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ABSTRACT 

The graphic inege produced from 8 dtgftat fitc such as a 
GBF/DIHE file may be greatly enhanced by utilizing 
sufficiently dctslled shape fnformstion on each 1 ine 
segmnt . This roper presents 8 method of structuring 
shape records to reduce storage requirements and 
improve appearance of the drawn Image. The shape 
records described here are fndependent of the map 
position of the segment. A 8tandardizcd shape is 
defined and stored as a curve between two (arbitrarily 
fiwd) points in the plane. A standardized shape is 
moved to any other position in the plane and is scated 
up or down pr for to drawing by an elementary 
transformstion cal Ied a simi 1 itude, The operation of 
transforming a standsrdlzed shape to any position is 
cowutationa11y fast and sinple. Although the mrrrbcr of 
standardfzed shapes is tnftnite. a small collection of 
shapes provides good approximations to most shapes 
encountered in mps, Several irrportant properties of 
standardized shape representations are examined, 
tncludfng tnvariancc under transformsttons, independence 
of topological structure. easy interchangabitity with 
other shape representations, and Independence of 
dr8wing precision. 

To a ~thunstician. the notim of shwe is defined by a 
funtly of transformations of space called similitudes. 
Two figures In space have the m shape if one figure 
can be transformed (nto the other by one of these 
aim1 t itudes. In 8 plane, the fun1 ly of similitudes 
consists of transtations, scalings. and rotbtions. and 
combinations of these three types of movements. 
Sometimes a rrsthemstician wil1 include ref tections in his 
fan1 ty of similitudes* but because these transform&ions 
reverse orientation. they will not be tncluded tn the 
shape-preserving transformations studled here. TWO 
figures with the same shape are calted similrr. For 
e-We. my two circles are simitrr because one my be 
moved lnto congruence with the other by l scaling 
followed by a ttanslatlmt end any two straight line 
segnents have the wane shape because either one may be 
noved into aligrunent with the other by cb seating fo1loued 
by a rotation and 8 trenslutlm. 
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The fact that any tw0 ’ line scgncnts are similar also 
means that my line scgncrrt Is simflar to or has the suse 
shape as the Ifne semnt in the plane from (0.0) to 
.(l.O)t and this fact 8ltous us to refer to segments or 
curves In standard posftion. Every non-closed directed 
curve (th8t 1s. curve whose end points are dlstlnct and 
ordered) has a stral*t-line scgnent associated with it, 
namely. the d 1 rected segment 1 inking its distinct 
and-points In order. There ts a unique siml lltude of the 
@lane uhIch transforms the ffrst end-point of the 
segment5to (0.0) and also transforms the second 
and-point of the segment to (1 ,O). Ye say that this 
‘s~mllltude wves the curve to’ stendard posItion. Note 
that two directed curves of the sane shape have the 
wane standard posit ion curve and two curves of different 
shapes have different standard position curves. If the 
order of the end-points chsnges. the standard posltim 
curve undergoes a rotation of 180.. 

. 

Figure 1, Curves of the sans mhape and associated 
sagwrits Cone curve fn standard porit?mL 

After we describe how to transform segments (and. 
hence. cuwes) to standard posltim and fran standsrd 
positim, we ~1~1 focus m cowparing curves in standard 
.posltim In order to asbbllsh a dlstbncc ntasure between 
‘curves and. hence* bctueen shapes. 8ecause there (5 a 
one-to-one correspondence between shapes and 
l tandsrdqos 1 t im curves. we can study at i 8-5 sinply 
by l mining al 1 curves between (0.0) m (1.0). 

Arlttumtlc of cowtax Wrs provides a handy set of 
tools for describing 8imi 1 ltudes or shape-preserving 



transformatims of the’ plane. We will use the coordinate 
representatim (x.y) and the carplax representatfm x+yi 
fnterchangably in the text that follows to describe the 

. transforfrustims of interest to us. Additim of a fixed 
corrplex number to all complex numbers transforms the 
plane of complex numbers by a translation. 
Hultlpllcation of all nunbers by a fixed corrqlex nunbcr 
produces a combined scaling and rotation of the plane. 
The scaling factor is equal to the magnitude of the fixed 
complex nunber: and the angle of rotation is equal to 
the direction of the vector of the fixed complex number 
doing the ultipllcatim. 

