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The Census Bureau's demographic surveys are periodically 

redesigned for a variety of reasons. Among them are to reflect 

changes in the composition of the population, to improve the 

efficiency of the estimators through changes in the sample design 

or the estimation procedure, and to accommodate changes in the 

purpose of the survey (e.g., through changes in the survey 

instrument). Such redesigns are often phased-in over a time span 

which encompasses several data collection periods. Thus, the 

survey estimates produced during the phase-in are affected by the 

redesign as well as by actual changes in the population 

characteristics themselves. 

. The purpose of this report is to describe an approach to 

modeling the effect of the redesign on estimates from an ongoing 

survey. It consists of three parts originally written as 

separate reports over several years and reflects the author's 

attempts to set up, and then modify, the models as his experience 

with and information about the surveys grew. In the first part a 

model for the 1985-86 National Crime Survey (NCS) sample redesign 

is constructed. The feasibility of the analysis is demonstrated 

using 1982 (non-redesign) data. In Part 2 a similar model is 

described for the 1984-85 Current Population Survey (CPS) sample 

redesign. The third and final part represents an attempt to 

analyze the CPS redesign. A cross-sectional analysis does not 

prove to be adequate and a longitudinal approach is discussed but 

not implemented. If the obstacles to the latter approach can be 

overcome, it could provide a useful method for future redesigns. 

The NCS analysis in Part 1 illustrates a second, and perhaps 

more important use of such models; namely, the potential to 

estimate the effect of some non-sampling errors and perhaps 

ultimately to remove these effects from the published 

estimates. Although this application is not explored in this 

report, it does merit further investigation. 
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1. Introduction 

The National Crime Survey (NCS) has been redesigned to reflect population 

changes from the 1980 Census. The final report of the CPS/NCS phase-in work 

group (Document No. 26 dated May 16, 1983) describes several alternative 

phase-in plans. Plan B in this report has been selected for use. A descrip- 

tion of the plan and the reasons for its selection are contained in an SMD 

Draft Memorandum entitled "NCS Redesign: Plans for Measuring the Effect of 

Phase-in of New Sample Areas" (undated). A discussion of the major factors 

l which may affect NCS estimates and several possible approaches to estimating 

their effect are given. 
* 
Three approaches and the necessary assumptions of each are mentioned in 

the draft. These can be briefly described as 

(1) a comparison of the estimates obtained for the part of the population 

represented by the continuing sample areas with the estimates from 

the entire sample, 

(2) a comparison of time series based forecasts with estimates from the 

entire sample, 

(3) a linear model approach to the direct estimation of the phase-in 

effects. 

The purpose of this report is to expand on these preliminary discussions and 

to construct a linear model which contains the major effects. In the frame- 

work of the proposed model, estimates of the effects and their variances can 

be obtained as well as the victimization levels and rates measured by NCS. 

This report will not consider the first two approaches listed above. 

The selected phase-in plan (Plan B) is characterized by an abrupt change 

in noncontinuing areas. Data collection in all outgoing areas ceases after 

December, 1985. Bounding interviews in incoming areas are conducted from 
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July to December, 1985 and data collection for estimation purposes begins 

in January, 1986. In continuing areas the 1980 sampling frame is used to 

select all new rotation groups beginning with those whose bounding interviews 

are conducted from January to June, 1985. 

The major factors which may affect NCS estimates can be broadly classified 

as either phase-in related or nonphase-in related. Phase-in related effects 

are those primarily due to the disruption caused by the redesign and should 

disappear after phase-in completion in June, 1988. The model presented in 

this report contains only one phase-in related effect, referred to as the 

type of area effect. Nonphase-in related effects are those which existed 

priur to the redesign and which will persist after completion of the phase-in. 

We would like to compare these effects on pre and post-redesign estimates and 

if possible, to study any changes in them during the phase-in period. Two 

nonphase-in related effects are included in the proposed model. These are 

referred to as the recall lag effect and the time in sample effect. 

As a phase-in related effect, the type of area effect is intended to 

reflect changes in the survey methodology and not the population being sampled. 

For redesign purposes, the PSU is not always the unit of interest. The term 

area will be used to designate the unit of interest. It can be either a PSU 

or part of a PSU in those instances where the stratum and/or PSU definitions 

have changed with the introduction of the 1980 sampling frame. The area type 

effect has four levels: continuing nondisrupted areas, continuing disrupted 

areas, outgoing areas, and incoming areas. Examples of continuing disrupted 

areas are those PSUs whose boundaries have been changed to include previously 

nonsampled areas or to delete previously sampled areas. llnder this breakdown 

the area type effect encompasses the effects of new interviewers and inter- 

viewers who will be fired, the effects of certain types of administrative 
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disruptions and burdens, and the effect of any other systematic differences 

between areas which fall into different categories. 

Both of the nonphase-in related effects reflect characteristics associated 

with the sampled population's reaction to the survey procedure. The time in 

sample effect is well documented and need not be discussed further. The recall 

lag effect arises from the method of data collection; viz., the respondent is 

asked to describe all victimizations in the six month period preceeding the 

interview. Memory loss and a "telescoping effect" may be the principal com- 

ponents of the recall lag effect. 

. 

2. Statement of the Model and Assumptions 

* 

The model presented in this section describes the response for an entire 

class of individuals rather than for a single individual. The groups have 

been made as large as possible in terms of number of individuals represented 

while still allowing for the effects of all major factors on each group for 

which NCS estimates are regularly produced. These demographic groups could 

be defined by age, race, sex, and place of residence or by some smaller set 

of collapsed categories. The response to be modeled is given in terms of the 

number of victimizations rather than in terms of the number of instances of a 

particular type of crime. 

For each sampled individual, let 

Yijstlk = reported number of victimizations of a particular type 
of crime for the i-th sampled individual in the j-th 
demographic group from the k-th type of area who is 
being interviewed for the s-th time, reporting occur- 
rences in month t and having a recall lag of 1 months, 



where the subscript ranges are 

i = 1, . . . . 1 (= Ijstlk) 9 

j = 1, . . . . J , 

s 1, = . . . . 6 , 

t = 1, . . . . T , 

1 1, = . . . . 6 , 

k = 1, . . . . 4 . 

The order of the area types 

shown later, not all subscr 
- 

k is as listed in the Introduction. As will be 

ipt combinations correspond to available data. 

Let Wijstlk be the weight associated with Yijstlke A model containing the 

major factors of interest could be constructed for each individual. How- 

ever, since the vast majority of the Yijstlk will be either zero or one, it 

is more practical to model the weighted total number of reported victimizations; 

i.e., 

Y.jstlk = i Wijstlk Yijstlk l (1) 

i=l 

For a fixed demographic category j and month of victimization t, the 

response (1) can be modeled as 

Y.jstlk = W.jstlk Cjt + W.jstlk Tjskh 

+ W.jstlk Rjl ' W.jstlk Ajkt' ' W.jstlk RAjlkt' 

' e.jstlk 9 (2) 

where 

w.jstlk = E 
i=l 

Wijstlk 9 

Cjt = "true" victimization rate for demographic category j 
in month of occurrence t , 

Tjskh = effect on the rate for interviewing individuals in demographic 
group j from area type k for the s-th time where the interview 
occurred in the h-th six month period of the phase-in 
(h=Q(t, 1))s 
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Rjl = effect on the rate of recalling a victimization which 
occurred 1 months prior to the interview for individuals 
in demographic group j, 

Ajkt* = effect on the rate of interviewing individuals in the 
k-th area type when the interview is conducted in month 
t' =t+l, 

RAjlkt' = effect on the rate due to the interaction between the 
recall lag and type of area , 

e.jstlk = the aggregate of all sampling errors. 

The parameters in the model (2) are subject to the following constraints: 

s=l W.jstlk Tjskh = o 

* 
1=1 

'.j.tlk Rjl = o 

Ajlt* = 0 

RAjllt' = 0 

for all k, h , 

for all k, 

for all t' , 

foralll , 

(3) 

W.j.tlk RAjlktc = o forallk . 
1=1 

As a reference point, t = 1 corresponds to January, 1985 and h = 1 represents 

the six month period from January to June, 1985. 

A simple numerical example will serve to illustrate the interpretation 

of the terms in the proposed model. For purposes of the example we shall 

ignore the error term in (2). Suppose we are interested in the number of 

victimizations in month t for individuals in demographic group j. Suppose 

we are interviewing individuals for the first time (excluding bounding inter- 

views) in incoming areas concerning victimizations which occurred three months 

prior to the interview. If 

(i) the sampled individuals have weights which total 5000000 

tw. jlt34 = 5000000 persons), 
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(ii) the "true" victimization rate for this demographic group in the 

month of interest is 0.0300 victimizations per person 

(Cjt = 0.0300), 

(iii) the effect on the rate due to these individuals being sampled 

from the first time is to increase it by 0.0020 victimizations per 

person (TjlJh = 0.0020), 

(iv) the effect due to the sampled individuals being asked to recall 

an occurrence three months prior to the interview is to increase 

the rate by 0.0010 victimizations per person (Rj3 = O.OOlO), 

(v) the effect due to sampling from an incoming area is to reduce the 

* rate by 0.0050 victimizations per person (Ajd(t+3) = -0.0050), 

(vi ) and the effect of the interaction between the recall lag and 

incoming area is to reduce the rate by 0.0005 victimizations per 

person (RAj34(t+3) = -0.0005), 

then 

Y.jlt34 = (5000000)(0~0300) + (5000000)(0~0020 + 0.0010 - 0.0050 - 0.0005) 

= 150000 - 12500 

= 137500 reported victimizations. 

Having illustrated the interpretation of the terms in the model (2), we 

now briefly discuss the rationale for each term and the corresponding constraints 

in (3). 

"True" victimization rate: The estimate of Cjt represents a monthly 

estimate which, in itself, is not published. The parameter does not neces- 

sarily represent the true rate, rather it represents what the individuals 

in the group would be willing to tell an interviewer under "ideal" conditions. 

Thus, the word true is placed in quotes. 

Following Bateman and Bettin (a paper entitled "Standard Error Estimation 

for the Natinal Crime Survey" presented at the 1975 ASA meetings in Atlanta), 
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the "true" quarterly and yearly rates can be expressed in terms of the Cjt as 

cj. 
to+2 

(Q) E (1 (Q) 
t=to 

W.j.t.. Cjt)/P s 

to+11 
cj. ty) = (1 

L) 

t=to 
W.j.t.. Cjt) / p 9 

respectively, where 

,(Ql 
= f Ut'Pjt* , 
t*=1 

p. * = 
Jt 

1 (independent control count of the number of persons in the 
6 j-th demographic group for month of data collection t'), 

* 
o( = l/3 if t' = 1, 8 

= 2/3 if t' = 2, 7 

5 1 if t' = 3, 4, 5, 6 , 

,(-) f l/4 f P(Q) . 
Q=l 

The weights yfi reflect the number of months of occurrence in the quarter for 

which information is obtained in month of data collection t'. Hence, the 

monthly estimates of Cjt can be used to produce a set of publishable values. 

Time in sample (TIS) effect: Ideally this effect would depend on the 

demographic group j, the type of area k, and the month of data collection 

t' =t+l. This latter dependence would allow for changes in the TIS 

effect over time. If we allow the TIS effect to depend on t*, then there 

are as many parameters Tjsklt as there are responses Y,jstlke Even with 

constraints on the T's of the form given in (3), we would not be able to 

uniquely estimate all of the parameters in the model. Therefore, the 

dependence on time must be modified. 

Since each rotation group is divided into panels which are interviewed 

over a six month period, it is convenient to allow the TIS effect to depend 
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on the six month period h (January-June or July-December) in which the data 

is collected. Thus, the TIS effect is denoted by Tjskh. It should be noted 

that although the TIS effect refers to the repeated sampling of the same 

individuals over time, the effects are calculated from the responses of 

different individuals sampled in the same month but who have differing numbers 

of previous interviews. Hence, the use of six month periods is a matter of 

convenience and the actual dependence on time should be investigated further. 

The Constraint 1 W.jstlkTjskh = 0 means that within each demographic 
S 

group j, area type k, and six month period h, the TIS effects can be thought 

of as deviations from some average level; i.e., for some numbers of interviews 

s, &here is underreporting while for others there is overreporting, but they 

balance out over all values of s. 

