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ABSTRACT

The graphic {mage produced from a digital file such as a
GBF/DIME file may be greatly enhanced by utilizing
sufficiently detalled shape {iInformatfon on each line
segnent. This paper presents a method of structuring
shape records to reduce storasge requirements and
fmprove appearance of the drawn {image. The shape
records described here are f{independent of the map
position of the segment. A standardized shape s
defined and stored as & curve between two (arbitrarily
fixed) points In the plane. A standardized shape f{s
moved to any other position In the plane and {s scaled
up or down prior to drawing by an elementary
transformation called a simflitude. The operation of
transforming & standardized shape to any position s
computationally fast and simple. Although the number of
standardized shapes s Infinite, a small collection of
shapes provides good approximations to most shapes
encountered in maps. Several fmportant properties of
standardized shape representations are examined,
fncluding {nvarfance under transformations, {ndependence
of topological structure, easy I{interchangability with
other shape representations, and findependence of
drawing precision.

’

INTRODUCT ION

To a mathematician, the notion of shape s defined by a
family of transformations of space called similf{tudes.
Two figures In space have the same shsepe {f one fligure
can be transformed iInto the other by one of these
similftudes. In a plane, the family of similitudes
consists of translations, scalfngs, and rotations, and
combinations of these three types of movements.
Sometimes a mathematicien will fnclude reflections fn his
family of similitudes, but because these transformations
reverse orientation, they will not be included In the
shape-preserving transformations studied here. Two
figures with the same shape are called similer. For
example, any two circles are similar because one may be
moved finto congruence with the other by # scaling
followed by a transiation: end any two straight line
segnents have the same shape because either one may be
moved into alfignment with the other by a scaling followed
by a rotation and & translation.



The fact that any two line segments are similar also
means that any l1ine segnent s similar to or has the same
shape @s the line segment In the plane from (0,0) to
-(1,0)s end this fact allows us to refer to segnents or
curves f{n standard position. Every nmnon-closed dfirected
curve (that {s, curve whose end points are distinct and
ordered) has a straight-1ine segmnent assocfated with §t,
namely, the directed segment Iinking f{ts distinct
end-pofints fn order. There s a unique similitude of the
plane which transforms the first end-point of the
segment .to (0,0) and also transforms the second
end-point of the segment to (1,0). We say that this
‘simfiftude moves the curve to standard position. Note
that two directed curves of the same shape have the
same standard position curve and two curves of different
shapes have different standard position curves. If the
order of the end-points changes, the standard position
curve undergoes a rotation of 180°.

Figure 1. Curves of the same shape and associated
segnents (one curve {n standard position).

After we describe how to transform segments (and,
hence, curves) to standard position and from standard
position, we will focus on comparing curves {in standard
position fn order to establish a distance measure between
‘curves and, hence. between shapes. Because there fs a
one-to-one correspondence between shapes and
standard-position curves, we can study all shapes sinmply
by examining al) curves between (0,0) and (1,0).

TRANSFORMATIONS TO AND FROM STANDARD POSI.TIQJ

Arfithmetic of complex numbers provides a handy set of
tools for describing similitudes or shape-preserving



transformations of the plane. We will use the coordinate
representation (x,y) and the complex representation x+yl
fnterchangably fn the text that follows to describe the
transformatfons of f{nterest to us. Addition of a fixed
complex number to all complex numbers transforms the
plane of complex numbers by a transistion.
Multipiication of all numbers by a fixed complex nunber
produces a combined scaling and rotation of the plane.
The scaling factor s equal to the magnitude of the fixed
complex number; and the angle of rotation s equal to
the direction of the vector of the fixed complex number
doing the multiplication.

Figure 2. Addition of e+f! produces translation.

nd

Fig. 3. Multiplying by e+8i causes scaling and rotation.

The fnverse transformation of addition of e+g! s
subtraction of (a+fi), or sddition of (—e-8i).

The {nverse transformation of multiplication by eatfi is
division by e+8i, or multiplication by (a+8i)—1, or by
(a-81)/(a2482), which {is the complex conjugate of e+8i
divided by the norm squared of e+8il.



The shape-preserving ffansfornstion. T, of the segnent
Joining (0,0) end (1,0) to the )ine segment from (x,0¥,)
to (x,.,y,;) can be described as follows:

Let 4 = (4,.4,) = (x;=%,s¥,-Y,).
Let H‘ be fhe transformation that corresponds to
complex multiplication by (A‘+Azl):

M (xoy) = (xb; = ydy,yd;, + xA,).
Let Al be the transformation that corresponds to the
addition of the complex number (x,+y,1):

A‘(XQy) = (x + X,DY "' Y,)-

Then T = A, *» B, where composition means that <the

A
transformation H‘ is applied first, then Al is applied.

