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RESEARCH AT THE CENSUS BUREAU INTO DISCLOSURE 
AVOIDANCE TECHNIQUES FOR TABULAR DATA 

1. INTRODUCTION 

This paper describes recent results obtained by the Census 

Bureau Confidentiality Staff in its research into disclosure 

avoidance methods for publicly released tabular data. Tabular 

data can be in the form of frequency counts where a population is 

cross-classified by specified characteristics, for example, age 

by sex. Each cell contains the number of individuals (or 

t households, etc.) belonging to that cell. Tabular data can also 

be in the form of amounts where each cell contains the cross- 

clauified aggregate total of some variable, such as total 

payroll at the state level displayed for SIC by county. A major 

goal of the research described here is the development of 

improved disclosure avoidance procedures for frequency count data 

for the 1990 Decennial Censuses. Procedures developed for 

frequency count data can be applied to tables of amounts (and 

conversely). However, the notions of what constitutes (1) a 

disclosure and (2) adequate protection are quite different in 

each instance. The discussion in this paper will be couched in 

terms of frequency count data with the understanding that the 

basic structures can be applied to tables of amounts as 

appropriate. 

Data tables can be one-dimensional (e.g., county populations 

summing to a state total), two-dimensional (e.g., age by sex), or 

of three or more dimensions (e.g., age by race by sex). We will 

report on rigorous new procedures which have been successfully 

developed for rounding, perturbation, and cell suppression in 

two-dimensional tables, with a focus on their common underlying 

structure. 

Each of the three procedures will be described in terms of a 

common mathematical structure, circuits in a graph. Every two- 

way table of m internal rows and n internal columns gives rise to - - 

a bipartite graph of (m+l) + (n+I) nodes in which nodes 

correspond to marginal positions and edges correspond to nonzero 
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. 

table cells. This common conceptual framework highlights the 

similarities and differences among these three procedures, 

suggests ways for extending them, and sheds light on why methods 

successfully employed on two-dimensional tables fail in three 

dimensions. 

We begin by establishing the notation to be used 

throughout. A two-way table, A, is represented as: 

(a > 0,o 1x1 I (a 1 0,j lxn 
A=-- 

(a > i,O mxl 
I 

0. ) i,j mxn 

where a ij(O<itm, O<j<n) are non-negative integers. The vectors 

(ai:o) and (ao,j) (l<j<m, l<j<n) are row and column totals, 

respectively, of A, and aoO is the grand total. Thus, A is an 

additive table. Disclosure occurs in a frequency count table 

when small counts are released or can be narrowly estimated. If 

releasing A would result in disclosure, one creates a masked 

table 

(b > 0,o 1x1 
B = 

----I 
0 ) 0,j lxn 

(be ) i,O mxl 
-(b .)--- 

i,~ mxn 

from A which is suitable for public release. A major objective 

is that the information loss in releasing B rather that A is as 

low as possible subject to the restriction that the risk of 

disclosing confidential data is at an acceptable level. Under 

rounding and perturbation, each b.. 
1.J 

will be an integer close to 

a 
ij* 

Under suppression, some cells in B will not be released, 

while those released will be unchanged. For an extensive 

discussion of these three disclosure avoidance techniques and 

policy issues in releasing masked tables, see Cox, et al [6]. 

In this report we present new techniques developed by the 

Census Bureau Confidentiality Staff for unbiased controlled 

rounding and unbiased controlled perturbation. In addition we 
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present new methods to audit protection under a cell suppression 

methodology. Computer code has been developed to implement each 

of these procedures (running on the Sperry mainframe and on an 

IBM/AT under Ryan-McFarland Fortran), and these programs have 

been successfully tested using data from the 1980 Decennial 

Censuses. We begin by developing the mathematical structure 

which served as a unifying framework in the design of the 

methodologies presented here. 

2. UNIFYING MATHEMATICAL STRUCTURE 

. 

2.1 Circuits in a table 

* 

Let A be an arbitrary additive table as defined earlier. A 

path of length n is a sequence of distinct table cells; 

Q = {(il,jl),(i2,j2),.~~~~~n~~n~~~ 

such that: 

(1) a. 
'kjk 

#fl , k=l,...,n 

(2) any two consecutive cells are in the same row or 

column, but 

(3) no three cells are in the same row or column. 

