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Report 4. 
Census Ratio Adjustment for Synthetic Estimation 

Report 1 considered across-the-board ratio adjustment of 

area census counts using a known population total T; Report 2 

considered the same adjustment using an estimator, ; , of T. In 

this report suppose that, once again, we have areas (typically, 

states) indexed i=l,...,I. Suppose, also, that we categorize 

each person in a second manner, e.g., according to J age-race-sex 

‘cells as in our empirical results below. We number the cells 

- from j=l to J. Let Tj be the true total number of persons, 

summed over the I areas, that fall into cell j. In the manner of 

Repart 1 suppose that we know Tj, from a PES or similar source, 

for each of our cells j. 

With this knowledge of Tj, our ‘Is nthetic” Y estimation of the 

population total for area i proceeds as follows. Let yij be the 

census Count of number of persons in area i and cell j; let Yj be 

the census count of all persons in cell j; let pij be the 

proportion Yij/Yj. Our synthetic estimator for area i is 

a = 
i 1 Y T ./Y 

j 
ijJ j 

= 1 pijTj. 
j 

(1) 

Let yi be the census count for area i, and y be, as in earlier 

reports, the vector of area census counts. As in (2) of Report 1 

we once again want to compare the loss-function values fk(a) and 

fk(r) to decide whether adjustment is worthwhile. Thus as in 

Report 1 we compute the ratios fk(“)/fk(x). A ratio far less 

than 1 suggests that synthetic estimation is worthwhile. 

Next, in the manner of Report 2, we confront the fact that 

we do not know T j exactly, but only have an estimator of it, 

which we call T 
j ’ 

Suppose that we view G as an unbiased 
j 

estimator of Tj with a variance Wj. Also, the estimators i 
j 

are 

mutually uncorrelated random variables: there is no correlation 



2 

among the J-departures of observed i 
j 

from Tj. (Later in this 

paper we will consider positive correlation among these 

estimators.) Thus we envision a procedure.for 
A 

constructing Tj such that any large, uniform systematic upward or 
A 

downward bias, of the T 
j 

‘s as estimators of Tj’s, has been 

removed. Perhaps one can achieve this by correcting cell totals 

to a known overall total. This premise may need to be 

scrutinized. 

In the manner of Report 2 we want to consider a “breakeven” 

variance, which tells us how precisely we need to know T . 
j In 

. order to make adjustment worthwhile. But whereas in Report 2 we 

had only a single variance W, we now have J variances Wj. Thus . 
in this report we proceed as follows, in an effort to develop a 

meaningful statement as to breakeven variance. 
* 

Suppose that Wj is proportional to T.C : 
3 

that is, Tj raised 

to the Ocll power with the value of c independent of j. A value 

C=o says that Wj itself is a constant, independent of j. A 

constant value for W. 
J’ 

and thus a value c=O, do not seem 
A 

plausible - because the uncertainty associated with T 
j 

naturally 

tends to be largest, in absolute terms, when Tj is largest. That 

is, for example’, for a cell of size 10, known to be very small, 

we will estimate T. 
J 

with an error of very small magnitude, say 10 

or 15 persons; but for a cell of size 1 million the magnitude of 

our absolute error in estimation will be much more than 10 or 15 

persons. A value c=2 says that Wj/Tj2 is constant: that is, our 

C.V. is the same for all j. The value c=2 thus does not seem 

plausible, as the uncertainty associated with i 
j 

naturally tends 

to be largest, in relative terms, when T. 
J 

is smallest. As an 

intermediary between c=O and 2, we use c=l: variance is 

proportional to Tj. (This last pattern corresponds, for example, 

to the fact that the sum of n independent and identically 

distributed random variables has, along with an expected value 

proportional to n, a variance which, also, is proportional to n 

rather than to 1 or n 2.) 

Thus we consider a general model of form 



Var(ij) = VT ’ 
j 

(2) 

with values of both the power c and the coefficient V independent 

of j. We prefer c=l and show calculations for it, but have also 

done some calculations for c=O and 2. For each value of c we 

compute a breakeven value for V. Consider the synthetic 

estimator 

A 
a = i 

1 y ; /Y = 1 PijTj A 
ijj j (3) 

j j 

. and, in analogy with fk(a) for 2 as in (1 ), the loss-function 

- value fk(i) . In the manner of Report 2 we now compute the value 

of V such that 

* 
E(fk()) = fk(@ . (4) 

Explicitly, we get this value of V as follows. The general 

form of our loss functions fk(x) for k=1,2,3 is, as in (2) of 

Report 1, 

I(‘i - ti)2/di (5) 

with ti equal to the true total for area i, and the divisor di 

equal to 1 for k=l, yi for k=2, and ti for k=3. We have 

E(fk&) = f,(a) + V 1 1 pgjTJ” 
i j 

/di (6) 