Figure 4. Composition of H‘ followed by A,.
Explicitly, in terms of x,, ¥, 4, 8nd 4,, we have:

Ti(x.y) = (xA;, = yA, + X, ,¥A, + x4, + y,).
The {nverse shape-preserving transformation, T-1, of
the line segment from (x,.y,) to (x,;,¥,) to the segment
Joining (0,0) eond (1,0) can similarly be expressed as
follows:

T-1 = !l‘-l * AL,

As noted sbove, the inverse of addition {s subtraction;
and- the {nverse of multiplifcation s division or

multiplication by the complex conjugate divided by the
norm squared.



Figure 5. Composition of A,~1 followed by ﬂ‘—l.
As with T, we have an explicit expression for T-1(x,y):

(x5, )8,=Cy=y,)8,) » ((y=y, )8, +(x~x,)8,)) /(4,244,2) .

COMPARING CURVES IN STANDARD POSITION

Once two curves have been placed fn standard position,
they “may be compared by some measures of thelir
distance from one another. One simple measure of
distance s to compute the area or areas between the
curves. If the curves are close, then the area between
them will be small. The area between the curves may
nevertheless be small {f one or both of the curves have
spikes; hence, the area measure s not always the best
measure of closeness of curves. :

Figure 6. Area difference measures curve closeness.

Another measure of closeness of curves derfves from the
mathematical notfons of closeness of functions. If two
curves are expressed as functions §(t) and (g(t)
parametrized by the same normalized parameter t, then
there are several fundamental! mwmeasures for describing
distance between the curves which are known fn function
theory as the L’ measures '

w-co, = (sece)-cit) oPacy’/?

where the norm & § within the {ntegral refers to a
measure of distance between two points in the plane.



The L, norm (that is L when P = 2) §s easily computed
for curves which al’e polygonal 1lines and this norm
corresponds to averaging the usual Euclidean distance
between corresponding points fn the plane. A closed
formula for calculating the L,distance between two
polygonal lines 1Is included as an appendix.

%HIW“L 7
o —— L

~ Figure 7. The L, norm averages distances between
corresponding polnts on two parametrized curves.

The Linking lines in Figure 7 fllustrate that distances
are not always measured to the nearest point on the
other curve nor always {n a vertical direction.

The primary reason for studying nearness of curves to
each other 1fes in reducing the number of curves used to
attain a representative set of curves. If all curves
drawn in a particular application are very close to arcs
of circles, for example, and if the precisifon of drawing
required fs within that closeness tolerance, then the
" family of arcs of circles will suffice for representing
the curves needed for the application.

Map drawing does not require uniform precision fn
representing curve features. The precisfon required
varies with the scale and the application. Because of
data set constraints and equipment limitations such as
penplotter operating characteristics, the curves of
automated cartography are almost always polygonal 1ines,
often fntended to be spproximations to smooth curves.
For this reason, polygonal lines have a special role in
our study of curve types and fn our search for a
representative family of curves in standard position.

SMALL REPRESENTATIVE FAMILIES OF CURVES

In a conventional approach to storing curve data used
by both the Bureau of the Census and the United States
Geological Survey, every different curved line segmnent
has assocliated with {t fts own linked list of coordinate
pair records (one for every distinguished point on the
curve) and possibly a rule or an algorithm for stringing
the curve points together (such as a spline fit or some
other smooth fit). The number of curve point coordinate
pair records {s proportional to the number of l-cell or



segment records on the fille. Larger maps require
proportionately larger curve point files; and the time
needed to access each curve list increases with map size.

A small representative curve list eliminates the curve
point file and its linkages entirely. A small 1list of
standard-position curves has the same fast access time
for large maps as well as small maps. A
standard-posfition curve need not be lIimited by a
particular storage precisfon. The same standard-positfion
curve may be transformed with different degrees of
precisfon (that fs, it may be evaluated at more or fewer
points) depending on the size of the transformed {mage,
the mechanical drawing {instrument’s precision, and the
application and appearance requirements of the map
being drawn.