The constraint could be modified to 1 W.jstlkTjskh = K. If the Constant 
S 

K does not depend on time or on the demographic group j, then a nonzero value 

of K does not represent a more general constraint. This follows since we can 
* * 

Write Tjskh = Tjskh - (K/W.jstlk), replace Tjskh in the model by Tjskh, and 
* 

add an overall mean to the right hand side of the model (2). The Tjskh 

sum to zero over s. 

Recall lag effect: The effect of recalling a victimization which occurred 

1 months prior to the interview is allowed to depend on the demographic group j 

but not on area type, month of occurrence, or number of interviews. 

The constraint 1 W.j.tlk Rjl = 0 assumes underreporting for some lags 
1 

and overreporting for others with a net effect of zero. If the recall lag is 

primarily a problem of "telescoping" rather than a loss of memory, then the 

constraint appears to be reasonable. On the other hand, if loss of memory 

is the primary reason for the recall lag effect and if we are willing to 

assume perfect recall for the month preceding the month of interview, then 
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a more reasonable constraint would be RjI = 0. Other constraints are possible 

depending on the perceived nature of the recall lag effect. 

Area type effect: The area type effect is assumed to depend on the type 

of area k and the month of data collection t' = t + 1, where 

k 1 = if the area is continuing and nondisrupted, 

k 2 = if the area is continuing and has been disrupted, 

k 3 = if the area is outgoing, 

k 4 = if the area is incoming. 

Classification of the majority of the sampled areas will be clearcut. In a 

few cases listing a sampled area as continuing nondisrupted (k=l) or as con- 

tinuing disrupted (k=2) can be somewhat arbitrary. Examples of how such cases 

can arise were given in the Introduction. These should be classified on a case 

by case basis using prespecified guidelines. If a small number of major causes 

of disruption in continuing areas can be identified, it may prove fruitful to 

break area type k = 2 into several separate factor levels. 

As indicated in the Introduction, the area type effect encompasses all 

factors which are phase-in related; e.g., the effect of new interviewers 

in incoming areas and continuing disrupted areas, the effect of terminated 

interviewers in outgoing areas and continuing disrupted areas, and the effect 

of certain types of administrative problems created by the phase-in. Since 

many of these factors may change monthly as data is collected, the effect is 

allowed to depend on the month of data collection t' = t + 1. It is assumed 

that these phase-in related factors may affect each demographic category j 

differently. 

The constraint Ajlt' = 0 for all t' means that continuing nondisrupted 

areas will have no additional effect on the victimization rate. In particular, 

it assumes that there is no effect associated with the change from the 1970 to 
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the 1980 sampling frame in these areas. The effects of any changes in coverage 

are assumed to be negligible. The reasonableness of this coverage assumption 

should be investigated in separate studies. The constraint Ajlt* = 0 also 

implies that the effects of the remaining area types in general will not 

cancel in the calculation of the expectation of the weighted total number of 

victimizations. 

Recall lag-area type interaction: The inclusion of the interaction term 

RAjlkt' allows for the difference between two recall lag effects to depend 

on the type of area as well as on the demographic group and month of data 

collection. For example, lag differences for incoming areas in the early 

parFof the phase-in may be different than those of continuing nondisrupted 

areas. The constraints imposed on the RAjTkt' are consistent with those 

imposed on the recall lag and area type effects. 

Error term: The error terms e.jst-k represent all sources of variation 

which are responsible for the deviation of the observed response from its 

expected value. They are random variables having mean zero and some covariance 

structure. They need not be uncorrelated and homoscedastic. A more detailed 

discussion of the covariance structure is given in a later section. 

The model (2) is relatively simple in that several first order and all 

higher order interactions have not been included. These interactions were 

assumed to be negligible. These or other factors could be added to the model 

but care must be taken not to exceed the available number of observations. 

3. Parameter Estimation 

The parameters in the model (2) subject to the constraints (3) can be 

estimated by the method of generalized least squares (GLS). Estimates of the 

variances of the GLS estimators can also be obtained. There are several 

possible levels of analysis; monthly, quarterly, yearly, and cumulative from 
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the start of the phase-in to the present. At the monthly level, each month 

of occurrence is analyzed separately. For analyses at the higher levels, 

data from all months of occurrence in the period are analyzed at the same 

time. 

It is recommended that the analysis level be cumulative from the start 

of the phase-in period. In fact, it may be helpful to include data collected 

prior to the phase-in. Early in the phase-in this would provide estimates 

of nonphase-in related effects based on a larger number of observations. It 

would also allow for a comparison of changes in the TIS effect over a longer 

time period. Since the models for different demographic groups do not have 

anygarameters in common, a combined analysis for several groups does not 

have an advantage over separate analyses. 

For purposes of analysis, the responses for the j-th demographic group 

concerning occurrences in month t are collected into the column vector 

Yjt = [y.jltlls ***a Y.j6tlls l **s Y.jlt61, l **a Y,j6t61, l **S 

y. jlt14 9 . . . . Y.j6t14s . . . . Y.jlt64s . . . . y .j6t641°* 

The entries of Yjt are grouped by area type k, recall lag 1 within area type, 

and TIS level s within recall lag. 

If data are collected in some month t', then all six recall lags are 

available since they all occur within each interview. However, in outgoing 

and incoming areas (k=3,4) for a given month of occurrence t, data from all 

lags may not be available. For example, if t = 8 (August, 1985), incoming 

areas will contribute only data collected in January and February, 1986 (1=5,6) 

and outgoing areas will contribute only data collected from September to 

December, 1985 (1=1,2,3,4). Hence, the range of 1 values depends on k and t. 

Similar statements can be made for the TIS subscript s for incoming areas. 
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This 

avai 

and 

tion 

means that for some values of t, not all entries of Yjt correspond to 

lable data. In such cases we shall reduce the length of Yjt accordingly 

include in the model (2) only those parameters which appear in the expecta- 

of at least one available obervation. 

Let Yj = CY'jto9 . . . . Y’jtll’ represent the vector of observed responses 

to be analyzed. For monthly level analyses tl = to, for quarterly level 

analyses tI = to + 2, etc. Let 

E(Yj) = Xj ej 9 
(4) 

COV(Yj) = 1 j 

represent the mean vector and covariance matrix of Yj, respectively, where 

. 
xj = the design matrix for the model (2), 

5 = the vector of parameters in the model (2). 

Then the GLS estimators of oj are those values of ej which minimize 

S(ej) = (Yj - Xj ej)* 1;' (Yj - Xj ej). v-4 

The minimum value of (5) occurs when 

A 

f3j = (Xj' lj-lXj)ml Xj' lj Yj. 

The covariance matrix of the GLS estimators tj is given by 

(6) 

I(\) = (Xj* lj-l Xj)-l (7) 

Although equations (6) and (7) involve straightforward matrix manipula- 

tions, they assume that the covariance matrix lj is known, at least up to 

a multiplicative constant. There are several alternatives for unknown Cj. 

Briefly these are 
A 

(1) to replace Cj in (6) by a consistent estimator lj which is inde- 

pendent of tj. Substitution in (7) yields an estimated covariance 

matrix for $j. 
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(2) to model lj as a function of ej, the mean vector, say 

Cj = lj(ej), and use iteratively reweighted least squares. 

That is, replace lj by an identity matrix, obtain an initial 

estimate ij of ej from (6), estimate Cj(sj) by fj(Bj), 

re-estimate ej from (6) with rj in place of lj, and iterate 

until some convergence criterion is met. 

(3) to model lj as a function of some other factors and use the resulting 

estimator in place of lj in (6). 

. 
The form of E(Yj) and lj and the use of the alternative procedures for 

unknown Cj are discussed in later sections. In any case, we can obtain parameter 

estimates and estimated standard errors, and by appealing to large sample theory, 

approximate tests of significance. 

4. Expectations of Monthly Totals 

In this section we investigate the expected value of the monthly total 

number of victimizations. These calculations will provide additional insight 

into the model and will show that these totals are not unbiased estimators of 

the corresponding "true" total number of victimizations during the phase-in 

period under the model (2). However, unbiased estimators of the "true" 

totals can be obtained from the method of generalized least squares applied 

to the model (2). 

For a fixed month of occurrence t and demographic category j, the total 

number of victimizations for a particular type of crime is given by 

Y.j.t.. = l i $ Y.jstlk 9 

where the ranges of summation ultimately depend on t and their order cannot 

be interchanged in general (An example was given in the previous section.). 
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The mean of Y,j,t,, is given by 

E(Y.j.t..) = 1 1 1 E(Y.jstlk) 
kls 

='EfE w.jstlk) Cjt + i { (i W.jstlk Tjskh) 

w.jstlk Rjl) + l { f w.jstlk Ajkt* 

+ i(f i w.jstlk RAjlkt') 9 (8) 

where t' = t + 1 is the month of data collection, 

h = 4q(W) 

= [(ttl-1)/6] + 1 , 

with [ l 1 denoting the greatest integer function. 

To simplify the general expression in equation (8), the following cases 

need to be considered. 

Case 1: 1 ( t < 6 (occurrences prior to July, 1985) 

In this case no data are available from incoming areas and complete 

data are available from the remaining types of areas. 

Case 2: 6 < t c 12 (occurrences from July to November, 1985) 

In this case partial data are available from incoming and outgoing 

areas and complete data are available for both types of continuing 

areas. 

Case 3: 12 < t < 42 (occurrences from December, 1985 to the end of the 

phase-in) 

In this case no data are available from outgoing areas, partial data 

are available from incoming areas , and complete data are available 

from both types of continuing areas. 

In the calculations which follow a dot in place of a subscript indicates a 

summation over the entire range of the subscript. We shall allow an abuse 

of this notation when we write the monthly total Y,j,t,, . 
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Case 1: 1 ct (6 

For each t the following combinations of subscripts correspond to 

available data: 

k = 1, 2, 3, 

1 1, = . . . . 6, 

s 1, = . . . . 6. 

From (8) and the constraints (3), we have 

3 6 

tkll l(llw.j.tlk Rjl) ' f 
= = 

k 2 l~lw.j.tlk Ajk(t+l) 
= = 

3 6 
tk12 l(llW.j.tlk RAjlk(t+l)) 

= = 

3 6 
= (5 1w 

= 

.j.t.k)cjt ' k12 
= 

(f lw.j.tlk Ajk(t+l)) l 

= 

(9) 

The second term in equation (9) represents the effects of the continuing 

disrupted areas and the outgoing areas on the expected total number of victimiza- 

tions. 

Case 2: 6<t<12 

For each t the following combinations of subscripts correspond to 

available data: 

k = 1,2 , 1 = 1, . . . . 6 , s = 1, . . . . 6 , 

k = 3 , 1 = 1, . . . . 12-t , s = 1, . . . . 6 , 

k 4 , 1 = 13-t, = . . . . 6 ,s=l (h = 3). 

From (8) and the constraints (3), we have 

E(Y.j.t..) = (LIlw.j.t.k ' :z;" w.j.tl3 + , E, t W.jlt14) Cjt 
= = = - 
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' LkiI 1 i!Iw.jstlk Tjskh) + W.jlt14 Tj1431 
= = 1=13-t 

12-t 

k=l l=l 
W.j.tlk Rjl) ' 1 

l=l 
W.j.t13 Rjl 

6 

1=13-t 
W.jlt14 Rjll + [,ZI W.j.t12 Aj2(t+l) = 

12-t 
+ c 

l=l 
W.j.t13 Aj3(t+l) + ,=f3 tw.jlt14 Aj4(t+l )I 

6 12-t 

+ [,lI W.j.t12 RAj12(t+l) + C 
l=l 

W.j.t13 RAj13(t+l) = 

+ ,=e, t W.jlt14 RAj14(t+l)l 

= ‘I1 Cjt + 
1=13-t 

w.jltl4 Tj143 + 
k=3 1s 

w.jstlkRjl) 

.jstlk Ajk(t+l)) + 1 (CC W.jstlk RAjlk(t+l))s (10) 
k=3 1s 

12-t 
where nI = f 

k=l 
w.j.t.k + c 

l=l 
W.j.t13 + 

1=13-t 
W.jlt14 l 

The actual expressions for the additional terms on the right hand side 

of (10) are not as important as are their existence. The importance of (10) 

is that the expected total depends on the TIS effect for incoming areas, the 

recall lag effect for outgoing and incoming areas, the area type effect for 

all areas except continuing non-disrupted, and the recall lag-area type 

interaction for outgoing and incoming areas. The presence of the TIS effect 

is due to the disturbance of the rotation group pattern in incoming areas; 

i.e., all sampled individuals are having their first interview for data 

collection purposes. The presence of the recall lag effect is due to the 
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cessation of data collection in outgoing areas and the beginning of data 

collection in incoming areas. The survey related phase-in effects are repre- 

sented by the area type term. 