Figure 2. Addition of a+61 produces translatim. 

Fig. 3. WuItiplylng by e+6f causes scaling and rotutim. 

The inverse transformation of addItlon of l +#? 
subtraction of or additim (dt). 

The transformstim of by a+#? 
division by +61, or by (e+Bi)-1, by 

l Co-6l )/(a2+62). uhlch is the complex conjugate of l +Ui 
dfvided by the norm squared of e+#i, 



The shape-preserving ~&nsforrrretim, T. of the segment 
joining (0.0) md (1.0) to the line sewent from bc,.~,) 
to (x,.y,) can be described as follows: 

Let b - CA1,A2) - (x,-x, .Y2Y, 1. 

Let HA be the transformation that corresponds to 

corrplex aultlpllcatlm by 

Jp.Y) - (X’r - y+vr, + x&L 

Let A, be the transformation that corresponds to the 

addition of the canplex nunkr (x,+y,i)t 

A+.Y) - (x + X,vY + Y,L 

Then T - A, l Il A . where composltlon means that the 
w 
transformation PiA is applied first, then A, is applied. 

Figure 4. Cmwsitlon of HA followed by A,. 

Expl icltly. ln terms of x1, yl* A,. and A,. we have: 

T0c.y) - WA8 - + xl.yAa + xA2 + y,). 

The inverse shape-preserving transformstim, T-1, of 

the line segncnt fran (xI.yI) to (x2,y2) to the segment 

Joining (0.0) and (1.0) can similarly be expressed as 

fat lows: 

f-1 m m -1 . A,+, 
A 

As noted above. the inverse of addftion is subtraction: 
and-the inverse of nultiplication is division or 
nultipllwtim by the -lax conJugste divided by the 
norm s-red. 
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- . ,+-F+ 
Figure S. Corrpositlm of A,-1 followed by ii,-1. 

As with T. we m axplicit expressim for T-l(x,y)t 

COnPARING CURVES IN STANDARD WITION 

Once two curves have been placed in standard position. 
they *may be compared by some measures of their 
distance from one another. One simple measure of 
distance is to Mute the area or areas between the 
curves. If the curves are close. then the area between 
them will be -11. The area between the curves easy 
nevertheless be ~11 if me or both of the curves have 
spikes: hence. the area measure 1 a not always the best 
aeasure of closeness of curves. 

f 

-. 
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Figure 6. Araa difference masures curve cioseness. 

Another measure of closeness of curves derives from the 
nsthemstical notims of closeness of functions. If two 
curves are expressed as functions g(t) and c(t) 
parmnetr ized by the sane no- 1 ized parameter t. then 
there are several funcWnenta1 -usurea for describfng 
distance between the curves which are known .in function 
theory as the Lp ~asures t 

A M-cr, - cIDLct,-c(t) rpdt pp 

where the norm I I within the integral refers to a 
measure ,of distance between two points in the plane. 



me 4 norm (that is L ‘. when p - 2) is easily computed 
for curves which ape polygonal lines and this norm 
corresponds to averaging the usual Eucl ldean distance 
between corresponding points in the plane. A closed 
formula for calculating the 1, d 1 stance between two 
polygonal lines is included a5 an appendix. 

. Figure 7. The L, norm averages distsnces between 
corresponding points m two parsmetrizecl curves. 

The Linking 1 ines in Figure 7 illustrate that distances 
are not always measured to the nearest point m the 
other curve nor always in a vertical directlm. 

The primary reason for studying nearness of curves to 
each other 1 ies in reducing the number of curves used to 
attain a representative set of curves. If all curves 
drawn in a particular application are very close to arcs 
of circles. for emle, and if the preclsim of drawing 
required is within that closeness tolerance, then the 
f-fly of arcs of circles will suffice for representing 
the curves needed for the application. 

Hap drawing does not require uniform precision in 
representing curve features. The precision required 
varies with the scale and the apo1icatlon. Because of 
data set constraints and equipment limitatims such as 
penplotter operating characteristics, the curves of 
autometed cartography are almost aIways polygonal lines. 
often intended to be approximat lms to smooth curves. 
For this reason, polygonal lines have a special role in 
our study of curve types and tn our search for a 
representative fmily of curves in standard position. 