With pij = Yij/Yi 

for V is 

as in 

v = (‘,(y > - fk ( 

(1). Accordingly, the breakeven value 

a) 11 (1 1 pTjT; idi). (7) 
i j 

(Incidentally, Report 2 and 3 discussed at length the 

partition of C.V. C3, for f3, into C2 and B. Here, with J totals 

Tj 
instead of a single T, we do not get such a neat partition and 

interpretation.) 
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For c=O, V is just a constant variance, and for c=2 it is 

just a constant c.v., as noted above. For c=l, of special 

interest to us, the interpretation becomes-more elaborate. We 

now present some empirical results. 

In our empirical study we considered the 3 artificial 

populations (true counts and accompanying census counts) APl, AP2 

and AP3 of Report 3, as constructed by Isaki, Diffendal and 

Schultz. Here, area i is state; cell j.corresponds to age (5 

categories), race (3 categories), and sex (2 categories), with 

5x3~2, or 30, cells in all. (Here we do not consider the 

*sampling strata that were of major interest in Report 3.1 We 

*included the following nine states in the study: 

ME, NH, VT, MASS, CT, RI, NY, NJ, PA. 

In oJher words we consider the northeastern end of the U.S.: PA 

and everything to the north and east of it. 

In summary, our results make a substantial case for 

considering adjustment based on synthetic estimation. We have 

already discussed our preference for c=l and will show results 

only for that value of c; but the conclusion is the same for c-0 

and 2. Likewise in Report 2 we explained a preference for our 

3rd loss function (k=3), based on division in (5) by the true 

ti* Thus we give results only for k=3, but the conclusion is the 

same for loss functions 1 and 2. 

For AP3 the ratio f3(a)/f3(y), of loss functions based on 

synthetic state estimates (a) and census figures (~1 , is only 

.00933. That is, synthetic estimation reduces error, as measured 

by the loss function f3, by a factor of almost 107 - if we know 

the true cell counts, Tj, exactly. We of course do not know Tj 

exactly; we use the estimates i . . For c=l we consider the model 

Var(ij) = VTj 
J 

as in (2). The breakeven value for V is given by 

(7), with c=l, k=3, and di = ti. 

This breakeven V is 21,038.T. If V is in fact less that 



6 
this amount, we prefer the synthetic estimates a i to the census 

counts yi. We would interpret this breakeven V as follows. For 

cell j we have a variance VT. 
J’ 

and thus a C.V. 

7 be the arithmetic mean of Tj 

(V/Tj1’2. Let 

over our J cells; here we have 

5; = 1,653,206.9, and an average C.V. of 11.281%. To justify 

synthetic estimation we require that our average cell C.V. be 

less than 11 .281%; such a requirement does not seem restrictive. 

For example, if a cell is of size l,653,207 (i.e., T ) the 

required C.V. is 11.281% or less. Likewise a cell of size 

3,306,414 (i.e., 27Y ) requires a c.v. of 7.977%, of size 826,603 

. (i.e., T/2> requires 15.954%. 

Keep in mind that we are making a statement about the 

average behavior of all c.v., s viewed simultaneously. We are not 

saying that every C.V. has to be less than its respective bound 

(V/ij)1’2 - only that, on average, this bound is not exceeded. 

An alternative interpretation is as follows. If the variance Wj 

were in fact proportional to T. - that is, if the ratio Wj/T. 
J J 

were equal to a constant V for all j - tnen our breakeven value 

of V would be given by (7). Accordingly, if most or all of the 

actual ratios Wj/Tj are less (greater) than V, then we probably 

should (should not) adjust. As an overall rule of thumb, which 

gives proper relative weighting to large and small areas, we 

might compare the ratio R = W/T against V, with T = 1 T. and W 

equal to the value, to the best of our knowledge,of 1 Wi, the sum 

of variances. For R<V we would adjust, for R>V we would not. 

The above loss-function ratio, f3(“Vf3(“), and average 

C.V., for a cell of size ?;, correspond to AP3, which as in 

Report 3 is preferred among our 3 artificial populations. In all 

we have Table 1. On this basis, although c.v.‘s for APl and AP2 

Table 1: 
~__ .---- -___-- ---------- I----- - 

States 
- -- 

Loss-Function Ratio --- -- Average C.V. ----_-__ 

API 
AP2 
AP3 

00829 5.943% 
:00868 7.270% 
. 00933 11.281% 



are less conclusive than for AP3, we encourage the exploration of 

ratio adjustment of state totals based on synthetic estimation. 