Case 3: 12 ( t < 42 

For each t the following combination of subscripts correspond to 

available data: 

k = 1,2 ,1 = 1, . . . . 6 , s = 1, . . . . 6 , 

k 4 = , 1 = 1, l ... l* , s = 1, . . . . Sf , 

k =4 ,l=lf+l, . . . . 6 , s = 1, . . . . s* + 1, 
- 

where 

II s* = maximum value of s for 1 = 1 

= [ t/6 3 - 1 , 

If = number of 1 in the same six month period (h) as 1 = 1 

= 6 ([ t/6 ] + 1) - t , 

and we ignore the second set of subscript combinations for k = 4 when l* = 6. 

The need for two sets of subscript combinations for k = 4 arises from data 

collection in two consecutive six month periods h which have different ranges 

of TIS subscripts for incoming areas. 

From (8) and the constraints (3), we have 

E(v.j.t..) = i?Iw.j.t.k + ,ki $1w.jst14 ',=,!+I 1;:' W.jst14)Cjt 
= = 

' [ ,ir ,'I W.jst14 Tjst4h + ! 

s*+l 
1 

l=lf+l s=l 
W.jst14 Tjst4h#l 

= = 

6 
t 

1 =1*+1 
W.j(s*+l)t14 Rjl + I C w.j.t12 Aj2(t+l) 

l=l 

* * s*+1 
t E E W.jst14 Aj4(t+l) + I c 

l=l s=l 1=1*+1 s=l 
W.jst14 Aj4(t+l) 1 
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1* s* 

+ [ ,I1 slI ".jstl4 RAj14(t+l) + !I 'f+l W.jstl4 RAj14(t+l )I 9 = = 1=1*+1 s=l 
(11) 

where h' is used for emphasis to indicate a different h value than h in the 

pervious summand. 

As in Case 2, the actual expressions in (11) involving the TIS, recall lag, 

area type, recall lag-area type interaction are not as important as is their 

presence in the expression. 

5. The Covariance Structure 

The discussion of GLS estimation in Section 3 did not deal explicitly with 
* 

the structure of the covariance matrix Cj of the response vector Yj. In this 

section, one possible structure is described. A generalized variance function 

approach similar to that currently employed in calculating estimated standard 

errors of NCS estimates is taken. This approach will not lead to the exact 

form Of Cj; it will only yield approximations. The deviations of these 

approximations from the exact forms should be investigated. 

The demographic group j and type of crime are fixed throughout this section. 

For notational convenience, write the covariance matrix of Yj in partitioned 

form 

Ij= 

- 
c- JtO 

1. J (to+ 

. 
. 
. 

&t Ito 

(12) 



19 

where c- Jt = COV(Yjt) , 

1. Jtr = COV(Yjt, Yjr) for t i r . 

We shall adopt the convention that only rows of Cj corresponding to available 

data Y.jstlk for month of occurrence t are included in lj. 

Nonzero covariance terms in lj arise from two major sources of correla- 

tion: the correlation between different individuals within the same sampled 

area (PSU or part of a PSU) and the correlation arising from multiple contri- 

butions from the same individual, either from more than one interview or from 

information for more than one month of occurrence within a single interview. 
. 

The latter source applies only to analyses at levels higher than the monthly 

level. The former source includes the effect of the same interviewer collecting 

data from several individuals and the effect of the sampled area's characteristics; 

e.g., individuals in a "higher risk" area tend to have above average numbers of 

victimizations. 

Although only one PSU is selected per stratum there will be instances in 

which there may be more than one sampled area per stratum. For example, the 

boundaries of a selected PSU may have been redefined in such a way that it 

now consists of a continuing disrupted area (k=2) and an incoming area (k=4). 

Since the number of such cases is relatively small, we shall assume that 

their contribution to the covariance terms is negligible; i.e., assume that 

cOV(Y.jstlk , Y.js'rl'k') = 0 for k * k'. This assumption, together with 

with the ordering of the entries of each subvector Yjt of Yt means that 

each block in expression (12) for lj will be block diagonal; i.e., 
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and 

(k) 
= Blk diag [ Cjt ; k = 1, . . . . 41 

1. 
(k) 

Jtr = Blk diag [ Cjtr ; k = 1, . . . . 41 , t * r. 

The generalized variance function approach assumes that the variance of an 

estimator X of a total has the form 

* 
Var(X) : a (ECX])2 + 13 ECX], (13) 

where a and B are unknown constants. The coefficients a and 6 are estimated 

from a set of statistics whose variances have the same general form. The 

advantage of the generalized variance function approach is that it relates the 

approach the second method (iteratively reweighted least squares 

can be used to obtain parameter estimates and estimated standard 

Applying (I3), the variance of Y.jst-k has the form 

variance of the estimator to its mean. In terms of model (2), under this 

) in Sect 

errors. 

ion 4 

Var(Y .jstkj) ’ ak (E[yejstlk])2 ’ fik ECY.jstlkI, (14) 

where, from model (2), 

EIY.jstlkl = w.jstlk (Cjt t 

Hence, the covariance matrix lj wil 1 

of ej. If we are willing to assume 

is "large" relative to the combined 

(14) reduces to 
7 

Tjskh + Rjl + Ajkt' +RAjlkt'). 

be a function of all of the entries 

that the "true" victimization rate Cjt 

effects of the remaining factors, then 

2 

Var(Y.jstlk) ' (% W.jstlk ) Cjt + (f$W .jstlk) Cjt- (15) 
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Although this reduced form may have intuitive appeal, the estimation procedure 

is not simplified by using (15) in place of (14) in Cj. Thus, the more 

general form (14) is recommended. 

The coefficients ak and pk in (14) are assumed to be dependent on 

the area type k. This allows the variance function to be affected by the 

phase-in. This may not be necessary and in fact, data limitations may make 

it necessary to use the same coefficients throughout. This needs to be 

investigated further. 

Since each block in lj is block diagonal only covariances of the form 

COV(Yjstlk, Y.js'rl'k) need to be considered. There are several 

possibilities for these terms. Among them are: 

(1) Assume that cov(Y.jstlk, Y.js'rl'k) = 0 for all S, S*, t, r, 1, 1'. 

(2) Develop models for these covariances in terms of the entries of ej. 

To do this, define the relative covariance (correlation) for two 

estimators X and Y as 

Cov(X, Y) 
VXY = 

El31 ECYI ’ 

As in the generalized variance function approach, for a set of pairs 

of statistics whose covariances have similar forms, model the relative 

covariance as a function of ECXI and ECY], say 

Vxy = Y(ECXl, ECYI), 

so that 

Cov(X, Y) = ‘WCXI, WI) l WI ECYI 

is given in terms of the parameters which determine the means of 

X and Y. 

Regardless of whether (l), (2), or some other approach is taken, the 

nondiagonal entries of lj need to be expressed as functions of 0-j or as 
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known constants. Then the method of iteratively reweighted least squares 

can be applied to obtain parameter estimates and estimated standard errors. 

6. A Numerical Example 

In this section an analysis using the model (2) is presented for a set 

of 1982 NCS data. The data consist of all reported crimes of violence (rape, 

robbery, and assult) which occurred during 1982 for the entire population of 

persons age 12 and older. Data was collected from February, 1982 through 

June, 1983. The data was obtained from tapes prepared by Paul Wakim (SRD) 

from the NCS incident files. 

a Since the selected period does not coincide with any part of the phase-in 

only continuing nondisrupted areas (k=l) appear in the sample. From the 

constraints (3) for Ajkt' and RAjlkt' and the convention of deleting parameters 

which do not correspond to available data, there are no area type effects or 

recall lag - area type interaction terms in the model. Thus, the model (2) 

reduces to 

‘.stl = W.stl Ct + W.stl Tsh + W.stl Rl + e.stl 9 (16) 

where the subscripts j and k have been dropped for notational simplicity. 

Let t=l correspond to January, 1982 and h=l correspond to the six month 

period January - June, 1982. 

From (16), the parameter vector 8 is the thirty-two entry vector 

e = [cl, ..*, Cl2, Tll, . . . . T51, T12, ...3 T52, 

T13s . . . . T539 b . . . . R5Y l 

The parameters T61, T62, T63, and R6 are not included since 

T6h = - w.stl Tsh / w.6tl for all t, h, 
s=l 
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R6 = - W..tl R1 / W..t6 for all t. 
l=l 

The response vector Y contains the 432 observed weighted totals and the design 

matrix X is given by 

X = w* x* , 

where 

W* = diag [west, ; s=l, . . . . 6, l=l, . . . . 6, t=l, . . . . 121 , 
x* = incidence matrix for 8. 

For simplicity assume that 

1 = Cov(Y) 

* = diag h(Y.st~)l , 

where 

var(Ymstl >z a (E[Ymst, lJ2 + B E[Y.,,,] for all s, t, 1, 

with a = - 0.0000125671 and B = 2355.0. The values of a and B are those used 

in the 1982 NCS variance estimation formulas. 

The method of iteratively reweighted least squares (c.f., Section 3) was 

applied to the data and model (16). Calculations were carried out using a 

combination of Minitab and Fortran programs. The analysis of variance table 

is given in Table 1. Although the distributions of the F-statistics are only 

approximate, the results are clear-cut. The monthly rates Ct are nonzero; 

there is a highly significant recall lag effect; there is a significant time 

in sample effect. The TIS effect is not as striking as the recall lag effect 

which may be an order of magnitude larger. In fact, for the first six month 

data collection period the TIS effect is not significant at the 10 percent 

level. 
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Table 1. Analysis of Variance Table for Violent Crimes Occurring in 
1982 Based on the Model (16). 

Source of Variation 
Monthly rate 
Time in sample 

Jan-June, 1982 
July-Dee, 1982 
Jan-June, 1983 

Recall lag 
Error 
Total (Uncorrected) 

Sum of Squares 
2364 656 

;; Fl;;;o~;uare &;;;lo p-y;% 

56:817 15 3.787 3.78 co.001 
6.068 5 1.214 1.21 >O.lO 

24.511 5 4.902 4.89 co.001 
26.238 5 5.248 5.24 X0.001 

325.514 5 65.103 64.97 <0.0001 
400.740 400 1.002 

3147.727 432 

. 
The estimated monthly rates and their estimated standard errors are given 

in Table 2 and the corresponding information for quarterly and yearly rates 

is listed in Table 3. The estimates in Table 3 were obtained using the formulas 

given in Section 2. Since the actual weights w--t. can only be obtained from 

the NCS complete victimization file, independent control counts were used in 

place of the w--t. in these expressions. In practice the actual weights would 

be used. The published yearly rate for 1982 is included for comparison purposes. 

Table 2. Monthly Violent Crime Rates for 
1982 Based on the Model (16). 

Month 

1* 
2 
3 
4 
5 
6 
7 
9” 

10 
11 
12 

Estimated Estimated 
Rate Standard Error 

2.623** 0.167** 
2.573 0.162 
2.702 0.172 
2.815 0.179 
2.890 0.174 
3.046 0.187 
3.372 0.195 
2.827 3.217 0.177 0.189 

2.796 0.179 
2.752 0.172 
2.772 0.169 

* t=l corresponds to January, 1982. 
** Entries are given as rates per thousand. 
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Table 3. Quarterly and Yearly Violent Crime Rates for 1982. 

Time Period 

(a) Quarter 

Estimated 
Rate 

Estimated 
Standard Error 

1 7.866* 0.294* 

% 8.726 9.388 0.315 0.326 
4 8.291 0.305 

(b) Year 

From model (16) 34.274 0.655 
Published 34.3 0.6 

. 