SHALL REPRESENTATIVE FAMILIES OF CURVES 

In a conventional approach to storing curve data used 
by both the 6ureau of the Census md the Uni tad States 
Geological Survey, every different curved 1 ine sagnent 
has associated with it its own linked list of coordinste 
psir record8 (one for every distinguished point m the 

- curve) and possibly a rule or an algorithm for stringing 
the curve points together (such as a spline fit or sane 
other smoth fit). The nunbtr of curve point coordfnate 
pair records is proportional to the nunkr of I-cell or 

. 



segment records on the file. Larger maps requfre 
proportfonatel,y larger curve pofnt files8 and the time 
needed to access each curve Ifst fncreases wfth map sfze. 

A srml I tepresentatf ve curve 11 rt et fnf natcs the curve 
pofnt ffle and its linkages entfrely. A zumll If& of 
standard-posf t fon curves has the wsse fast access time 
for 1arg.e maps as well as 8mall maps. A 
standard-posftfon curve need not be lfmfted by a 
partfculrr 8torage precfsfon. The 8ame Wandardqosftfon 
curve may be transformed wfth dfffertnt degrees of 
precfsfon (that Is. it may be evaluated at more or fewer 
pofnts) dependfng on the 8fze of the transformed fmsge. 
the mechanfcal draufng lnstrusent’s precfsfon. and the 
applfcatfon and appearance requfrements of the map 
befng drawn. 

Two methods for constructfng a 81~311 representatfve 
curve fernfly for m8ps are outlfned below. 

Bethod I. SWistfcal Setectfon 
‘Ihfs method wfll be fnplemented at the Bureau of the 
Census as part of an experfment In 1986. mfs nrethd 
uses a cwlete curve f f 1 e for a msp in the current 
lfnked-list coordfnate pafr format. Ffr8t all of the 
curve 1 f sts are converted to 8tandard-positf on curves by 
the approprfate T-1 transformatfon descrrbed In an 
earl fer sectfon. After al 1 of the curves have been gf ven 
a format that makes dfstance comparfsons possfble, 
ctuster rnalysf8 fs performed on the set of 
standard-posftlon curves to group them into clusters of 
curves. al 1 of uhf ch are close to other me&ers of the 
same cluster. The number of clusters msy be forced 
(predetermfned or adjusted after lookfng at prelfmfnary 
results) or the clusters may-be self-sefectfng If the msp 
used fn the experfment has a few dfstfnctfve types of 
curves. After clusters have been fdentfffed, one 
centrally located member from each cluster wfll be 
8electscf to become the representat 1 ve of the clusters and 
the map f s redrawn us f ng the representat 1 ve 1 n place of 
other cluster (Mmbtrs. me mm8 wi 11 then be checked 
for appearance changes and possible fnconsistencfes due 
to curve fntersectfons. Computer requf rements for the 
two operatfons wf 11 also be evaluated fn the course of 
the experfment. 

11. Dens fmllfes and aa3roxfnrrtfon theow 
The 8econd metehod chooses a fafnf 1 y of representatf ve 
cuwes wlthout regard for the partfcular distributfon of 
curves on a 8fngle map. Thf s second approach uses 
several prfncfples of approxfnrrtfm theory to detennfne a 
growfng famfly of curves whfch may be used to 
approxfmste any other curve of a larger fanf fy wfth any 
precfsfon desfred. me growl ng fesnt ly of curves used 
for the approxlmstfng 1s an fnffnftc fafly. but we lney 
truncate that fusfly at any tfms and use only a ffntte 

- 8ubfmf ly to get wfthfn a predeffned dtstance of our 
desfred curve. tit dtstance #y be the wfdth of our 
penplotter. for ewle. 
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One sfmple exsnplc of an approxfmstfng fanfly is the 
famf ly of non-fntersectfng polygonal lfnes wfth vertfces 
on a ffnfte grfd whose cxtensfon fs allowed to fncrease 
and whose mesh fs allowed to grow ffner and ffner. As 
the mesh grows ffner and ffner. the nunbet of possfble 
polygonal Ifnes fncreases rapfdly. Nevertheless. a 
8ubfamf ly of those polygonal lfnes wf 11 be 8elected to 
approxfmate any curve. and as fn the experfment 
descrfbfng Method I, we wfll draw maps wfth the 
8ubfamfly and assess the appearance of the results. 

