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wstract r 

The point-vector representation for 1 ine segments offers several 

a&antages over other more familiar representations for lines and 

1 ine segments, such as the point-slope form, the slope-intercept 

form and the two-point form. With the point-vector form, line 

segment intersection routines and related cartographic computations, 

such as point-in-polygon routines and detection of near- 

intersections, can be streamlined, simplified, and mOre easily 

understood geometrically. The point-vector segment representation 
..- 

retains f nformat ion on the 1 i ne segment and not just the 1 ine. 

Special case handling for vertical lines is not necessary as with 

some other representations: and several computational shortcuts can 

be derived directly from the segment end-point coordinates. 

fntroductfonr 

In 1974, the Harvard University Laboratory for Computer Graphics 

and Spatial Analysis published a note by David ii. Douglas entitled, 

“It ilakes ile So CROSS,” which presented a light-hearted 

discussion of some of the difficulties involved in developing a 

computer algorithm for finding line-segment intersections. The 



. 

author stressed the relatively straightforward nature of the 

rnathematfcal problem, then noted fdfosyncracfes of spatial position 

and computer behavior whf ch tended to frustrate any one unf f f ed 

approach to solving the problem by computer. 

This note recommends the use of a particular mathematical 

representation for line segments which facilftates many important 

cunputat f ons made frequent 1 y f n automated cartography, f nc 1 ud i ng 

tests for intersection and near-intersection. The approach resolves 

a number of the issues raised by David Douglas and provides 

sffbrtcuts to related problems. Separate case treatment depending 

on spatial position becomes unnecessary. Some, but not all, of the 

computer behavior problems related to rounding, truncating, and 

overflow and underflow may be circumvented using the point-vector 

representation described here. Integer arithmetic suffices when 

line segments themselves can be describe with integer coordinates. 

This last feature resolves most of the computational problems and 

provides significant improvement in speed of computation when many 

intersections must be found, such as in map overlay routines. 

The geometric significance of some of the intermediate computations 

is also illustrated here: and a point-in-polygon application is 

outlined as an algorithm. 

)lathematical Prelfmfnarfes. 

There are many msthemat f cal representat f ons of straf ght 1 f nes f n a 

plane. Some expressions for the locus of a line are the following: 

2 



Point-Slope Form. Given a point (x,,y,) and slope m: 

L - ((x.Y)J(Y-Y~)yn(x-x,)) 

Slope-Intercept Form. Given slope m and y-intercept b: 

L = ((x,y)ly=mx+b) 

Two-Point Form. Given points (x~.Y~) and (xl*yl): 

L = ((x,Y)l(Y-Y~)/(x-x~)=~Y~-Y,)/(x,-xo)) 

Better Two-Point Form (no possible division by zero): 

* 
L = ((x,y)l(y-y,)(x,-x0)=(x-x&y,-y,)) 

Linear Equation Form. Given real numbers A, B, and C: 

L = ((x,y)J Ax + By + C = 0) 

Point-Vector Form. Given point (x,,y,) and vector (vI,v2): 

L= ((xO,yo)+(rvl,rv,)j r is a real number) 

_... 

Notice that the point-vector form is not defined by an equation, 

but f nstead f s a parametr fzed expression for the 1 f ne. Every real 

number r corresponds to a point on the line in a one-to-one 

fashion. 

if the user is given the two end points of a line segment (xO,y,) 

and (x1 ,y,) , then a vector whf ch wf 11 sat f sfy the pot M-vector form 

is: 

(vpvg = op$)*Y~-Y& 
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For the above chef cc of vector, the pot nt-vector form has the 

followft(g- important property: 

The point corresponding to the parameter re: 

(xo~yo)+(rovl~~o 2 v 1 is on the segment Joining (xo,yO) and 

(xlry,) if and only if r,, lies between 0 and 1. 

This important property permits one to use the same parametrized 

* expression for the 1 f ne and the 1 f ne segment. Hereafter, it wf 11 

be assumed that the point-vector form for two given points is: 

* 

L = ((x,,y,)+(rfx,-x,l.r[y,-y,l)l r 1s a real n-r1 

Line Segment Intersectfon Detection. 

Algorithms for detecting line segment intersection are well-known 

and generally straightforward. Professor Douglas has pot nted out, 

however, that many of the straightforward approaches have 

computational drawbacks. host algorithms use a two-stage 

approach: f f rst, they determine the point in whf ch the extended 

lines meet, then they check to see if that meeting point is actually 

on both segments. Occasionally, when the lines are nearly parallel 

(or vertical with some approaches), or when the-coordinate values 

are large in absolute value, intermediate computations lead to 

underflow or overflow or arithmetic errors due to rounding. 

