BUREAU OF THE CENSUSSTATISTICAL RESEARCH DIVISION REPORT SERIESSRD Research Report Number: Census/SRD/RR-87/27
Classifying and Comparing Spatial Relations ofComputerized Maps for Feature Matching Applications
by
Alan Salfeld
Statistical Research Division Bureau of the Census
This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.
Recommended by: Tom 0^{\prime} Reagan
Report completed: September, 1986
Report issued: October 1, 1987

Revised and updated seroior of
This Nevin to be pubioled un JOS

CLASSIFYING AND COMPARING SPATIAL RELATIONS OF
 COMPUTERIZED MAPS FOR FEATURE MATCHING APPLICATIONS

Alan Saalfeld
Statistical Research Division
Bureau of the Census
Washington, DC 20233

Abstract

Modern computerized maps either contain digital information on spatial relations, such as adjacency relations, shape, network patterns, and measures of position and distance of features, or they permit derivation of that information from the feature data that they do contain. Such spatial attributes lend themselves to computerized statistical analysis much like any other data. Comparative data analysis of spatial relations is possible when two map files are known to cover the same area. In this case, spatial characteristics alone may be used to established linkages between many of the feature records of the two files. This paper presents examples of some spatial measures of distance and local configuration that were used to develop an automated feature matching system at the Bureau of the Census. For articular sample pair of maps, global summaries and spatial depictions of distance and configuration measures are presented; and some additional uses for the measures are suggested.

KEY WORDS

Computerized maps, map distortion, automated cartography, feature matching, record linkage, configuration, conflation, spider function.

1. INTRODUCTION

1.1. Beckeround.

Confletion is the consolidation or merging of two map representations of the eame region into a third composite conflated map. Recently the Bureau of the Ceneus has begun consolidating or conflating pairs of digital (computerized) map files of the same region in order to measure and improve the quality of the Bureau's digital maps. A second set of digital maps for the entire country is being provided by the United States Geological Survey (USGS) for the Bureau of the Census to use with its own metropolitan map files for comparative updating of both sets of maps. The second set of USGS digital maps was created by mechanically scanning line drawings of road and water networks and thus contains only spatial information about line segments and their intersections. It does not contain any name or attribute information. Thus, only comparisons involving line segments, their locations and locations of their intersections, and derived spatial measures are possible. All of the work in this paper, therefore, treats a map as nothing more than a plane line graph or network.

In the past, measures of similarity and differences of linear features of maps, primarily of paper maps, were not quantitative or even fuliy quantifiable; and this limitation made the comparative analysia of maps quite subjective and non-numerical. Often differences and discrepancies were merely noted or listed; and there was no readily understood measure of map similarity or sameness. The digital map file, on the other hand, is by its
very nature considerably more amenable to numerical analysis, and ite format invites computerization of that analysis.

1.2. Scope of this paper.

Now it is not only feasible and informative to quantify and analyze individual linear feature similarities and differences; it is also useful to try to develop concrete numerical meagures and srephic displays of regional and global similarity in order to establish statistical evidence that two maps, or specific significant regions within the two maps, are piece by piece the samef A challenging open problem is to find a local or regional numerical signature that can be used to block or group together feature records in order to limit or localize a earch for matches. Finding such a blocking algorithm, typically a critical component to any record linkage sygtem, is currently the principal obstacie to fully automating the feature record matching subsystem of the conflation system.

The aim of this paper is to present some initial attempts at quantifying map eimilarities and differences when the maps coneigt exclusively of spatial information. The paper outlines approaches to analysis of those differences and similarities; it does not contain extensive empirical justification for those approaches. This last constraint is due in part to the limited available data. Although the Bureau of the Censur will eventually have to conflate over 5,500 map pairs (each map covering approximately 50 square miles), only three such map paira were made available for this research. While the

Abstract

results of the initial quantification measures appear very encourasing in the few examples to which they have been applied, it is necessary to note that the measures themselves are only a few of many posaible measures; and the observations based on three map sets illuetrate the potential for, rather than prove, the measures' effectiveness.