Thus for APl-Z-3 we have considered the 9 states as "areas". 

Next we consider 217 counties (and independent urban 

jurisdictions), into which these 9 states are divided, as 

areas. Our age-race-sex cells, indexed by ,‘jlI, are unchanged; 

but our areas ‘iI, now are counties rather than states. Thus the 

totals Tj (true) and Yj (census> are unchanged; but yij and ai in 

(11, and the totals ti and yi, are now computed county-by-county. 

. For counties, Table 2 gives the results for loss function (k=) 3 

and exponent (c=> 1, that appear in Table 1 for states. 
. 

-___ 
Table 2: Counties 

API 
AP2 
AI’3 

Loss-Function Ratio --I--- ---- --_ __---___ -^- Average C.V. - 

. 22780 5.801% 

.20600 7.778% 

. 21464 11.466% 

---e-e ----- 

The loss-function ratios in Table 1 are much smaller than in 

Table 2: for AP3 we have .00933 for states and .21464 for 

counties. Thus suppose that in fact we knew the true cell totals 

Tj exactly; then, the use of the synthetic ai in preference to 

census yi would not enhance our accuracy in estimating the true 

county totals ti* as dramatically as it enhances it in estimating 

the true state totals. Meanwhile the average c.v.‘s are about 

the same as in Table 1: for AP3 we have 11.466% for counties, 

vs. 11 .281X for states. Thus to justify synthetic estimation for 

counties we require that our average cell c.v., in estimating T. 
J’ 

be less than 17 .466%, whereas for states we required 11 -281%. 

Our knowledge of the true cell totals Tj has to be about as 

precise in order to make synthetic estimation for counties 

worthwhile, as it has to be in order to make synthetic estimation 

for states worthwhile. For API and AP2, also, the county-state 
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difference is small. On this basis we encourage the exploration 

of county adjustment based on synthetic estimation. 

Next we consider the 53,727 ED’s, into which the 9 states 

are divided, as areas. We obtain Table 3, once again based on 

k=3 and c-l. The loss-function ratios are now close to 1; use of 

the synthetic ai does not greatly enhance our accuracy in 

--- ----- 
Table 3: ED’s 

Loss-Function Ratio -- Average C.V. ---- 

. 

API 
AP2 
AP3 

. 81692 4.610% 

.71684 6.764% 

.73189 9.365% 
-- ---_- e-- 

* 

estimating the true ED totals (even if we, hypothetically, know 

the true Tjfs exactly). The average c.v.‘s are somewhat smaller 

than for states and counties. Thus to make synthetic estimation 

for ED’s worthwhile at all we must know the Tjfs with somewhat 

more precision than we need to make it worthwhile for states and 

counties. 

Generally, therefore, we observe the following pattern. As 

average area size decreases and number of areas increases (from 9 

states to 217 counties to 53,727 ED’s), with our 30 adjustment 

cells held constant, the loss-function ratio steadily increases 

toward 1 (for AP3, from .00933 to .21464 to .73189). That is, 

synthetic estimation can remove a fraction of error which is much 

larger when we have a few, very large areas than when we have 

many small areas. However, the changes in breakeven c.v.‘s are 

not so striking (for AP3, from 11.281 to 11 .464 to 9.365). We 

must make a decision as to whether we know the T.‘s precisely 
J 

enough to make adjustment worthwhile (however modest the gains 

from it); this decision depends somewhat, but not heavily, on the 

number and size of our areas. 

Thus one might envision a decision as to whether to adjust 

all areas at all levels. In this way we would have consistency 



in that the adjusted population for a whole (e.g. state) is the 

sum of the adjusted populations for its separate parts (e.g., 

counties which comprise the state). 

Two further directions of inquiry, as follows, are: (1) 

loss functions based on proportions rather than counts, and (2) 

positive correlation among the errors in the cell-total 

estimators q.. 
J 

(1 ) Up to now our loss functions have been based on area 
,T 

counts: t i true, yi census, ai and ai based on adjustment. We 

now base them on proportions of total population. Let: 

gi=ti/T, the true proportion of population that area i 

represents out of the total. 
. hi=yi/Y, the proportion of population, as measured by the 

census, that area i represents. 

* ri=ai/T with a., as in (11, 
1 

the synthetic total for area 

i. That is, ri is the proportion of population based on exact 

synthetic totals. 
A 

ii=^ai/T with 
A 
a i as in (3) the synthetic estimator of total 

for area i, and ; the estimated grand total, that we use in 
A 

practice. That is, ri is the proportion for area i based on the 

synthetic figures that we use in practice. 