*Entries are given as rates per thousand. 

As expected, the published yearly rate and the estimated rate from the 

model (16) do not differ significantly. However, such close agreement will 

not necessarily occur during the phase-in since, in addition to area type 

effects, the TIS and recall lag patterns will be disrupted. 

Residual plots and other diagnostics in the analysis indicated several 

candidates for outliers. The analysis was rerun with the observations corre- 

sponding to the five largest positive standardized residuals and the only 

large negative standardized residual deleted. The large negative residual 

corresponded to the only observed weighted total equal to zero. Although 

there were minor changes in various F-ratios and parameter estimates, no 

significant changes occurred in the results. The yearly estimated rate is 

33.822 victimizations per thousand with an estimated standard error of 0.616 

victimizations per thousand. 

The estimated time in sample and recall lag effects are given in Tables 4 

and 5, respectively. For example, from Table 4 the estimated effect on the 

rate attributed to individuals interviewed for the first time (excluding the 

bounding interview) during the six month period from January to June, 1982 



26 

is to increase the rate by approximately 0.4 victimizations per thousand. 

This is not statistically significant (t 3 1.47). In general, there are 

no striking patterns in Table 4. The estimated recall lag effects in Table 5 

are interpreted similarly. The pattern in Table 5 is as expected; viz., 

there is a tendency to overreport victimization levels in the immediate past 

and to underreport for the distant past. 
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Table 4. Estimated Time in Sample Effects for Violent Crimes 
Occurring in 1982 Based on the Model (16). 

January-June, 1982 July-December, 1982 January-June, 1983 

Time in Estimated Estimated Estimated 
Sample Effect Standard Error Effect 

: 0.571 0.399* 0.275 0.272* -0.127 0.424 

3 0.042 0.264 -0.209 
4 -0.281 0.246 0.235 
i -0.472 -0.259 0.228 0.239 -0.434 0.111 

Estimated 
Standard Error 

0.151 0.165 

0.147 
0.159 
0.140 
0.156 

Estimated Estimated 
Effect Standard Error 

0.273 0.193 
0.294 0.197 
0.013 0.186 

-0.U72 0.187 
-0.596 0.159 
0.088 0.187 

*Entries are given as rates per thousand. 

Table 5. Estimated Recall Lag Effect for Violent Crimes 
Occurring in 1982 Based on the Model (16) 

Recall Estimated Estimated 
Lag Effect Standard Error 

1 2.290* 0.14&I* 
2 0.295 0.118 
3 -0.100 0.114 
4 -0.509 0.104 
5 -0.836 0.098 
6 -1.139 0.093 

*Entries are given as rates per thousand. 
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1. Int reduction 

The Current Population Survey (CPS) has been redesigned to reflect popula- 

tion changes from the 1980 Census and to improve the efficiency of estimators 

at the state level. The final report of the CPS/NCS phase-in work group 

(Document No. 26, dated May 16, 1983) discusses several alternative phase-in 

plans. A modified version of Plan L described in this report has been selected 

for use. The most recent version of this plan, Plan Rr is described in an 

SMD Memorandum entitled "CPS Redesign: Change in Dummy Assignments in Phase-In 

Plan R@" (ID# K-10, dated January 11, 1984). The major factors which may 

affect CPS estimates are described in the CPS/NCS final report and in an SMD 

Memcrandum entitled "Plans to Measure the Effect of Phase-In on CPS Redesign" 

(ID# K-13, dated January 17, 1984). The latter paper also describes one 

approach to measuring the effects of these factors. 

The purpose of this report is to provide an alternative approach to the 

problem of measuring the phase-in effects. A linear model containing the 

major factors of interest is proposed. In the context of the proposed model, 

estimators of these effects, as well as the rates and levels measured by CPS, 

and their standard errors can be obtained. 

The selected phase-in plan (Plan R.) is characterized by a gradual 

phase-in in continuing areas and, in contrast, an abrupt change in noncontinuing 

areas. In continuing areas the 1980 sampling frame is used to select all rota- 

tion groups introduced after March, 1984. The first 1980 based group is A48-5. 

The phase-in ends in continuing areas after June, 1985. In outgoing areas the 

last rotation group to be interviewed for the full set of eight months is A48-3. 

Groups A48-4 through A49-3 are interviewed only for the first set of four months 

and then replaced by groups selected from incoming areas. These incoming replace- 

ment groups are interviewed for four consecutive months corresponding to the 
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interview times in the rotation pattern of the groups being replaced. Sampling 

in outgoing areas ceases after May, 1985. Rotation groups introduced after 

October, 1984 (beginning with A49-4) in incoming areas receive the full set 

of eight interviews. The full set of month in sample times for incoming areas 

is not available until November, 1985, at which point the phase-in is complete 

in all areas. 

The major factors which may affect CPS estimates can be broadly classified 

as either phase-in related or nonphase-in related. Phase-in related effects are 

those primarily due to the disruption caused by the redesign and should disappear 

after phase-in completion in November, 1985. The model presented in this report 

contpins one phase-in related effect, referred to as the type of area effect. 

Nonphase-in related effects are those which existed prior to the redesign and 

which will persist after completion of the phase-in. The nonphase-in related 

effect included in the proposed model is referred to as the month in sample 

effect. 

. 

As a phase-in related effect, the type of area effect is intended to 

reflect changes in survey methodology and not in the population being sampled. 

For redesign purposes, the term area is used to designate the unit of interest. 

It can be either a PSU or part of a PSU in those instances where the stratum 

and/or PSU definitions have changed with the introduction of the 1980 sampling 

frame. The area type effect has four levels: continuing nondisrupted areas, 

continuing disrupted areas, outgoing areas, and incoming areas. Examples of 

continuing disrupted areas arise from PSUs whose boundaries have been changed 

to include previously nonsampled areas or to drop previously sampled areas 

and from continuing PSUs in which sample sizes are expected to increase or 

decrease dramatically (c.f., SMD Memorandum ID% K-8, "CPS Phase-In: Change 

in Sample Size for Continuing Areas"). Under this breakdown the area type 
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effect encompasses the effects of new interviewers and interviewers who will 

be fired, the effects of certain types of administrative disruptions and 

burdens, and the effect of any other systematic differences between areas 

which fall into different categories. 

The levels for the area type effect chosen in this report differ from 

those considered in SMD Memorandum ID# K-13, where continuing areas are divided 

according to their self-representing, nonself-representing classification. They 

also differ from the phase-in regions used to specify weighting procedures as 

described in an SMD Memorandum entitled "CPS Phase-In Specificatons for Assigning 

Base Weights and SR/NSR Status" (ID# K-7, dated December 20, 1983). The selection 

of levels of the area type factor is discussed in more detail in the following 
* 

section. 

The nonphase-in related effect reflects characteristics associated with 

the sampled population's reaction to the survey procedure. The month in 

sample effect is well documented (e.g., B.A. Bailar (1975). The Effects of 

Rotation Group Bias on Estimates from Panel Surveys. JASA, 70, 23-30) and 

will not be discussed further. 

2. Statement of the Unemployment Model and Assumptions 

The model presented in this section describes the response for an entire 

group of individuals rather than a single individual. The groups can be defined 

by age, race , sex, and geographic variables or by a smaller set of collapsed 

categories. The response to be modeled is given in terms of a weighted total 

rather than a rate. 



For each sampled individual, let 

Yijksmt = O-1 unemployment response for the i-th sampled 
individual in the j-th demographic group from 
the k-th type of area who is interviewed for 
the m-th time within the s-th four month period 
for the individual's rotation group concerning 
the individual's status in month t, 

where the subscript ranges are 

i = 1, . . . . I (= Ijksmt ) 

j = 1, . . . . J 

k = 1, 2, 3, 4 

S = 1, 2 

m = 1, 2, 3, 4 

t 1s = 
* . . . . T s 

and 

Yijksmt = 1 if the individual is unemployed, 

=0 if the individual is employed or not in 
in the civilian labor force (CLF). 

The ordering of the area types k corresponds to that given in the Introduction. 

As will be shown later, not all subscript combinations correspond to available 

data. 

Let wijksmt be the weight associated with the i-th sampled individual. 

The weighted total number of unemployed represented by the part of the sample 

corresponding to an observable subscript combination (j,k,s,m,t) is given 

bY 
I 

'.jksmt = 1 Wijksmt 'ijksmt l 
(1) 

i =l 

The O-l responses Yijksmt could be modeled directly using techniques 

associated with binary response regression models; e.g., probit or logit 

analysis. This approach will not be considered here. Instead, the weighted 

total Y.jksmt defined in equation (1) will be used as the response variable 

in the model. 
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For a fixed demographic category j, the response Y.jksmt can be modeled 

as 

Y.jksmt = C.jksw Rjt + C.jksmt Ajkt ' c .jksmt 'jst 

' C.jksmt Mjmt + C.jksd SMjsmt ' C.jksmt ASjkst (2) 

+ C.jksmt A"jkmt ' e.jksmt s 

where 

C.jksmt = the number of individuals in the j-th demographic 
group in the CLF in month t represented by the 
(k,s,m)-th part of the sample, 

Rjt = true unemployment rate for the j-th demographic group 
in month t. 

* 
Ajkt = effect on the rate due to interviewing individuals 

from the j-th demograhpic group in areas of 
type k concerning month t, 

Sjst = effect on the rate due to interviewing individuals from 
the j-th demographic group in the s-th four month 
period for that rotation group concerning month t, 

Mjmt = effect on the rate due to interviewing individuals from 
the j-th demographic group in the m-th month of a 
four month period concerning month t, 

S"jsmt = effect on the rate due to the period-month within 
period interaction, 

ASjkst = effect on the rate due to the area type-month within 
period interaction, 

e.jksmt = the aggregate of all sampling errors. 

The parameters in the model (2) are subject to the following constraints: 

Ajlt = 0 for all t, 

E c .j.s.t Sjst = O for all t, 
s=l 

4 

1 C.j..mt Mjmt = O 
m=l 

for all t, 
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E c 
s=l 

.j .smt SMjsm = 0 for all m, t, 

4 

C c.j.smt S"jsmt = O 
m=l 

for all s, t, (3) 

ASjlst = 0 

% C.jks.t ASjkst = o 
s=l 

for all s, t, 

for all k, t, 

. 

AMjlmt = 0 

f! C.jk.mt A"jkmt = o 
m=l 

for all m, t, 

for all k, t. 

As a reference point for the development of the model (2), let t = 1 corre- 

spond to January, 1984. It should prove useful to include data collected 

for an even more extensive period prior to the beginning of the phase-in. 

This would enable us to study the behavior of the terms which represent the 

month in sample effect before the phase-in and to compare the changes in 

them during the phase-in with pre and post phase-in levels. The use of data 

prior to January, 1984 would depend on its availability. 

The three factor interaction between area type, period, and month within 

period was not included in the model (2) so that the error variance could be 

estimated and approximate tests of significance could be carried out. 

The coefficients C.jksmt in the model (2) are unknown so that (2) does 

not represent a linear model. Moreover, the information in the responses 

Y.jksmt by themselves Will not provide a means of estimating the C.jksmt. 

One solution to this problem would be to replace the C,jksfi by estimates 

and develop estimation and inference procedures for the model (2) conditional 

on their estimated values. A natural source of estimates of the c.jksmt iS 
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the CLF information collected from the same individuals in the CPS sample 

used to estimate the parameters in the unemployment model (2). A discussion 

of the estimation of these coefficients is given in Section 4. Difficulties 

with this approach and some alternatives are described in Section 5. 

Let Z.jksfi denote the estimated value of C.jksmt. Then the model (2) 

can be rewritten with the estimated coefficients as 

Y.jksmt = 
* 
C.jksmt Rjt ' :.jksmt Ajkt 'z.jksmt Sjst 

+ ;.jksmt "jmt ';.jksmt S"jsmt ':.jksmt ASjkst (29 

' :.jksmt AYjkmt ' e.jksmt l 

The.constraints (3) are modified similarly and will be referred to as 

equation (30). 

A simple numerical example will serve to illustrate the interpretation of 

the terms in the proposed model. For purposes of the example we shall ignore 

the error term in the model (2#). Suppose we are interested in the number 

of unemployed individuals from a particular demographic group j in month t. 