2. CONFLATION AND AUTOMATED FEATURE MATCHİG

A cartographer. in order to compile two maps of the same region and produce a third new map, uses numerous visual clues and cues to match features of one map to features of the other: and, convinced of a match, he extracts a single feature from the two maps. After a cartographer has matched features on the two maps, a etatistical analysis of the numerical properties of the matched and unmatched features may be performed. The resulting analysis yields information on the numerical characteristics of the cartographer's matching operation or matching algorithm. The resulting analysis, in turn, may be used to develop a rule-based system and to drive an automatic statistical matching procedure, which can then replicate the cartographer's results and, thus, automate the map conflation process. Due to the need for uniform procesing and the large number of map files to be processed, the final production system for computerized matching and merging of two map files should be as fully automated as possible.

At the Bureau of the Census, in order to assess various rules for matching, a semi-automatic interactive color graphics

Abstract

prototype conflation system has been implemented on a Tektronix 4l25B Worketation (Lynch and Saalfeld, 1985). A computer operator uses the astem to manipulate map images and to claseify street intersections and street segments as matches or non-matches.

The system is semi-automatic in that it has been programmed to aimulate the feature-matching detection of a cartographer by applying various matching criteria and then prompting the operator with its findings. The criteria involve position and configuration characteristics of the map features being compared. After the computer locates a likely match based on the matching criteria, the operator needs only to verify or reject the proposed match. The use of color to distinguish between the two maps and to distinguish features that have already been classified as matches or non-matches has also facilitated operator decisionmaking procedures. After matches have been confirmed, fast rubber-sheeting algorithms are used to align the maps, thereby permitting very effective immediate visual verification of matching decisions. The most valuable element of the color graphics/image alignment approach has been the ease and accuracy of asessing whether or not a match was made correctly. The currently used matching/alignment procedure is iterative: with each iteration, it brings more and more matched feature pairs into exact alignment, moves matchable pairs closer and closer together, and moves pairs which do not match farther and farther apart (Saalfeld, 1985).

3. DIFFERENCES UITHIN AND BETUEEN MAPS

3.l. Meneuree of feature position or location.

This etudy of map eimilarities and differences focuses on etreet intersections and their configuration and location. Intersection locations are stored by their coordinates; and as one would expect, the intersections are not clustered in epace, but are fairly evenly distributed in the plane, as gown in figure lB.

Figure 1A. USGS Map of Part of Fort Myera, FL

Figure 1B. Street Intersection Point Distribution for Same Map

The average Euclidean distance from any intersection to its nearest neighbor intersection on the same map is lerge compared to the average amount of local distortion on different maps; and this fact makes an image alignment approach very effective.

Distortion is most easily analyzed through overlay techniques. Alignment may be achieved through elementary trensformations called rubber-sheeting functions that relocate key points of one or both maps on top of corresponding points and move other points of the maps proportionately. The transformations used in the Census Bureau aytem are piecewise linear homeomorphic (PLH) functions defined on triangulation of the map epace or spaces. (Griffin and White, 1985).

Others have used emooth functions euch as bivariate quintice, egain lefined on triangulations, (Lupien and Moreland, 1987) for their rabber-ineeting alisnment.

Figure 2A. Overlay of Two Map
Sections of Fort Myere, FL

Figure 2B. Matched and Alisned Sections of the Same Area

Figures $2 A$ and $2 B$ suggest that a good initial alignment achieved with PLH transformations can bring nearly all matchable pairs into proximity in such way that being a nearest street intersection on the other map almost becomes a necessary (but not sufficient) condition for intersection matchability.

Exploratory studies of distortion (ibid.) have displayed as elevation the displacement in each coordinate direction between maps to produce distortion surfaces meh as the following:

Figure 3A. 50 Link Distortion Surface for X Coordinate*

Fisure 3B. 50 Link Distortion Surface for Y Coordinate*

Available rubber-mheeting techniques have no difficulty aligning maps of different sales and orientation. Distortion eurfaces measure the mount of movement required for that alignment. The mean slope of each distortion surface, for example, would reflect the overall ecale difference in each of the respective coordinates. Orientation change has a similarly predictable and detectable effect on the distortion surfaces.