In our 4 loss functions we replace ti,yi, and ai by the 
e 

corresponding gi,hi, and ri. Thus our criterion, as measured 

in 4 different ways, is closeness of estimated area proportions 

to true area proportions rather than of estimated area counts to 

true counts. Such proportions are vitally related to proper 

allocation of a pie among the areas, as for revenue sharing or 

apportionment of the House of Representatives. For Report l-3 we 

adjusted area census counts across the board; such an adjustment 

did not change the area proportions. Yet the synthetic 

adjustment of this report does change them. 

Once again we limit the discussion to loss function (k=)3, 

with exponent c=l. Letting f’ 3 (rather than f3) denote our new 



loss function, we now compare the census 

(10) 

against the synthetic expected value 

E(f;($)=E(&-g,);pi)’ (11) 

A convenient approximation to the value of (11 > might be 

based on a standard lst-order Taylor linearization of the ratio 
A 

estimator r,. For (11) we obtain 

Icri -gi1)2’gi+v~[~(Pij 
i j 

-ri 12Tj l/giT2 (12) 

whereupon we may compute a breakeven val’ue for V, with 

accompanying interpretation, as before. 

Use of this linearization is limited, however. This 

* paragraph digresses to explain why we use it when we have many 

areas, such as (perhaps) 217 counties, but not few areas, such as 

9 stztes. On a first reading one might skip the details of this 
A A 

paragraph. We linearize the ratio ri =+T, with T always 
A 

appearing in the denominator. We approximate that 1 /T behaves 

linearly, i.e. like 
A 

(T-T)/T~, 
A 2 

l/T - or 2/T - T/T . 

The inaccuracy that results from this approximation has its 

relatively largest effect on the value of (12) (specifically, the 
A 

2nd large term in (12)) when the relvarian?e of ai, in the 

numerator, is the smallest. The latter happens when we have the 
A 

fewest, largest areas: That is, ai has large expected value and 

small relative variance. Accordingly, for 9 states we in general 

anticipate less accuracy in the use of (12) , than we do for 217 

counties; and even for our 217 counties we are only using a 

convenient approximation. (Future work might be pursued here, 

such as Monte-Carlo simulation. One might also consider a 2nd- 

order Taylor approximation to enhance accuracy, but we then 

encounter 3rd and 4th moments which prohibit our results from 

being distribution-free.) 

Accordingly, Table 4 gives approximate average c.v.‘s for 

counties based on (12) for proportions. We may compare these to 

the average C.V. ‘s in Table 2 based on counts for states and 

counties. Table 4 somewhat exceeds Table 2 for AP2 and AP3 
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--- --- ---I- ---- 

Table 4: Average C.V. ‘s Based on Proportions 

APl 
AP2 
AP3 

Counties ---- - --- 
4.880% 
9.531% 
12.039% 

-a- ---- - 

with the reverse holding for APl; differences between breakeven 

levels do not seem major. 

(2) Our second direction of inquiry is positive correlation. 

Early in this report we presumed that the random errors in the 

‘quantities q. were uncorrelated. 
J 

We now presume that there is 

-positive correlation among them: an erroneously high total for 

cell 1 suggests that other cell totals are likely to be 

errozeously high. To capture the effect of this correlation, we 
. e 

model that the linear correlation between T 
j 

and T., 
J 

for j+j’ is 

equal to a nonnegative value R. From this point it is 

straightforward to develop formulas (dependent on the value of R) 

for the breakeven V. These formulas are extensions of those for 

counts in (71 and proportions in (12). 

Average C.V. ‘s for counts and proportions, for AP3 only, 

are in Tables 5a and 5b. The figures for R=O (no correlation) 

coincide with those for AP3 in Tables 1 ,2 and 4. 

--- 

Table 5a 
--I--------- ------ 

Average C.V. ‘s for counts, positive correlation and AP3 
R 0 1 -3 .6 
States 11.281 6.610 4.346 3.194 
Counties 11.466 7.033 4.692 3.466 

---_-_I__ --- ------ -- -- A- ----_ 
Table 5b 

Average C.V. ‘s for proportions, positive correlation and AP3 
R 0 .l 93 .6 
Counties 12.039 9.821 7.589 5.995 

-----I--------_ -_-_- -._____._- -__--__--_- -----_- 

As one might surmise (and can analytically demonstrate), the 

breakeven C.V. drops sharply for counts as the correlation 

increases. Thus correlation among our errors implies that we 

must know the true cell totals all the more precisely, in order 
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to make synthetic estimation worthwhile for counts. For 

proportions the same pattern is there empirically although much 

weaker; the gap between county breakeven levels in 5a and 5b 

widens as the correlation increases. 