The following description of computations of the line segment 

intersection algorithm for the point-vector representation 

illustrates the ease of application of the algorithm, the one-step 
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the plane: 

L’fpO’+r’(pl’-PO’) 

_- > 
0 

pO’=(x&Y(J Pl ’ = (X*‘.Y1’L 

d 

computation of the intersection point, and simple estimates of 

magnftides of intermediate computations (to aid in avoiding 

roundoff, overflow, and underflow difficulties.) 

The following mathematical notation will be used to describe the 

problem and its solution. Two line segments, L and L’, are given in 

Figure 1. Line segments and their representation. 

The values of r and r’ between 0 and 1 define ‘the line segments 

between p,, and p1 and between p,’ and pl’, respect f vel y. Al 1 

other values of r and r ’ define points on the infinite lines 

extending L and L’ which do not lie on the finite length segments. 

For the typical intersection probl7, the values of pO, plr pO’, 

and p,’ are given. The values r and r’ are computed to satfsfy 
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simultaneous equations in the coordinate functions. An 

intersection occurs when r and 1”’ are such that: 

p0 + r(p, - p,) = pO’ + r’(pl’ - P,‘) 

In terms of coordinates, the above equality becomes two equations: 

x0 + r(xl - x,) P x0’ + r’(xl’ - x0’) 

Y, + r(y, - y,) = y,’ + r’(y&’ - y,‘) 

I’; both r and r’ are between 0 and 1, inclusive, then there is an 

intersect ion of the segments and not just the 1 f nes. fforeover , f f 

both r and r’ are in the real interval [0-f,l+c], then there is 

nearly (within t) an intersection. This last check can be very 

useful for finding gaps in raster-scanned vectorfzed files and 

- wspaghettf-codedw non-topological map files. 

Solvfna and Sfmplffufna the Simultaneous Eauatfons. 

Unless the two lines are parallel (and that includes the case where 

they are collinear), the two equations have a unique solution for 

the pair r and r’. The line segments intersect if both r and r’ lie 

in the closed interval [O,l]. The line segments nearly intersect if 

both values r and r* lie near to the interval [O,l], but not inside 

it: or f f one of the two values 1 f es f n the f nterval and the other 

lies near but not inside the interval [O,l]. The values of r and r’ 

may be found by computing the following two-by-two determinants: 



(x,-x,) -(x1’-x0’) 

D - 

(y,-Y,) -(Y/-Y,‘) 

(x/ -x,1 -(x/-x/) 

0, = 

(y/-Y,) -(Y/-Y,‘) 

(xpco) (x/-x0) 

02 = 

(Y,-Y,) (Y,‘-Y,) 

The determinant 0 will be zero if and only if the lines are parallel. 
_- 

If D is not zero, then r = D,/D and r’ = D,/D. Note that if the 

x’s and y’s are in integer coordinates (for instance screen pixel 

coordinates), then the D, D,, and 0, computations are al 1 f nteger 

additions and multiplications, i.e. fast. 

If the determinant D is zero, but not both 0, and 0, are zero 

also, then the parallel lines do not intersect. If 0, D,, and 0, 

are all zero, then the lines are collinear: and the segment 

end-pot nt coordinates mey be compared to see f f the co1 1 f near 

segments overlap or touch at a single end-point. 

If the determinant D is not zero; then the fo 

further simplify checking for intersections by el 
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Leimia. A real number r lies in the interval [O,l] if and only if 

the product r(l-r) is non-negative. 

The proof of the lemma is seen easily from the graph of the 

function: y=x(l-x), which is a concave downward parabola: 

Figure 2. The graph of the parabola y = x(1-x) 

floreover, since the parabola is symnetrfc about x=1/2, a test that 

y be slightly smaller than zero is equivalent to a test that x be 

near to the interval [O,l], where nearness is measured uniformly 

at either end of the interval. 

By the lemna, a ratio, such as r=D,/D, will lie in the interval 

[O,l] if and only if: 

(DID-D,D,)/(DD) is greater than or equal to zero. 

Since the denominator, DD or 0’. is always positive, the above 

expressf on wf 11 be greater than zero f f and on1 y f f the numerator 

is greater than zero. The numerator may be also written as: 

D,(D - 0,) 

,- 
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Applying similar arguments to r’ - D,/D, one shows that the line 

segments fntersect if and only if both: 

D,(D - D1) and D,(D - D,) are non-negative. 

In order to determine if an infinite line intersects a line segment, 

only one of the products Df(D - Df) needs to be tested. 