In general error theory, two types of false classifications may occur. A map feature may be labelled incorrectly as having a match when indeed it does not (false positive): or a feature may be judged incorrectly not to match any feature when it has a true pairing (false negative). In matching theory a third type of error occurs when a feature is judged correctly to have a match, but the wrong correspondent is judged to be the - matching element. This type of error is called mismatch. The iterative matching procedure used with the conflation system identifies new matches at each stage and does not label non-matches as such until the final stage. False negatives are a residual and do not present a problem at an intermediate iteration. False positive errors and mismatches are less desirable and less managable than false negatives because they may precipitate additional errors at subsequent iterations, and at no point in the iteration procedure is there an un-matching capability for correcting false positives and mismatches.

The Euclidean distance between potential matches after initial alignment is an excellent measure for controliing both mismatch

Abstract

and false negative errore. For one particular test map of fort Myere, Fl. Table 1 shows the distribution of instances of distance ranges from matchable points on the Census map to their matched or paired points on the USGS map (column 2), and from the ame matchable points on the Census map to their nearest non-matching neighbors on the USGS map (column 3).

Abstract

The initial alignment used to produce Table l was accomplished through hardware and software image manipulation of Census and USGS maps. First the Census map was subdivided into 32 equal sized rectangular piecea. Each rectangular piece could be moved anywhere on the screen by the operator. Using the entire USGS map as background, the operator positioned each small Census rectangle in order to produce the best possible visual aligmment near each small rectangle's centroid. The movement that had been required to so position the 32 centroids was recorded and averaged locally (using PLH functions on triangulation of the Census map) in order to rubber-sheet the census map and re-compute all of ite coordinates (Saalfeld, 1985).

The cumulative relative histograms which follow and summarize Table l support the idea that, after initial map alignment, nearest neighbor pairs are excellent candidates for matching.

Table l. Distribution of Dietances from Matchable Pointe to their Hatches and Nearest Nonmatches (After Initial PLH Alisnment*)

Figure 4A. Fraction of Matchable Pointe whoee Matching Point is Uithin the Indicated Distance of the Point

Fizure 4B. Fraction of Matchable Points whose Nearest NonMatching Point is Within the Indicated Distance of the Point Nearness alone will not Euffice for matching. Nonetheless, distance tolerances may be used for estimating both mismatch and falae negative error types and reducing one type or the other. In the fort Myers map, for example, if the threshold for matching is aet at 20 meters, (that is, no matches are accepted unless the candidate pair are within 20 meters of each other), then the measured probability of omiting a match (false negative) is 11%, and the probability of mismatching matchable point is 12. By decreasing the threshold, mismatches may be reduced further: however the increase in false negatives will require additional iterations of the file processing; and the threshold may even need to be relaxed in the final iterations in order to detect all matches.