Consider individuals interviewed in incoming areas (k=4) for the second month 

(m=2) within their first set of four months in the survey (s=l). If 

(i) the sampled individuals have weights which total 1000000 

(P.j412t = lOOOOOO), 

(ii) the true unemployment rate for this group in the month of 

interest is 9.2% (Rjt = 0.092), 

(iii) the effect on the unemployment rate due to sampling from an 

incoming area in month t is to reduce it by 0.3% (Aj4t = -0.003), 

(iv) the effect on the rate due to sampling for the first four month 

period for this group in month t is to increase it by 0.1% 

tsjlt = O.OOl), 



(4 the effect on the rate due to sampling for the second 

consecutive month for this group in month t is to increase 

the rate by 0.08% (Mj2t = 0.0008), 

(vi) the effect on the rate due to the period-month within period 

interaction for this group in month t is to increase it by 

0.01% (SMjl2t = O.OOOl), 

(vii) the effect on the rate due to the area type-period inter- 

action for this group in month t is to decrease it by 0.04% 

(ASj4lt = -0.0004), 

(viii) the effect on the rate due to the area type-month within 

* period interaction for this group in month t is to reduce 

it by 0.02% (AMj42t = -0.0002), 

then the reported number of unemployed is 

Y.j412t = (1000000)(0~092) + (lOOOOOO)(-0.003 + 0.001 + 0.0008 

+ 0.0001 - 0.0004 - 0.0002) = 92000 - 1700 = 90300. 

This reported value is approximately a 1.8% underestimate of the true level. 

Having illustrated the interpretation of the terms in the model (2/), 

we now briefly discuss the rationale for various model terms and the corre- 

sponding constraints in (3@). 

Unemployment rate: The estimates of the monthly unemployment rates 

Rjt can be used for publication. They can be thought of as having been 

adjusted for time in sample and phase-in related effects. Furthermore, 

annual averages can be obtained from the estimated Rjt which would provide 

an alternative to that described in Technical Report 40 (pp. 64-65). 

Since the estimates of the Rjt from the unemployment model (2') 

utilize data from all previous months, they are directly comparable to the 

composite estimators currently in use for CPS regardless of whether or not 
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we are in a phase-in period. A comparison of the estimators from the model 

(2@) and the composite estimators will be the subject of future research. 

Area type effect: The area type effect depends on the demographic group 

j, type of area k, and month of interest t, where 

k 1 = if the area is continuing and nondisrupted, 

k 2 = if the area is continuing and disrupted, 

k 3 = if the area is outgoing, 

k =4 if the area is incoming. 

Classification of the majority of the sampled area will be clear-cut. In a 

- few cases listing a sampled area as continuing nondisrupted (k-l) or as con- 

tinujng disrupted (k=2) can be somewhat arbitrary. Examples of how such cases 

.arise were given in the Introduction. These should be classified on a case 

by case basis using prespecified guidelines. 

The area type effect encompasses all factors which are phase-in related; 

we, the effect of new interviewers in incoming areas and continuing dis- 

rupted areas having large increases in sample size, the effect of terminated 

interviewers in outgoing areas and continuing disrupted areas having large 

decreases in sample sizes , and the effect of certain types of administrative 

problems created by the phase-in. Since many of these factors may change 

monthly the effect is allowed to depend on the month of interest t. They 

may affect different demographic groups in different ways; thus the dependence 

of j. 

The constraint AjIt = 0 for all t means that the effect of the phase-in 

on rates in continuing nondisrupted areas is negligible. In particular, it 

assumes that there is no effect associated with the change from the 1970 to 

the 1980 sampling frame in these areas. Any changes in coverage are assumed 

to be negligible at the aggregate level found in the model (2*). The 
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reasonableness of this coverage assumption should be investigated in separate 

studies. The constraint AjIt = 0 also implies that the effects of the remaining 

area types in general will not cancel in the calculation of the expectation 

of the weighted total. 

The phase-in regions found in SMD Memorandum ID# K-7 are defined in terms 

of the frame used to select the sample. Since it has been assumed that the 

frame effect is negligible compared to interviewer and administrative effects, 

the use of phase-in regions instead of area types in defining the levels of 

this factor does not appear to have any advantages. The weights in the model 
. 

(2*) are assumed to have been calculated from the appropriate base weights 

as dgscribed in the memorandum. The breakdown of continuing areas into the 

types listed above enables us to assume that certain sampled areas are not 

seriously affected by the phase-in. The classification of continuing areas 

as selfrepresenting, nonselfrepresenting does not appear to be important for 

the aggregate responses modeled in (2@). 

Month in sample effect: The month in sample (MIS) effect is the non- 

phase-in related factor in the model (2*). It is represented by the terms 

Sjst , Mjms and SMjsM l 
The use of two main effects and their interaction 

rather than a single term more closely reflects the effect of the 4-8-4 sampling 

pattern employed by CPS. The parameter Sjst represents the effect of sampling 

the same individuals in two consecutive years while the Mjmt represents the 

efffect of sampling the same individuals for four consecutive months each year. 

An SMD Memorandum from Robert Tegels entitled "CPS Redesign: Estimates and 

Bias Indices Calculated for the Rotation of Sample Redesign Project" (dated 

January 9, 1984) gives indirect evidence that the MIS effect follows the same 

general form in each four month period. The evidence is only indirect since 

the bias indices generally used to measure the MIS effect do not correspond 
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exactly to the MIS effect in model (2&), which is additive rather than 

multiplicative. However, they are useful in indicating the nature of the 

dependence on time in sample. 

The period effect Sjst and the month within period effect Mjmt are depen- 

dent on the demographic group j and month of interest t but are assumed to be 

independent of the area type k. Any differences in MIS effects for different 

area types is accounted for by the area type-period and area type-month with- 

in period interactions in the model (2*). The period-month within period 

. interaction SMjsmt allows for differences between months within a period to 

differ for the two periods. For example, the difference between the first 

and second months in the first four month period may be different, perhaps 

larger, than the corresponding difference for the second period. Such 

differences may, in part, reflect a "carry over effect" from the first to 

second period in the respondents' reaction to being recycled into the survey 

after a rest period. If the interactions are large, the benefits of the 

4-8-4 sampling pattern should be weighed against the disadvantages of a 

sample composed of two dissimilar groups where the disparity is related 

to the survey design. 

The constraint 1 ?.j,.mt Mjmt = 0 means that for each demographic group 
m 

j and month t, the month within period effects can be thought of as deviations 

from some average level; i.e., there is underreporting for some months within 

the period and overreporting for others but they balance out over all months 

within the period. A similar interpretation holds for c G.j.s.t Sjst = 0. 
S 

The constraints on the interaction SMjsmt are consistent with those imposed 

on the period and month within period effects. 
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An alternative approach to modeling the MIS effect would be to use the 

month in sample m as a covariate and replace the model (2#) by an analysis 

of covariance type model of the form 

Y.jksmt =:.jksmt Rjt 'p.jksmt Ajkt 

'?.jksmt $jkst (m) ' e.jksmt , 
(4) 

where $jkst (m) is some function of the month in sample m (m = 1, 2, 3, 4). 

The data from Tegels' memorandum for average bias indices by month in sample 

(Table 4 therein) indicates that a quadratic function 
w 

‘$jkst M = aljkst Cm - %I + 02jkst (m - El2 

for each month period a reasonable of the 

ship. 

However, analysis of model (4) the quadratic 

function (5) from two drawbacks. First, model requires 

quadratic function be fit four data If common were 

used several sets (j,k,s,t), a of fit for the func- 

tion not be by higher polynomial model if it 

deemed necessary. 

second, and more damaging is that crucial points 

the phase-in and incoming do not a full of four 

of m. example, in 1984 all data from 

areas is from individuals interviewed for first time; 

only data to s=l, is available. modifying 

the (4) to these cases, parameters cannot uniquely 

estimated. 

light of difficulties, the effect will modeled as 

(2*) and of covariance models will be pursued 
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In the analysis of variance for the model (2*) it is possible to decompose 

the sums of squares associated with the month within period effect and the 

period-month within period interaction into orthogonal contrasts representing 

linear and quadratic trends. Significant contrasts would indicate the nature 

of the dependence on month within period. . 

Area type-month in sample interactions: The area type-month in sample 

interaction is represented in the model (2*) by the terms ASjkst and AMjkmt. 

The three factor interaction ASMjksmt is assumed to be zero so that estimators 

- of the covariance structure of the responses can be obtained. The included 

interaction terms allow the MIS effect to change from one area type to another 

as ~$11 as from one demographic group j and month of interest t to another. 

The constraints correspond to those imposed on the main effects. 

There is an implicit assumption in all methods of measuring the MIS effect 

that all rotation groups exhibit approximately the same behavior toward the 

survey. Although the MIS factor refers to the effect of the repeated sampling 

of the same individuals over time, the effects are calculated from the responses 

of different individuals sampled at the same point in time but who have 

differing numbers of previous interviews. Thus the necessity of the assump- 

tion. At certain critical points in the phase-in (such as in the last month 

of sampling in outgoing areas) this may not be a valid assumption across area 

types. Violations should manifest themselves as large interactions for the 

corresponding months t. 

Error term: The error terms e.jksmt represent all sources of variation 

not included in the model (2#) which are responsible for the deviation 

of the observed response from its expected value. They are random variables 

having mean zero and some covariance structure. They need not be uncorrelated 

and homoscedastic. 
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3. Parameter Estimation 

The parameters in the model (2a) subject to the constraints (3#) 

can be estimated by the method of generalized least squares (GLS). Estimates 

of the standard errors of the GLS estimators can also be obtained. 

For purposes of analysis for a particular demographic group j, all data 

from the first month of available data (t=l) up to and including the current 

month (t=T) is utilized. The responses Y.jksmt for month t are collected into 

a column vector 

. yjt = [ y.jlllts l **S Y.j114t s y.j121ts l **S Y.j124ts l **S 

y .j421t 9 . . . . y .j424t I’ l 

The :ntries of Yjt are grouped by area type k, period s within area type, and 

month m within period. Let the entire vector of responses be denoted by 

Yj = ☯ Yjl�, l m., YjT� ]* l 

Since the models for different demographic groups j have no parameters in 

common, there is no advantage to combining distinct demographic groups into 

a single analysis. 

For certain months t not all entries of Yjt will correspond to available 

data. For example, for May, 1985 (t=17 if we use January, 1984 as a reference 

point) in outgoing areas (k=3) the only available data is collected from indiv- 

iduals being interviewed for the eighth time (s=2, m=4) and in incoming areas 

(k=4) all individuals, including the outgoing area's rotation group replacements, 

are being interviewed at some point in the first set of four months (s=l, m=l, 

2, 3s 4). In such cases we shall reduce the length of Yjt and Yj accordingly 

and include in the model (2#) only those parameters which appear in the 

expectation of at least one available observation. For the May, 1985 example 

this affects only ASj31,17, ASj42,17, and AMj3m,l7, m = 1, 2, 3. 
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Let E(Yj) = Xj ej and Cov(Yj) = lj represent the mean vector and 

covariance matrix of the reduced Yj, respectively, where 

xj = the design matrix for the model (2'), 

ej = the reduced parameter vector for the model (2'). ~ 

Then the GLS estimators of ej are those values of ej which minimize 

S(ej) = (Yj - Xj ej )' lj'l (Yj - Xj ej) . (6) 

The minimum of (6) occurs when 

A 

f3j = (XjO lj-'Xj)-' Xj*lj-'Yj . 

The covariance matrix of the GLS estimators $j is given by 

(7) 

l(Gj) = (Xj'zj-l Xj)-' . (8) 

The,calculations in equations (7) and (8) assume that lj is known, at least 

up to a multiplicative constant, or is replaced by a consistent estimator$. 

Technical Report 40 (pp. 93-94) describes formulas involving the estimated 

level E(Yj) = Xj 0-j which provide approximate variance estimates for E(Yj). 

Similar methods could be used to develop approximate estimates of the off- 

diagonal entries of lj in terms of the entries of the vector E(Yj). These 

approximate estimates of 13 can then be used in an iteratively reweighted 

least squares procedure to estimate ej and l(?j). That is, replace lj 

in (6) by an identity matrix and obtain an initial estimate ej of 0j from 

(7). Then calculate lj = lj(tj) and use it in equations (6)-(8) in 

place of lj to obtain $ and l($). 