. 

Ffgure 8. lExcnples of grfds of incraasfng extent 
and ffner mesh. wfth fllustratfve polygonal lfnes. 

Note fn Ffgure 8 that curves begfnnlng at (0.0) and 
endfng at (1.0) do not necessarfly remsfn wfthfn one unft 
or even two unfts of the bsse lfne scgnent. For thfs 
reason. the extent of our mesh must be arbftrarfly 
large. Mote also that the ffner meshes allow both 
8moother representatfons and more Jagged curve 
possfbflitfes because of the sharper angles possfble. 

HIGHLIGNTS OF PROWSED CURVE HANAGEIENT APPR0ACH 

- The storage requf rements and the 8hape f f It access 
requfrements are clearly reduced to a ffxed 8mall size 
Instead of befng proportfonal to the msp sfze. Shapes 
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can be reConStrUCted * fkom the 8tanderd-poS f t f on 8Mpe 
wfth varying preclsfcm requfrements. For -le. If 
the shape to be redrawn away from stindard pas It fon Is 
a semf-cfrcle. and the redrawn sfze of the semf-cfrcle f8 
to be large. then many pofnts on the semf-cfrcle nrey be 
computed and transformed to gfve the polygonal lfne 
approxflWtfon to the 8unl-clrcle a 8mooth appearance. 
However. If the redrawn semf-cfrcle Is to be relatfvely 
8mall. then fewer pofnts 8hould be evaluated. 
transfom. and linked together In a polygonal line 
approxfmatfon. 

‘Because the transfotmat?ons descrfbed above as f and 
T-1 are easy to apply to pofnts and not so easy to apply 
to arbftrary curves, the approach to transformfng an 
arbf trary curve fs to evaluate the curve at a number of 
pofnts (that number wflf depend on the qualfty of the 
redrawn approxfmstfon desfred). then transform those 
evaluated pofnts by the transformstfon, then rebufld the 
curve by lfnkfng the transformed pofnts In a polygonal 
Lfne. Some varfatfons to thfs are possfble. such as 
relfnkfng the transformed pofnts wfth a splfne fit. 

Wfth the old method of keepfng coordfnates of curves as 
a separate large f 1 le. when a map transformstfon such as 
an alternatfve proJectfon was applfecf to the sap, all of 
the coordinates had to be recanputed. For a famtly of 
8tandard-posftfon curve records, In many cases the new 
shapes for an alternative proJectfon wf 11 not change or 
may be computed from the standard-posftfons curves 
dfrectly. 

An alternatfve approach to storfng and representfng 
curves on maps offers potenttal improvements of 
cfffcfency and appearance. E>cper fments to be conducted 
fn 1986 wf 11 determine the feasfbf lfty and usefulness of 
the new approach. 
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AWENDIXt AN t, DISTANCE BETWEEN FOLYQONAL LINES 

Thfs appendfx descrfbes a cawutetfonally strafghtforuard 
formula for. computfng the Lr dfstance between polygonal 
lfnes parmnetrfzed by the 8emC normelfzed parameter. 

Suppose that the curves c and E are polygonal lfnes 

psrmetrfzed by t on [OJI where c(t) - Cxp.yp). 

and i(t) - (xC(t),ye(t’): and let the sequence: 

~O=t,.t,.t,.....tn-l) 

consfsts of all of the parameter values for uhfch either 
of the two curves changes directfon. Suppose that: 

. 
CCt,) - (a CfVLICf’ and 

*at,' = CaEf .8EfL for f - O.l..... n. 

Then: 
2 

Dfst Cc.t’ = IO 1 flwp'.Yp" - cx((t'.Yt(t"12 bt 

= I; ccxp-xp”2 + cy,(t'-yp)'2] bt 

n-l 
- 1 <(t(+l-t,‘cca 

2 

f-0 cf+Pz1+1 ’ 

n-1 
+ I I(t 

I-O f+14f ‘[(lcl+Pgf+l’2 

+(*Cl+I~Lf+l ’ Ucf -fgf ‘+(LCpCf ‘21/3L 

m is formula can be used to measure nearness For curves 
fn 8tandsrd posftfon fn order to select an evenly 
dfstrfbuted fanfly of 8UCh curves and also to study 
clustering of curve rhapes. 


