may truncate that fanily at any time and use only a finite subfamily to get within a predefined distance of our desired curve. That distance may be the width of our penplotter, for example.

One simple example of an approximating family is the fanily of non-intersecting polygonal lines with vertices on a finite grid whose extension is allowed to increase and whose mesh is allowed to grow finer and finer. As the mesh grows finer and finer. the number of possible polygonal lines increases rapidly. Nevertheless, a subfamily of those polygonal ilines will be selected to epproximate any curve. and as in the experiment describing Method l. we will draw maps with the subfamily and assess the appearance of the results.

Figure 8. Examples of grids of increasing extent and finer mesh, with iliustrative polygonal lines.

Note in figure 8 that curves beginning at (0,0) and ending at (1,0) do not necessarily remain within one unit or even two units of the base line segment. For this reason, the extent of our mesh must be arbitrarily large. Note also that the finer meshes allow both smoother representations and more jegged curve possibilities because of the sharper angles possible.

HIGHIGHTS OF PROPOSED CURVE MANHGEMENT APPROACH
The storage requirements and the shape file access requirements are clearly reduced to a fixed small size instead of being proportional to the map size. Shapes

APPENDIX: AN Lz DISTANCE BETNEEN POLYGONAL LINES

This appendix describes a computationally straightforward formula for computing the L_{2} distance between polygonal Iines parametrized by the same normalized parameter.

Suppose that the curves c and E are polygonal lines parametrized by t on $[0,1]$ where $(t)=\left(x_{6}(t), y_{f}(t)\right)$. and $E(t)=\left(x_{E}(t), y_{E}(t)\right)$; and let the sequence:

$$
\left\{0=t_{0}, t_{1}, t_{2}, \ldots, t_{n}=1\right\}
$$

consists of all of the parameter values for which either of the two curves changes direction. Suppose that:

$$
\begin{aligned}
& c\left(t_{i}\right)=\left(a_{E 1}+B_{61}\right) \text { and } \\
& -E\left(t_{i}\right)=\left(a_{E 1} \cdot B_{E 1}\right) \text {, for } 1=0.1 \ldots . \ldots n .
\end{aligned}
$$

Then:
$\operatorname{Dist}^{2}(\varepsilon, E)=\int_{0}^{2} f\left(x_{g}(t), y_{g}(t)\right)-\left(x_{E}(t), y_{E}(t)\right) i^{2} d t$
$=\int_{0}^{2}\left[\left(x_{6}(t)-x_{E}(t)\right)^{2}+\left(y_{6}(t)-y_{E}(t)\right)^{2}\right] d t$
$=\sum_{i=0}^{n-1}\left\{\left(t_{i+1}-t_{1}\right)\left[\left(a_{c 1+1}-a_{E i+1}\right)^{2}\right.\right.$
$\left.\left.+\left(a_{61+1}-\alpha_{E 1+1}\right)\left(a_{61}-a_{E 1}\right)+\left(a_{61}-a_{E 1}\right)^{2}\right] / 3\right\}$
$+\sum_{i=0}^{n-1}\left(\left(t_{i+1}-t_{i}\right)\left[\left(B_{51+1}-\theta_{E i+1}\right)^{2}\right.\right.$
$\left.\left.+\left(B_{E I+1} \beta_{E I+1}\right)\left(B_{E 1}-B_{E 1}\right)+\left(B_{E 1}-B_{E 1}\right)^{2}\right] / 3\right)$.

This formula can be used to measure nearness for curves in standard position in order to select an evenly distributed fanily of such curves and also to study clustering of curve shapes.