A more detailed discussion of the iteratively reweighted least squares 

procedure and methods of determining approximate formulas for the entries of 

lj can be found in a companion report on the National Crime Survey (NCS) 

redesign. The companion report also includes a discussion of several possible 

covariance structures and the assumptions associated with each structure. Since 

the discussions are virtually unchanged for CPS, they are not repeated here. 
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Under the model (2') and the constraints (3') the observed weighted 

monthly totals y .j . . .t = 1 1 1 C .jksmt, y .jksfi are biased estimators of the 
ksm 

corresponding true totals C.j...t Rjt for months t during the phase-in period. 

However, unbiased estimators of the rates Rjt , as well as estimated standard 

errors, can be obtained from the method of generalized least squares. In addi- 

tion, it provides estimates and estimated standard errors of the MIS effects 

and phase-in related effects represented in the area type factor. Verifica- 

tion that Y.j...t is a biased estimator is similar to that provided in the 

companion NCS report and is not included here. 
. 

4. A Model for the Civilian Labor Force Level 

The unemployment model (2) in Section 2 uses the CLF levels as weights. 

Since the true levels are unknown, they are replaced by estimates obtained 

from the survey, resulting in model (2'). The observed CLF levels could 

be used as the estimated coefficients in the model (2'). However, these 

observed levels are subject to both phase-in and nonphase-in related effects. 

As an alternative, estimates of these coefficients can be obtained from GLS 

applied to a linear model for CLF levels which is similar to the unemployment 

model (2). There are two advantages to a linear model approach; viz., the 

estimates of the coefficients have been adjusted for phase-in and nonphase-in 

related effects and the remaining model parameters are of interest in themselves. 

For each sampled individual, let 

Zijksmt = 1 if the individual is in the CLF, 

=o if the individual is not in the CLF, 

where the subscripts (i,j,k,s,m,t) have the same interpretation as in the 

definition Of YijksMe Let wijksmt be the weight associated with the i-th 

sampled individual. 
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The weighted total number of individuals in the CLF represented by 

the part of the sample corresponding to an observable subscript combination 

(j,k,s,m,t) is given by 

Z.jksmt = I 
i=l 

wijksmt Zijksmt l (9) 

The weighted CLF Z.jksmt defined (9) can modeled as 

= W.jksmt ' W.jksmt ' W.jksmt ' W.jksmt 

' W.jksmt ' W.jksmt (10) 

' A"jkmt ' , 
. 

* I 

= 1 , 
i=l 

= true of the demographic group the 
noninstitutionalized population which 
to the in month (C.jksmt = w.jkse Pjt) , 

and the terms Ajkt, Sjst, Mjmf, SMjsmt, ASjkst, AMjkmf, and e.jksmt- have the 

same interpretation as they did in the model (3). The Pjt are sometimes 

referred to as participation rates. 

The use of the area type and MIS factors notation in the model (10) 

actually constitutes an abuse of notation. For example, the area type effect 

in the model (10) represents the effect of the same phase-in related factors 

as the Ajkt in the model (2) but for a different response variable. Thus, 

the numerical estimates in the two models will generally differ. Since this 

duplicate notation should not cause any confusion, we shall continue to use 

it in both models. 

The constraints on the parameters in the model (10) are the same as those 

given for the model (2) in equation (3) with the model weights C.jksmt replaced 

by the survey weights w.jksmt. 
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Parameter estimation and inference in the model (10) proceeds in a 

straightforward fashion using the method of GLS as described in Section 3. 

The same type of covariance structure should be used for both models. GLS 

estimates of the Pjt, say ?jt , are used to calculate the estimated levels 

A 
c.jksmt = w.jksmt i: jt required in the model (2*). Estimated standard 

errors of the can also obtained. 

5. and Alternatives 

The weights in the model (2*) estimated from 

survey since corresponding weights unknown. All and 

inference the model as described Section 3 conditional on 

observed values. use of levels as is a source 

of The possible are related the fact 

(1) the are random and hence, subject to 

That is, weights used the model are 

generally equal to true CLF 

(2) the ?.jksfi are correlated with response 

Y.jksmt they are of Z.jkse are measured 

the same as the That is, terms in 

expression for mean response correlated with response 

and with the term. 

For reasons, the of.the estimated and their on 

the of the in the (2*) should investigated 

further. 

an alternative modeling the totals, the unemploy- 

ment could be Let 

Y.jksmt 
= 

z . . 
(11) 
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and 

P .j . . .t = 1 1 P.jksmt , (12) 
sm 

where Z.j...t = 
t 

1 1 Z.jks,,,t is the observed total CLF for the j-th demo- 

graphic group in rnott: t. The proportion p,j...t in (12) is the observed 

unemployment rate and p.jkS,,,t in (11) is the contribution to the rate from 

the part of the sample defined by the subscript triple (k,s,m). The 

p.jk,,,St can be used in forming the response variable in a model similar to 

the model (3). They are preferable to Y.jksmt / Z.jksmt, the PrOpOrtiOn of 

. the j-th demographic group represented by the (k,s,m)-th part of the sample 

who are unemployed in month t. These latter proportions have the disadvantage 

thacthey do not sum to the overall proportion p.j.,,t. 

Let T(p.jksmt) be a transformation of p.jksmt. The transformed proportion 

can be modeled as 

T(P.jksmt) = Rjt + Ajkt + Sjst ' M jmt + S"jsmt ' ASjkst (13) 

' A"jkmt ' e.jksmt , 

where the terms in (13) have the same interpretation as in the model (2'). 

Three transformations are considered; others are possible. 

(1) The identity transformation: T(p.jksmt) = P.jksfis 

Under the identity transformation, (13) becomes an additive model 

in the observed proportions. Two difficulties occur; the estimated unemploy- 
A 

ment rate Rjt and the predicted proportions$.jksmt need not be between 

zero and one. For these reasons, use of the identity transformation is not 

advised. 

(2) The logarithmic transformation: T(p.jksmt) = ln(p.jksmf). 

The logarithmic transformation is often used because it is thought 

of as converting a multiplicative model for the p.jksmt into an additive model 
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for the lrI(p.jksfi). There are several difficulties associated with this 
* 

transformation. First, if Rjt is the unemployment rate and Rjt in the model 

(13) is the transformed rate, then Rit = exp(Rjt) and the estimate of Rit 

is guaranteed to be positive but will not necessarily be less than one. Thus, 

it is possible (but highly unlikely) that the estimated unemployment rate will 

be greater than 100 percent. Second, the estimated rates?it = eXp(?jt) are 

biased estimators even though the?jt are unbiased estimators of the trans- 

formed rated. 

The remaining difficulty is one associated with any transformation. The 

transformation may create interactions which do not exist in the original 

scale or may eliminate interactions which exist in the original scale (c.f., 

H. Scheffe, The Analysis of Variance, Chapter 10). The effect of interactions 

on the original scale is of direct interest in understanding the overall 

effect of the phase-in on the estimates produced by CPS as well as in under- 

standing the time in sample effect. 

(3) The logit tra~SfOrIIIatiOn: T(p.jksmt) = ln[p.jksmf, / (1 - p.jksmt)]. 

The logit transformation has the advantage that the estimated 

unemployment rate will be between zero and one. However, it possesses the 

remaining drawbacks mentioned for the logarithmic transformation and, in 

addition, it does not have the intuitively appealing feature of converting 

a multiplicative model into an additive one. 

If the model (13) is fit using GLS for either a logarithmic or logit 

transformation, then any observed p.jksmt which are zero and, for the logit 

transformation any observed p.jksmt which are one, make the response T(p.jksmt) 

undefined and must be handled separately. Although p.jksmt = 1 is highly 

unlikely, P .jksM = 0 can reasonably be expected to occur. The use of "working 

T's,' (c.f., Finney, Statistical Methods in Biological Assay) provides one 
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solution to the problem. A more difficult, but much less likely problem 

arises if Z.jksfi = 0. In such cases v.jksmt is also Zero and p.jksmt 

is undefined. A method of dealing with this problem must be specified. 

In contrast, models (2') and (10) are not generally affected by zero 

responses; in particular , a zero response in (10) will not produce a 

corresponding estimated value of zero for ?.jksmt. 
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1. Introduction 

Current Population (CPS) was to 

reflect changes from 1980 Census to improve 

efficiency of estimators at state level. phase- 

in the new took place March 1984 November 

1985. brief description the phase-in and related 

is given Gbur (1984). report also an 

alternative to the of measuring phase-in 

- on CPS statistics. The is based 

a linear for the total number unemployed in 

dem%graphic group a function phase-in and 

related effects. 

Gbur (1984) written, data as a of 

SMD's of the has been from Sid 

and Debbie (SMD). By modifying 

the of the of the type effect the 

model, data could used in with the 

model if assumptions were or if cross-sectional 

rather longitudinal analysis carried out. 

longitudinal analysis the lines described in 

(1984) would been preferred. it was possible 

to an estimate the correlation of the 

variables during phase-in period only 

aggregate data was 

The purpose this report to describe modifications 

to linear model and to the results a 

cross-sectional 

2. A for Unemployment 

model developed Gbur (1984) in addition 

a parameter the true rate, an 

due to rotation sampling and an due to 
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redesign phase-in. The latter was referred to as the area type 

effect and had four levels: continuing nondisrupted, continuing 

disrupted, incoming, and outgoing. To accommodate the use of 

SMD's data in the analysis summarized in Section 3, the two 

continuing type area categories were collapsed into a single 

category labeled as continuing area. The 4-8-4 rotation pattern 

in CPS was modeled by two factors; a two level factor 

representing the "year" or set of four months in sample and a 

four level factor representing the position of the month within 

the set of four months. The interaction of these two factors and 

an area type - set of months and area type - position of month 

- within set interactions rounded out the terms in the model. 

Since the response variable was the weighted number of 

uneraployed and the parameters representing the various effects 

were given as rates (to avoid significant results due solely to 

differences in the sizes of the groups represented by particular 

parameters), each term in the model was expressed as a product 

of the appropriate rate parameter and a count of the individuals 

in the civilian labor force (CLF) represented by the 

corresponding part of the population. These latter coefficients 

were unknown and needed to be estimated. The CLF model used to 

obtain the coefficients was similar to the unemployment model 

and would have to be fitted to data from the same sample as the 

unemployment model would. Thus, the proposed approach involved 

two stages of model fitting on the same data, the second 

depending on predicted values from the first. The unanswered 

theoretical questions involved in this two stage approach has led 

us to consider models for the transformed proportion 

(probability) of unemployed. The particular transformation 

chosen was the logit transformation. 

For a fixed demographic group and month t, let 

pijk = proportion of the demographic group in the 
population rep 
area type, j 

[F;sented by the samplfhfrom the kth 
month within the i four month 

period who are unemployed in month t, 
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for the subscript ranges 

i = 1,2 

j = 1,2,3,4 

k = 1,2,3 (continuing, outgoing, incoming). 

As illustrated in Gbur (1984), for a given month t, not all 

subscript combinations (i,j,k) correspond to available data. The 

logit Of Pijk is defined as the natural logarithm of the odds 

ratio; i.e., 

Pijk 
= In(*) . 

- ijk 
0) 

A brief description motivating the modeling of logits as a 

fun?tion of a set of independent variables is given in Appendix 

1. 

The logit model corresponding to the model for the 

unemployment 

where 

R = 

Ak = 

Si = 

Mj = 

level in Gbur (1984, Section 2) is given by 

R + Si + Mj+ SMij + Ak t SAik t MA. 
Jk ' (2) 

mean of the logits for all (i,j) combinations from 
area type 1 (continuing areas), 

effect on the logit due to sampling individuals from 
from area type k, 

effect on the logit due to sampling individuals from 
the ith four month period in the rotation pattern, 

effec 
the j h li 

on the logit due to sampling individuals for 
month within a four month period in the 

rotation pattern, 

SMij = effect on the logit due to the period - month within 
period interaction, 

SAik = effect on the logit due to the area type - period 
interaction, 
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= on logit to area - 
within interaction. 

before, parameters the (2) subject the 

contraints: 

= , 

SM2j= 

. 0 

MAjI D 

s2= 0 , ; M.= 0 , 
j=l J 

for all j , ; SMij= 0 
j=l 

for all i , sAlk+ SA2k= 0 

for all j , ~ MAjk= 0 
j=l 

for all i, (3) 

for all k>l , 

for all k>l . 