Two methods for constructing a small representative
curve family for maps are outlined below.

et {stical | 1

Fhis method will be fmplemented at the Bureau of the
Census as part of an experfment {n 1986. This method
uses a complete curve file for a map n the current
1inked-1{st coordinate palir format. First all of the
curve lists are converted to standard-position curves by
the appropriate T—1 transformation described fin an
earlier section. After all of the curves have been gfiven
a format that makes distance comparfisons possible,
cluster analysis s performed on the set of
standard-position curves to group them into clusters of
curves, all of which are close to other members of the
same cluster. The number of clusters may be forced
(predetermined or adjusted after looking at preliminary
results) or the clusters may be self-selecting If the map
used fn the experiment has a few distinctive types of
curves, After clusters have been f{denti{fied, one
centrally Jlocated member from each cluster will be
selected to become the representative of the cluster; and
the map s redrawn using the representative In place of
other cluster members. The maps will then be checked
for appearance changes and possible {fnconsistencies due
to curve Intersections. Computer requirements for the
two operations will also be evaluated in the course of
the experiment.

e flies and ximati

The second method chooses a family of representative
curves without regard for the particular distribution of
curves on 8 single map. This second approach uses
several principles of approximation theory to determine a
growing family of curves which may be used ¢to
spproximate any other curve of a larger family with any
precisfon desired. The growing family of curves used
for the approximating s an infinjite family, but we may
truncate that family at eny time and use only a finfite
subfamily to get within a predefined distance of our
desired curve. That distance may be the width of our
penplotter, for example.



One simple example of an approximating family f§s the
family of non-intersecting poiygonai iines with vertices
on & finite grid whose extension s allowed to fncrease
and whose mesh s allowed to grow finer and finer. As
the mesh grows finer and finer, the number of possible
polygonal lines f{ncreases rapidly. Nevertheless, a
subfamily of those polygonal lines will be selected to
approximate any curve, and as in the experiment
describing Method I, we will draw maps with the
subfam{ly and assess the appearance of the results.

4.
-
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Figure 8. Examples of grids of increasing extent
and finer mesh, with fllustrative polygonal l{ines.

Note In Figure 8 that curves beginning at (0,0) and
ending at (1,0) do not necessarily remain within one unit
or even two units of the base line segment. For this
reason, the extent of our mesh must be arbitrarily
large. Note also that the finer meshes allow both
smoother representations and more Jjagged curve
possibilities because of the sharper angles possible.

HIGHLIGHTS OF PROPOSED CURVE MANAGEMENT APPROACH
The storage requirements and the shape file access

requirements are clearly reduced to a fixed small size
fnstead of being proportional to the map size. Shapes



can be reconstructed from the standard-position shape
with varying precision requirements. For example, {f
the shape to be redrawn away from standard position (s
8 semi-circle, and the redrawn size of the semi-circle s
to be large, then many points on the semi-circle may be
computed and transformed to give the polygonal Iline
approximation to the semi-circle a smooth appearance.
However, {f the redrawn semi-circle §s to be relatively
small, then fewer pofints should be evaluated,
transformed, and linked together Iin a polygonal 1ine
approximation.

Because the transformatfons described above as T and
T—1 are easy to apply to points and not so easy to apply
to arbitrary curves, the approach to transforming an
arbitrary curve s to evaluate the curve at a number of
points (that number will depend on the quality of the
redrawn approximation desired), then transform those
evaluated points by the transformation, then rebufld the
curve by linking the transformed points fn a polygonal
ine. Some varjations to this are possible, such as
relinking the transformed points with a spline fit.

With the old method of keeping coordinates of curves as
a separate large file, when a map transformation such as
an alternative projection was spplied to the map, all of
the coordinates had to be recomputed. For a family of
standard-position curve records, fn many cases the new
shapes for an alternative projectfon will not change or
may be computed from the standard-positions curves
directly.

CONCLUSION

An alternative approach to storing and representing
curves on maps offers potential {mprovements of
efficiency and appearance. Experiments to be conducted
fn 1986 will determine the feasibility and usefulness of
the new approach.
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APPENDIX: AN L, DISTANCE BETWEEN POLYGONAL LINES

This appendix describes a computationally straightforward

formula for computing the L, distance between polygonal

lines parametrized by the same normalized parameter.

Suppose that the curves ¢ and £ are polygonal lines

parametrized by t on [0,1] where {(t) = (x‘(t).y‘(t)).

and E(t) = (xi(t)o)f‘(t))s and let the sequence:
{O-t..t..tz.....tn-l)

consists of all of the parameter values for which either
of the two curves changes directfon. Suppose that:

-

C(t') = (c“.B") and
.E(t') = (aii"ti,' for { = 0,1,...¢n.
Then:

DIst (6, 8) = S5 HOx ()oY (£)) = (x(t) oy (t)n” at

£

1
= fo [(xc(t)-xg(t)ﬂ + (Y‘(t)-yt(t))zl at

n—-1

2
A P e R T I L

2
*(°¢l+l-°ﬂ+l )(cu-cu )+(cu-cu ) 173}

n—1 2

2
(B o1 Brrar? By —Bgy )+ (B =8¢y ) 1/3).

This formula can be used to measure nesarness for curves
in standard position fn order to select an evenly
distributed family of such curves and also to study
clustering of curve shapes.