. Such a one-s f ded test can be the pr f ncf pal component of a fast 

point-in-polygon algorithm such as the example outlined in the final 

seztfon of this exposition. 

It is worth emphasizing that the above computation of Df(D - Of) 

may be done without division; and thus it is not only faster, but is 

less subject to computer fdfosyncracfes associated with real 

arithmetic. 

The Geometric Weaning of D, D,, and D,, 

The determinant D is sometimes called the dfscrfmfnant of the linear 

equations that were solved for r and r’. The value of D is also 

recognized as the norm of the cross-product of the two vectors: 

The value of IDI is also equal to the area of the parallelogram 

formed by placing the vectors at the origin or at a common 

starting point, as in the figure below: 
r 
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Figure 3. The dfscrfmfnant Cl measures area of a parallelogram. 

Tee sign of D depends on the or f entat ion of the two vectors. The 

values of 0, and 0, may a1 so be regarded geometr f cal ly as areas 

of parallelograms. 0, corresponds to the parallelogram subtended 

by the vectors formed by the vertices (xO,yO)~ (x,,‘~y~‘)~ and 

(Xl ‘rY,‘L This parallelogram will have area less than the area of 

logram for 0, and 0, wi 11 have the same or i entat f on 

only if the vector [(x,,,Y,),(x,,Y~)] intersects the 

the paralle 

sign if and 
-- 

extended line through the segment [(x~',~~')~(x~'~Y~')]~ 

Figure 4. Parallelograms for D and 0,. 
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J Pofnt-in-Polvaon Alaorfthm Based on Pofnt-Vector Representation. 

The Jordan Curve Theorem provides an elegant means of determining 

if a point lies within a closed curve. By draw f ng any ray from 

the point in question and counting the number of times the ray 

crosses the curve, one may know if the point is inside or outside 

the curve. An odd nunber of crossings means the point f s inside; 

an even number signifies the point is outside. Of course, 

implementation of the rule is not always easy for any curve. 

. However, for polygons (closed polygonal curves) the rule is fairly 

easy to implement. There wf 11 be some need to clarify the meaning 

of* u crossing” the curve. One may guarantee only legitimate full 

crossing--not merely touchfng-- of the f nter for segments of the 

polygonal line by choosing the ray Judiciously, as shown below. 

Suppose (x,,y,) is the given point to be tested to see if it is 

inside the polygon ((X,ly,),(X2,Y2)~*.*~('n~Yn))* 

Consider the mfnfmum non-zero (NY,-yfI I f=l,2,...,n) (call it my), 

and also the maximum of (Ix,-xi1 I f=l,2r...rn) (call it ffx). 

Consider the ray emanating from (x,,y,) with slope my/2tlx. This 

slope is chosen so that the ray rises very slightly, but not fast 

enough to hit any vertices strictly above (x,,y,). This ray 

cannot intersect any of the vertices (xf,yf) of the polygon because 

of the way in which my and nx were chosen. Thf s ray may be 

described parametrically as: 

R= ((x,,yo) + r(2Hx,my)l r > 01 
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By letting r=l a second point on the ray is: 

()(‘,y’) = (xo+2tfx’Ypy)’ 

The point-in-polygon test can then be reduced to counting the 

intersections of the ray R from (xO,y,) through (x’,y’) with all 

, 
of the sides of the polygon [(x,,y,~.(x,,~,y,,~~], for 

f=lr2 ,...tn. (Here vertex ntl is the same as vertex 1.) 

. 

Figure 5. Ray intersections for point-in-polygon test 

Counting intersections amounts to computing products of 

determinants D’f(D*f -D’f) and counting non-negative results, where: 

(2Hx) (xf-xftl) 

Doi = 

(my) (yr-yrt1) 

mxl (Xi -x0) 

D’f = 

(myI (Yf’YO) 

c 
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or one may simply multiply a11 the products together (using the f~ 

notation: lf[D’f(D*f-D’f)]). Then ll[D’,(0*, -D’,)] wfl I be negative if 

and only if an odd number of factors are negative. 

Conclusions. 

The geometric intuition provided by the point-vector form for line 

segment representation, along with the collection of algebraic 

manipulations presented herein to simplify line intersection 

computations, more than justify the use of that form to represent 

1 fnes and 1 fne segments. flany of the problems identified by 

PrdFessor Doug1 as f n h f s paper have been addressed and resol ved 

by this particular representation. The representation, moreover, 

conforms to current computer graphics wisdom and practice which 

calls for parametric representation of all curves: for, indeed, this 

form gf ves such a representat f on of the straf ght 1 f ne or 1 f ne 

segment. 

. 
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