Except for the change in the levels of the area type factor 

discussed above, comments concerning each term in the model (2) 

and the constraints (3) are essentially unchanged from those 

found in Gbur (1984) when references to "rates" are changed to 

"logits". Expressions and interpretations for each of the 

effects in the model in terms of the logits Vijk are given in 

Appendix 2. 

If we assume independent binomial sampling in each cell, the 

logit model (2) or any hierarchical submodel can be fitted using 

maximum likelihood techniques. The statistical packages BMDP and 

SPSS both allow for parameter estimation in the model subject to 

the constraints (3). By fitting a sequence of nested models each 

term in (2) can be tested for significance using likelihood ratio 

statistics which are asymptotically distributed as chi-square 

random variables. 

However, the estimated proportions used to calculate the 

observed logits in our model are based on weighted totals 

obtained from survey weights derived from the complex sample 

design and other adjustments. It has been shown (cf., Kumar and 



5 

Rao, 1984) that under these conditions, likelihood ratio tests 

based on standard methods for binominal sampling have inflated 

significance levels. Hence, corrective action must be taken to 

ensure a valid analysis. 

Asymptotically valid methods have been developed using Wald 

type statistics (e.g., Koch et al. 1975). Such methods require 

individual data records or an estimate of the entire convariance 

matrix of the estimated cell proportions. In our application, 

neither of these were available for the entire phase-in period; 

only weighted cell totals suitable for secondary analysis were 

available. For such situations approximations to the asymptotic 

distributions of the likelihood ratio statistics have been 

proposed (e.g., Binder et al. 1984). The exact form of the 

app-oximation varies with the model and the necessary theory has 

been developed for many of the common models. For log-linear 

models which admit a direct solution of the likelihood equations 

under multinomial sampling, only knowledge of the individual cell 

design effects is used. Unfortunately, logit models are not 

generally in this class. Recently, Rao and Scott (1987) have 

obtained simple upper bounds on the approximation for logit 

models in terms of the cell design effects and certain 

generalized design effects which do not depend on any 

hypothesis. An outline of the necessary adjustments is given in 

Appendix 3. 

3. A Cross-Sectional Logit Analysis 

An initial cross-sectional analysis was carried out using 

the modified SMD data. Logit models of the form (2) were fit to 

each month's data for total unemployment. At this point it 

became apparent that for some months prior to the redesign and in 

the early stages of the redesign where the effect would 

presumably be minimal, there were differences in the proportion 

unemployed due to the area type (continuing versus outgoing). 

Further investigation revealed that, in fact, there are inherent 

differences between continuing and outgoing areas. The latter 
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tend to be rural or small metropolitan areas whereas the former 

are generally the more populated metropolitan areas. Thus, the 

effect of the redesign and the inherent differences between 

continuing and noncontinuing areas are confounded in the area 

type factor in the model. 

Despite this confounding it may still be possible to obtain 

some information about the effect of the redesign. Suppose that 

a pattern can be found for the difference between the effect of 

the continuing and noncontinuing areas on the proportion 

unemployed in the months prior to the redesign and during its 

initial phase. Then these differences could be used as a 

- baseline for comparison of the area type effects during the 

remainder of the redesign. If we assume that the effect of the 

inherent differences between the two area types is approximately 

constant over a period extending from immediately before the 

redesign until after its completion, then any deviation from the 

baseline pattern would be attributed to the effect of the 

redesign. This approach was investigated using the data from 

January through October, 1984 to establish the baseline. 

For each of the ten months a sequence of nested logit models 

was fit to the data for total unemployed using the SPSS-X 

procedure LOGLINEAR. Selected portions of the output were saved 

and used as input into a FORTRAN program which computed a complex 

sample design correction to the x2 goodness of fit and test of 

a significant effect statistics. A diagonal covariance matrix 

was used in the correction factor calculation with variances 

obtained from a generalized variance function having the same 

coefficients as were used for the published CPS data during this 

period. The assumption of uncorrelated estimates within each 

month is reasonable since the rotation groups represent (at least 

approximately) independent subsamples of the CPS sample. 

The p-values for the adjusted x2 tests are given in Table 

1. A large p-value indicates that the effect of the 

corresponding factor on the logit of the proportion unemployed is 

not significantly different from zero. Since the existence of a 
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rotation group bias has been firmly established on the proportion 

scale and the logit transformation will not eliminate this 

effect, it has been partially forced into the model by 

automatically including the term Mj in the model for each 

month. Assuming the hierarchy principle (if an interaction has 

been included in a model, then all lower order terms involving 

the factors in the interaction must also be incuded), the 

resulting logit models are given in Table 2. 

Table 1. p-values for the Corrected x2 Tests for Siginificant 
Effects in the Logit Model (2) for Total Unemployed 

w 

Month (1984) 
Effect Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. 

Sx A 0.58 0.05 0.07 0.02 * 0.31 0.83 0.79 * 0.83 

MxA 0.95 0.94 0.68 0.67 0.32 0.94 0.77 0.85 0.43 0.20 

A 0.04 * 0.01 * 0.02 0.16 0.54 0.59 0.95 0.41 

S xM 0.05 0.52 0.08 0.17 0.17 0.70 0.78 0.30 0.61 0.09 

S 0.43 0.47 0.76 0.95 0.70 0.58 0.57 0.75 0.21 0.17 

* p-value is less than 0.005. 

From Tables 1 and 2 it is clear that a number of different 

models are appropriate, depending on the month in the baseline 

period. Moreover, the area type effect is not significant in 

every month and the form of the rotation sampling effect varies 

over time. These results are not totally unexpected. In past 

studies of the rotation group bias in CPS (e.g., Bailar (1975) 

and Bailar (1979)), estimates of the bias indices have been based 

on averages over a number of months of data. In addition, 

Bailar's (1979) numerical work suggests that the bias may be a 

function of time. Given this evidence and the results in Tables 

1 and 2, a cross-sectional approach to providing a baseline for 

area type comparisons did not produce the desired results. 
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Table 2. Fitted Logit Models for Total Unemployed 

Month (1984) Model 

January 

February 

March 

April 

May 

June 

w July 

August 

* September 

October 

Uijk 
= R t Si t Mj t SM.. t Ak IJ 

* * * * A * 

Vijk 
= R t Si t M. 

J + Ak + SAik 
* 

FLijk 
= i t si t ii. 

J 
+;M +Ak ij 

+ SAik 
* * * * A A 

Uijk 
= R t Si t M. 

J * 
Pijk 

= Ii t ii t ii. 
J 

A - * CL 

Vijk = R t M. 
J 

* * A 

IJijk = R 
A * 

Uijk =R 

t M. 
J A 

t M. 
J 

* * A 

IJijk = R t M. 
J 

i ijk = i t ii t i. 
J 

t SM ij 

+ Ak + SAik 

+ iik + ~Aik 

4. Comments and Conclusions 

The cross-sectional analysis described in the previous 

section avoided the need for an estimate of the correlation 

structure required for a longitudinal analysis. However, it 

failed to provide even the baseline estimates necessary to 

unravel the confounding of the redesign effect and the effect of 

the inherent differences between continuing and noncontinuing 

areas. The next logical step is the construction and fitting of 

a longitudinal model for the logit of the proportion unemployed. 

Two major obstacles to a longitudinal approach are the need 

for an estimate of the correlation structure at the detailed 

level specified in the model and the need to account for 

(potential) trend and seasonal effects. Successful resolution of 

the latter may also remove any time dependency in the rotation 

group effects and allow for a stable baseline pattern for the 

area type effect. Huang and Ernst (1981) contains estimates of 
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the correlation structure at the rotation group level for CPS. 

However, to make use of these estimates we would have to assume 

that (i) the correlation structure is unchanged over time, (ii) 

it is approximately the same at the more detailed level of the 

model, and (iii) it is not affected by the redesign. Despite 

these problems, a longitudinal approach should be attempted. 
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Appendix 1 

The development of logit models in this appendix follows 

Agresti (1984, Chapter 6). Let y be a binary random variable 

taking on values 0 and 1 with probability l-p and p, 

respectively. Then 

ECYI = P(Y=~) 

Suppose that p is a function of a vector of explanatory variables 

x. =A linear relationship of the form 

I 
p(‘) = 80 + C Bixi 

i=l 

is generally considered inappropriate since predicted values of p 

can be outside the interval [O,l] unless the ranges of the Xi are 

restricted. Curvilinear relationships between p and x are 

usually considered more appropriate. 

For a single explanatory variable (I = 1) a sigmoidal curve 

is a natural shape for monotone relationships between p and x. 

One of many functions which has this general shape is the 

logistic function 

P(X) = 
eBo+ @lx 

1 + eBO+BIX 
(Al) 

-b()+ BlX), -1 
= Cl+ e . 

Under the logistic assumption, the odds ratio for the response y 

= 1 to the response y = 0 is 

P(X) / (1 - P(X)) = e 
BO + BlX 

WI 
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so that the logarithm of the odds ratio, or logit, is given by 

109WpbN = W*J 03) 

where In represents the natural logarithm. 

In the simple logit model (A3), if BI is positive, then the 

logit of p(x) is an increasing function of x. Equivalently, the 

odds ratio increases multiplicatively by exp(gI) for every 

unit increase in x. On the original probability scale , 

Bo+ 81X 

* p(x+I) = 
1 + e 
-.J P(X) ' 

e 1 Bo 1 
+$⌧ l 

+ e 

where the multiplier on the right hand side is greater than one 

since @I> 0 implies exp(-@I) < 1 . Hence, on the probability 

scale a unit increase in x leads to an increase in p(x) which 

depends nonlinearly on the value of x itself. 

The independent variables in the logit model can be either 

continuous or discrete. Letting the x's be O-l indicator 

variables yields the analysis of variance-like model which is 

used in this report. 

The preceding development can be generalized to the case 

where y is expressed in terms of sampling weights and adjustment 

factors. In this case, p(x) is thought of as the proportion of 

individuals in the population with the characteristic of interest 

and the specified set of x values. It is this extension which is 

utilized in this report. 

Appendix 2 

In this appendix we develop expressions for each term in the 

logit model (2) subject to the constraints (3) given in Section 2 

as a function of the logits p 
ijk . 

We begin by observing that for 
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k=l (continuing areas) 

‘ijl 
= R + Si+ Mj+ SM.. i 

1J 
= 1,2, j = 1,2,3,4 (A4) 

and for k = 2, 3 (outgoing and incoming areas, respectively) , 

Uijk = R + Si + Mj + SM.. + Ak+ SAik + MA. 
1J Jk 

= 
‘ijl 

+A 
k 

+ SAik + MA. 
Jk ' 

(A5) 

for appropriate (i,j) . 

The simplest expressions in terms of the u 
ijk 

occur in the 

first stage of the phase-in from April through October 1984. 

DurJng this period, the new frame was introduced in continuing 

areas, all outgoing areas were sampled, and no data for 

estimation purposes was collected from incoming areas (k=3). In 

this case, from (A4) and the constraints (3) we obtain 

(W 

where a dot as a subscript indicates on average over that 

subscript. Substituting for R from (A6), fixing one subscript 

and summing over the other in (A4) yields 

‘i = Ui 1- 11 . . . 1 9 (A7) 

M. = V 
J .jl - K.1 l 

(A81 

Substituting (A6) - (A8) into (A4) yields 

SM = 
ij 'ijl - 'i.1 - ‘.jl + I☺ ..l l 

VW 

The expressions in (A6) - (A9) correspond to the usual 

analysis of variance type formulas for the parameters in a two 

factor model with interaction if the third subscript is 

ignored. Thus, for example, R is the overall mean of the logits 

for continuing areas and S 
i 

is the deviation of the mean over the 



13 

months within the i th period from the continuing areas from the 

overall mean of the logits for the continuing areas. 