A circuit of length n is a path of length n such that 

(4) if a row or column has at least one cell in Q it 

has exactly two. 

For each circuit cell define a signature, uikjk= (_l)k+l, 

and note that the sum of signatures along any row or column 

equals zero. As we show below, one can add or subtract an 

integer from each cell in a circuit, yet maintain table 

additivity. The range of values by which we can alter each cell 
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while maintaining non-negative values is called the circuit 

flow. Under a rounding or perturbation strategy one masks a 

positive cell by embedding the target cell in a circuit and 

adding or subtracting around the circuit within the limits of the 

flow. Under a cell suppression strategy, a necessary condition 

for a table to be disclosure protected is that every disclosure 

cell is contained in a circuit of suppressed cells; a sufficient 

condition is that the collection of such containing circuits 

allows sufficient flow to adequately mask each disclosure cell. 

Rounding and perturbation methods are discussed in Section 3 and 

suppression is discussed in Section 4. We continue this section 

*with a description of procedures for altering cell values along a 

circuit. 

let C be a circuit and let a be an arbitrary integer. For 

each (i,j) EC, let 

for l<itm, lcjtn 

for i=O and l<jtn or l<i<m and j=O 

for i=O and j=O 

and let T.. = 0 for (i,j)/C. 

The a:iay B, where bij = aij + aT.. 
‘J 

for (Otitm, O<jtn) 

is additive and differs from A only for those cells in C. By 

selecting a in the range of the flow of C, each entry in B will 

be non-negative; hence B will be an additive table. If, in 

addition, a is chosen to provide sufficient disclosure 

protection, then we say that B is an additive masked table for 

A. If C consists only of interior cells of A, B will have the 

same marginal values as A, and if the expected value of each a 

(through our selection probabilities) equals zero, then each cell 

in B will be an unbiased estimate of the corresponding cell in 

A. We seek additive unbiased rounding and perturbation 

procedures and show how the perturbation procedure can be 

restricted to change the fewest cells possible. 
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Example 1: Let Table 1 be our initial table, and let us focus on 

cell (1,l). 

54 

12 

18 

11 

13 

13 9 21 11 

3 7 0 2 

4 0 8 6 

0 2 9 n 

6 0 4 3 

Table 1 

_ Two circuits containing cell (1,l) are: 

51 = {(1,1),(1,2),(3,2),(3,3)(4,3),(4,1)! 

c2 = {(1,1),(2,1),(2,0),(1,0)~* 

For C, we have flow Fl = C-2,6] and for C2 we have flow F2 = 

c-3,41. If we form the masked table using C, and a = -1~Fl we 

get Table 2, and using C2 with a=3EF2 we get Table 3. 

54 13 9 21 11 54 

12 2 8 0 2 15 

18 4 0 8 6 15 

11 0 1 10 0 11 

13 7 0 3 3 13 

Table 2 

13 9 21 11 

6 7 0 2 

1 0 8 6 

l-l 2 9 I-J 

6 0 4 3 

Table 3 

Although it might be a desirable objective to form circuits 

consisting only of internal cells so that a masked table would 

retain the marginal values of the original, this is not always 

possible, e.g., in Table 4 there is no circuit containing cell 

(1,4) consisting of interior cells. 
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12 

8 

7 

15 

5 11 10 16 

3 5 0 4 

2 6 0 I-I 

0 0 3 4 

0 0 7 8 

Table 4 

It is important to note, however, that every non-zero table cell 

is contained in at least one circuit (which may include marginal 

positions). 
. 

A revised (and feasible) objective is to find a circuit 

consisting entirely of interior cells when such a circuit exists 

and*to include marginals in a circuit only when necessary. To do 

this, we define a length for each non-zero cell of a table and 

define the length of a circuit to be the sum of the lengths of 

cells it contains. Each positive internal cell is initialized at 

length one, row and column marginal cells are initialized at a 

large length M, and the grand total cell is initialized at length 

N>>M. Given an arbitrary positive internal cell (i,j) by forming 

a circuit of minimal length containing cell (i,j) we will obtain 

circuits consisting only of internal cells if any exist, and 

include as few marginal cells as feasible when they are needed. 