3.2. Mesesures of confisuration.

The remainder of this paper focuses on other match criteria tests to supplement nearest neighbor tests. In order to facilitate quantitative comparisons of intersection patterns, the configurations are asaigned numerical summary values and are srouped according to those values. The coding scheme reflects similarities of patterns through the asignment of nearly equal sumary values when the intersection configurations themselves are nearly identical (Rosen and Saalfeld, 1985). These additional criteria utilize the following numerical measures of local configuration:
3.2.1. The Degree of an intersection. The number of etreets omanating from an intersection is calied the degree of the intereection. The degree provides a good measure on which to match intersections if it is unique or locally unique (e.g. the only intersection in the neighborhood with seven etreets coming into it.)
3.2.2. The Spider Function of an intersection. The etreet pattern at an intersection (that is, the emanating rays) has infinitely many possibilities for street directions. In order to eimplify the possibilities, the number of directions was reduced to 8 sectors. The eight sectors correspond to 45° pie silces centered upon the principal directions of north, northeast, east, southeast, south, southwest, west, and northwest. The eight sectors in counter-clockwise order are assigned consecutive bit positions (from right to left) in an 8-bit binary number, and the
bit for a siven eector is turned on if and only if there is a etreet in that sector. The reaulting number has been named descriptively the epider function of the intersection. With this function, an integer between 1 and $2 \boldsymbol{a}-1$ describes the etreet pattern of the intersection. The binary number 01010101 (which is the decimal 85 and hexadecimal 55) represents the typical 4-street north-south-east-west intersection, for example. The street pattern is essumed to have at most one street in each of the eight sectors. (If more than one etreet occurs in any eector, the spider function may be siven a special value or it may imply ignore the extra street. Limited experience suggests that ignoring the extra street will not adversely affect our matching procedure since (1) two street in the same sector are very rare, and (2) matching is allowed if street configurations are only similar--e.g. "off by one"--and not identical.) Intersection patterns which differ by a power of two are usually "close" in one of two seometric senses: either one pattern is missing a single street, but agrees everywhere else; or else one etreet is shifted, off by a single sector. By comparing the degree of a intersection as well as the spider function, the Bureau of the Census has developed geveral simple measures of nearness of configuration.

The representation of the spider function value as a hexadecimal (base 16) integer has additional nice properties:
(1) The spider function value is always a two-digit number.
(2) Each digit describes the street directional behavior in a four-sector band constituting a semi-circular region.
(3) A disit K in the second (unite) position describes the same confisuration as the same disit k would describe in the firat (eixteens) position except for a rotation of 180° (see figure 5). (4) The configuration with hexadecimal disits NM is the 180° rotation of the configuration with hexadecimal representation $M N$, the number with digits M and N transposed.
(5) Number with repeated digits $K K$ and only those numbers have all etreets continuing etraight through the intersection.

OOOD000000500000 ○QGQ

Fisure 5. Hexadecimal and Sector Patterns for Spider Function. 3.3. Summary Statietics on Global Confisuration.
3.3.1. Spider Function Tables. A frequency dietribution of epider function values for map may be organized in a sixteen-by-sixteen table whose columns correspond to second (units) digit values and whose rows correspond to first (or sixteens) digit possibilities in the hexadecimal representation. In a highly urbanized area, for example, the frequency of the hexadecimal number 55 , representing the north-east-south-west intersections, would be very large, and could help distinguish between urban and other areas. More generally, the frequency table etablishes aind of signature for the street network; and parts of the table, such as the diagonal, have epecial meaning. (The principal diagonal of the table is comprised precisely of those intersections all of whose streets continue atraght through the intersection.)

Two tables (one for the USGS map and one for the census map) showins the distribution of epider function values for all map intereectione for the 25 equare mile Fort Hyere area are siven below. Such tables can orient an initial exploratory data analysis of intersection patterns of the area. After viewing the tables, one may display, in the plane, all of those intersection points having a particular epider value (or a range of related epider values) and then proceed to apply pattern recognition techniques to the pattern, as is illugtrated below.

Table 2A. Spider function dietribution for USGS intersections.

Table 2B. Spider function dietribution for Census intereections.

Abstract

Ae an illustration of exploratory analysis that could be applied to the bove tables, notice that the total number of intersections for the USGS map is far ereater than the total for the Census map. This difference is due to the greater extent or coverage of the USGS map. The Census map merely covers a subregion of the USGS map. Nevertheless, cell percentages are very aimilar, indicating that the distribution of intersections by , configuration types is the same. Moreover, the anomaly of having fewer "55" or north-south-east-west intersections than any type of " T " intersection: $15,51,45$, and 54 , is apparent in both tables. The prevalence of "T" intersections in the fort Myers area is due to frequent water inlets that result in numerous natural road barriers. It is indeed a signature or identifying characteristic for the area.