Summing (A5) over i and j and solving for A2 gives 

A2 = Y.2 - Y.1 l 
WO) 

Again from (A5) we have 

F"ij2 
= 2R + 2Mj + 2A2+ 2MA. 

32 ’ 

which, upon substituting, rearranging, and simplifying, yields 

. 

MA 
j2 = (11 

* .j2 - p..2 1 - (P.jl - U..ll 

= (lJ .j2 - ‘.jl ) - k.2 - Y.1) 

= (IJ .j2 - ‘.jl b A2 . 

Similarly, 

SAi2 = (Vi 2 - It 2) - (Ui 1 - ll . . . . 
1) 

= 
("iI - 'i.1 ) - A2* . 

(All) 

(A121 

From (AlO), the outgoing area type effect A2 is the 

difference between the means of the logits for outgoing and 

continuing areas. Hence, it measures the effect of the outgoing 

areas relative to those which are retained in the sample. The 

month within period - area type interaction in (All) can be 

interpreted in two ways. First, it is the difference in the 

deviations of the mean logits for the j th month within period 

from the overall mean from the outgoing and continuing areas. 

Alternatively, it is the difference in mean logits for 

the jth month within period for the two area types, adjusted for 

the area type effect A2 . The period - area type interaction 

SAi2 
can be interpreted analogously. 



14 

Finally, substituting (A6) - (A8) and (AlO) - (A12) into 

(A5) and solving for SM.. yields 
1J 

SM.. = 
1J 'ij2 - 'i.2 - ‘.j2 + u ..2 ’ (A13) 

which is of the same form as (A9) except that it is based on the 

logits for the outgoing areas rather than the continuing areas. 

This result is as expected since the lack of a three way period - 

month within period - area type interaction in the model means 

that the two way interaction between period and month within 

period is the same for all area types. From a different 

perspective, if a three way interaction SMA 
ijk 

and the 

* corresponding constraints were included in the model, then it can 

be shown that 
* 

SMA 
ij2 = (11 ij2 - 'i.2 - '.j2 + lJ ..2 1 - (Pijl - Vi.1 

- ‘.jl + ‘..l 1 s (A14) 

which is the difference between (A13) and (A9). In a similar 

manner, alternative expressions for SAi2 and MA. 
32 

can be shown to 

be equivalent by rearranging the terms on th right hand side of 

(A14). 

For the remaining months of the phase-in there are 

missing (i,j) cell combinations for both outgoing and incoming 

areas (k=2,3). As a result, the sums in (AlO) - (A12) are 

generally not taken over the full range and the corresponding 

expressions, although conceptually the same, do not simplify to 

those given above. 

Appendix 3 

In this appendix the likelihood ratio statistics are 

developed for both the goodness of fit and significance of an 

effect hypotheses in the logit model. The general approach used 

to modify the likelihood ratio statistics to account for the 

complex sample design is outlined and then applied to the logit 
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model. 

To establish notation, assume that there are I cells in the 

model and let a plus sign as a subscript indicate a sum over that 

subscript. Let 

Ni 

N+ 

N. 11 

w N +1 

* 

"i 

"+ 

II. 
1 

yi 

gi 

; 
i 

Let 

II. 
1 

= population size of cell i (unweighted), 

= lNi = population size, 
i 

= number in cell i with the characteristic of interest, 

= CNil = number in the population in the characteristic 
i of interest, 

= sample size for cell i (unweighted), 

= 
Cni 

= overall sample size, 

= 'iI - = population proportion in cell i with the 
Ni characteristic, 

= sample number in cell i with the characteristic 
(unweighted), 

yi = -= 
n. 

sample proportion estimate of "i (unweighted), 
-I 

lNiI = 
ii 

= weighted sample proportion estimate of II 
(survey estimates of ni ), 

i 

iii 
= A = weighted sample proportion estimates of Ni 

N+ T- 

= fi(8) 

= e X.6 1 /(l+eXiB) , i=l ,***, I 
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so that 

lOgit = ln( ;I,.) 
1 

= xp , 

where Xi is the ith row of the model design matrix X and 8 is the 

K dimensional parameter vector. In matrix form the model is 

given by 

11 = logit (Al5) 

=X$ . 

. If we assume independent binomial sampling in each cell, 

then the likelihood function is 

* W) =jl (ii) niYi(l-ni)ni- yi = i 

and the log-likelihood is 

lnL(8) = c + 1 [yi ln(ni) + (n.- yi) ln(l-ri)] 
i 

1 

= c + 1 ni[qi ln(ni) + (l-q..) ln(l-*i)] 
i 

(AW 

or in terms of 6 , 

lnL(f3) = C + 1 n.jlIqi ln( 
e 'iB 

i l+exiB 
1 + 1l-q.i) ln( ’ )I 

l+exiB 

= c + C “iC4i ‘i8 - ln(l+eXiB)] . 
i 

(Al7) 

Differentiation with respect to 6 yields 
j 

alnL(s) 
a6 

= ; n.[ q x - ( eXiB 1 X I 
J i=l ’ i ij l+exiB ij 

= c “iXij( 9i - “i) 9 j=l,...K . 
i 

Setting the partial derivatives equal to zero and writing the 
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resulting system of likelihood equations in matrix form yields 

X’y - X4(n;) = 0 , (A181 

where (t-t;) = [nIiI,...,nI;IJ@. Solution of the likelihood 

equations (A18) leads to the fitted model 

A 

lJ = logit = Xi . 

To test the significance of a particular effect in the model 

(A15), for convenience rearrange the order of the entries in B 

(and the corresponding columns of X) so that the parameters 

associated with the effect being tested are the last entries in 

the vector B. Then let B = 

cor;espondingly. 

[BIBBED] and partition X = [XIX,] 

The model (A15) becomes 

u = x1f31 + X2B2 l MW 

The likelihood ratio test statistic for Ho: p2 = 0 versus 

HI: B2 f 0 is given by 

G2(211) = 2 lnCL(i)/L(B)I 
= 2n+$-) (qi ln[;il.iJ 

i+ A 
ww 

+ (l-CJi) ln[(I-;i)/(I-ii)11 > 

where i and i are the maximum likelihood estimators obtained from 

(A18) under HI and Ho, respectively. 

In general, when qi and ni/n+ are not available, they will 

be replaced by the survey estimates pi and ii, respectively. 

This assumes that the unweighted proportion in cell i with the 

characteristic is approximately the same as the weighted estimate 

and that the distribution of sample units over the cells is 

approximately the same as the distribution of final person 

weights over the cells. Making these substitutions in (A20) 
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yields 

G2(211) g 
4 

+ (l-pi) ln[(l-ii)/(l-ii)]) . 

Under the hierarchy assumption, expression (A21) for G2 is 

equivalent to 

(AW 

which is the more familar form of the likelihood ratio statistic. 
. 

For the goodness of fit likelihood ratio test we have pi in 

plaie of ii and, denoting the maximum likelihood estimates under 
A 

HO 
. . "model fits" by ;. ;. in place of ii, the statistic is 

1' 1 

G2(211) 'Z Pn,Fii{ii ln[ii/ii] + (l-rri) lnC(l-~i)/(l-~i)I~ s 

G2 ’ 2n+C~i{~ilnCPi/~il + (l-~i)‘n[(l-pi)/(l-;i)]} . (A22) 
i 

Under independent binomial sampling and the appropriate null 

hypothesis, both of the likelihood ratio statistics (A21) and 

(A22) are asymptotically chi-square with the appropriate degrees 

of freedom. However, for general sample designs, the likelihood 

ratio statistics are asymptotically distributed as 1 GiUi, where 

the Ui are independent xTl) and the 'i are the eigenvalues of 

certain "design effect" matrices. The basic approach for 

obtaining these matrices and the resulting modification of the 

statistics is sketched below. 

The usual goodness of fit statistic, Wald type statistics, 

and the likelihood ratio statistic for testing both the goodness 

of fit and significance of an effect hypotheses have been shown 

to be asymptotically equivalent. Hence, any of them can be used 

to derive their common asymptotic distribution. The most 

convenient is usually a Wald statistic. 

The basic computation relies on the following theorem (e.g., 

Graybill, 1976, Section 4.4). 
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Theorem : If x N MVN(O,V) and Q = X'AX, where A is2a symmetric 
matrix, then Q cy cw.U., where Ui are independent x 
eigenvalues of the hatrix AV. (1) 

and Wi are 

The theorem is usually applied to an appropriate Wald statistic W 

(Q in the theorem) constructed from the maximum likelihood 

estimators of the parameter being tested in the null hypothesis 

and the inverse of their estimated covariance matrix under 

multinomial sampling. If the vector of maximum likelihood 

estimators is asymptotically normal with a sample design 

dependent covariance matrix (V in the theorem), then the 

asymptotic distribution of W follows. Note that the "design . 
effect" matrix (AV in the theorem) is a generalization of the 

univariate design effect concept; i.e., the ratio of the variance 

of the estimator under the given sample design to that under 

simple random sampling. 

For the logit model (A19), the Wald statistic for testing 

Ho: fi2 = 0 is given by (cf., Binder et al., 1984 or Kumar and 

Rao, 1984) 

W = n+i2* (X2@ ii n(l-n)i[,)i2 ’ (~23) 

where i 2 is the maximum likelihood estimator under the general 

model and 

i!i lr(l-11) = diag[;i(l-;i)] 9 

“x2 = [I-x,(X,- ii n(l-n)xl)-lxle in(l-n)1X2 l 

Thus, the generalized design effects matrix is given by 

M 
$2 =o 

= (iI20 i T(1-,)x2)-1(x2* F $1 s (A24) 

where 6 is the estimated covariance matrix of i under the given 

sample design. 

For the goodness of fit hypothesis, the likelihood ratio 

statistic G2 is asymptotically equivalent to the goodness of fit 
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statistic 

I 
W = n 1 Wi(ii 

+i=l 
- ;i)2/[ni(l-;i)] ) (A25) 

where, as in (A18), ii is the maximum likelihood estimator of r 
i 

under HO. The generalized design effects matrix is given by 

M 
gof = 

[(bN x ON -l)' 
+ + 

ii,,, 
+= 

(&N 'ii iN )-l? 
+ + 

(A261 

where 
= A 

DN+ 
= diag[ii] , 

Dw = diag[ii] , 

‘N+r(l-n) 
= diag[Niii(l-ii)] , 

‘ii= I - ‘1” iN+n(len)x) 
-1 X’ i 

N+r(l-n)’ 

and t is the estimated covariance matrix of i under the given 

complex sample design. 

Percentile points of the distribution of 1 GiUi under Ho are 

generally not available. Johnson and Kotz (1968) and Jensen and 

Solomon (1972) contain selected percentiles for up to five 

summands. Approximate values can be obtained using the usual 

chi-square tables if we approximate the distribution of 1 6iUi 

by a scalar multiple of a chi-square, say 
ax2(b)' where a and b 

are obtained by matching moments of the two distributions. If 

only the means are equated, then it can be shown that 

a = + i16i 9 (A27) 

b =d , 
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where d is the appropriate number of degrees of freedom. If both 

the means and variances are equated, then 

Since 

d 

C &i = trace(M) , 
i=l 

d 
1 bi2 = trace(M2) , 

i=l 

where M is the appropriate design effects matrix, the individual 

si'S need not be calculated to obtain values for a and b in (A27) 

and (A28). 

Roberts (1984) obtained the following expressions for Csi 

under (A27). For the goodness of fit hypothesis, 

d 
1 6i = n+ f: jiCii(r)/C;i(l-ii)] , 

i=l i=l 
(AW 

where iii(r) = var(pi - ni) is the ith diagonal element of the 

matrix AiAO with 

For testing Ho: 62 # 0, 

d 
1 bi = 

i=l 
n+ f 

i=l 
(A30) 

where vii(r) = var(fri - ii) is the ith diagonal element of the 

matrix Y = i 
n(l-n) 2 'ii B ii,- fi ll( l-n) with 
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In summary, hypothesis testing for goodness of fit and 

significance of an effect in the logit model (A15) is modified to 

account for the complex sample design by calculating the usual 

likelihood ratio statistic (A22) or (A21) and comparing the 

observed value to critical values of a multiple of a chi-square, 

where the multiplier is obtained from (A29) or (A30). 