Since the occurrences are linked to spatial position, the tables shown above could further be decomposed according to subareas or subregions of the map. Although the total number of entries would decrease, the entries present would then reflect more accurately local characteristics of the chosen subarea of the street network.
3.3.2. Spider Displays as Point Patterns. After the spider function tables are compiled, one may choose to display as point patterns only those intersections whose occurrences in the spider function tables are judged extraordinary. One may look at rare occurrences such as the unique " 6 C " intersection appearing on
both mape: or one may draw all "15 Tm intersectione to try to determine why they are so frequent. The second option ie 111ustreted in the fisures below es efitering operation. In the firet eet of fisures the entire range of epider function values in a ubresion ere plotted in their interection locations. In the other sete only those intersections with particular epider function values are plotted.

Fisure 6A. All Spider Function Values in a Subarea of USGS Map

Fisure 6B. Spider Values in Same Subarea of Censur Map

By looking only at "T" intereections in the area, fisures 7 A and 7B, (and using knowledse that each " T " value corresponds to a single Airection failing to "so through"-for ingtance "l5" does not so through to the west or left), one may almost visualize the barriers (in this cese known to be water inlets). A vertical
 clearly flank one euch inlet! A horizontal etring of "54'a" Eitting above aimilar atring of "45's" clearly flank a hopizontal inlet

USGS Map with Hexadecimal

Fisure 7B. Interaections of
Census Map with Hexadecimal
Values $\{15,51,45,54\}\left(T^{\prime} E\right)$

A eecond filtering operation to reduce one's view to only a single class of intersections ("l5's") produces a eet of figures even more amenable to tandard pattern recognition techniques.

Fisure 8A. Intersections of USGS Map with Value $=15$

Fisure 8B. Intersections of
Census Map with Value $=15$

Although condensing the network information at an intersection to ainsle number inevitably causes some loss of information, the resulting patterns lend themselves to many etandard pattern recosnition and analysis techniques. The pattern distributions need to be viewed not only in terms of statistical error measurements, but also in terms of seometric relations of similarity and dependence shared by subsets of the spider function values. Two spider function values represent similar intersections patterns and, hence, are "close," for instance, if one value is twice the other or if their difference is a power of two. $=$ Likewise, values occurring at opposite ends of the same line segment must exhibit clear geometric dependence reflected in one of their digits. Only exploratory work has been undertaken to study geometric implications of spider function value distributions (Rosen and Saalfeld, 1985).

4. CONCLUSIONS

An analysis of distances between matching and nonmatching map features indicates that nearness measures can and should play a key role in automated map matching routines. A further link between computer cartography and spatial statigtical analysis is provided by an integer-valued function defined on map intersection points. Preliminary exploratory work to study properties of this function has begun with limited data resources; and the approach used in that work has been outlined and illustrated here. The next stage in the research will involve the application of image analysis and pattern recognition techniques to attempt fully automated map matching.

5. ACKMOULEDGMENTS

The athor wishes to cite the outstanding computer sraphice eupport provided throughout this research work by Maureen Lynch of the Statistical Research Division of the Census Bureau.

6. REFERENCES

Griffin, P., and M. White, 1985, "Piecewibe Linear Rubber-Sheet Map Transformations," The American Cartographer, v. 12:2, pp 123-131.

Lupien, A., and W. Moreland, 1987, "A General Approach to Map Conflation," AUTOCARTO B Proceedings, Baltimore, MD, pp 630-639.

Lynch, M. P., and A. Saalfeld, 1985, "Conflation: Automated Map Compilation--A Video Game Approach," AUTOCARTO 7 Proceedinge, Washington, DC, pp 342-352.

Rosen, B., and A. Salfeld, l985, "Matching Criteria for Automatic Alignment," AUTOCARTO 7 Proceedinge, Washington, DC, PP 456-462.

Saalfeld, A., 1985, "Comparison and Consolidation of Digital Cartographic Databases Using Interactive Computer Graphics," Census/SRD/Research Report Number 85-11, Washington, DC.