In using minimal length circuits to alter table values, we may 

increase the length of a cell once it has been perturbed to 

minimize the possibility of multiple changes to a single cell. 

2.2 Graph Theoretic Framework For Two-Dimensional Tables and Cycles 

An arbitrary table, A, can be represented by an undirected 

bipartite graph, G, in which the edges correspond to positive 

cells and nodes correspond to rows or columns. That is, let G be 

the bipartite graph whose node sets are: 

NR = rls r2, . . . . r m'CO NC = c1,c2, . . . . c,, r. , 



and having the edge (ri,Cj) if and only if cell 

a 
ij 

tll (r)<i<m, 04jtm). The graph representing Table 1 is shown in 

Figure 1. 

In an arbitrary directed graph, an elementary path of length 

m is a sequence of arcs 

P = el, e2 *-•*, em 
with 

el = (nod+ e2 = (94 ,***, em = ("m-lg"m) 

such that each node is reached at most once when traversing P. 

-An elementary circuit is an elementary path such that no = n 
m' 

We omit repeating the term "elementary" in discussing paths and 

circsits with the understanding that all paths and circuits 

discussed here will be elementary. If the graph is not directed, 

we replace the term "arc" by "edge" and the definitions above 

still prevail. Our reference for graph and network theoretic 

information is Gondran and Minoux [S] and we conform to the 

terminology therein. 

If G is the bipartite graph representing table A, there is 

a one-to-one, onto correspondence between circuits in A and 

circuits in G. For example, the circuit Cl in Table 1 is shown 

by the darkend edges in Figure 1. 

Figure 1. 

. 
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By assigning a length to each edge in an (undirected) 

graph, one defines the length of a path to be the sum of the 

lengths of edges it contains. If two arbitrary nodes are 

connected by at least one path, there exists a path of minimal 

length connecting them. Every edge in G is contained in a 

circuit, and after removing an arbitrary edge from G, its end 

points are connected by at least one path of minimal length. 

Thus, to find a minimal length circuit containing an arbitrary 

edge (x ,Y > : (1) remove edge (x,y) from G, (2) find a minimal 

length path between nodes x and y, and (3) adjoin the edge (x,y) 

forming a minimal length circuit. 
t 

In Section 2.1, we made use of table circuits (of minimal 

length) to alter cell values; by expressing table circuits in 

term*. of circuits within graphs, we can exploit graph-theoretic 

methods to find them. 

3. UNBIASED CONTROLLED ROUNDING AND UNBIASED CONTROLLED PERTURBATION 

3.1 Controlled Rounding 

Let A be an additive table and let b be a positive 

integer. A table, B, is called a rounding of A to base b if: 

(1) bij = b[aij /b) or b([aij/b]+l) (where [x] denotes the integer 

part of x). 

Rounding techniques traditionally have treated each cell 

independently (including marginals) and round values up or down 

based on some random process, see Nargundkar and Saveland [ll]. 

(Fellegi, [7], rounded cells additively, but his method is 

applicable only to one-way tables.) Accordingly, rounded two-way 

tables may fail to be additive. 

If, in addition, we have that: (2) B is additive, we 

say B is a controlled rounding of A, see Cox and Ernst [5]. If, 

furthermore: (3) E(bij) = aij, we say the controlled rounding is 

unbiased. A simple unbaised controlled rounding procedure has 

been developed by Cox [3] based on circuits in a table; and we 
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report on some of this work below. If (l)-(3) hold, it follows 

that (bij - aijl<b, SO if aij is a multiple Of b, then bij = aij. 

Starting with a table A, and a base b, one employs circuits 

in A to create a masked table which is a controlled rounding. 

One crucial observation is that each unrounded cell is contained 

in a circuit consisting exclusively of unrounded cells (Cox, 

c31. Thus, if all the marginal values of A are multiples of b, 

we can confine our attention to circuits and adjustments of 

interior cells. If some marginals are not multiples of b, they 

too will be adjusted. The procedure is as follows. If at least 

one cell in A is not rounded, form a circuit, C, consisting of 

- unrounded cells. For each cell in C let 

a 
3 

ij = 
ij - bCaij/bI for ?ij = -1 

b[aij/bJ+b-a.. for T 
‘J ij = 

1, 

for 'ij = -1 

for T = 1. 
ij 

Letting 

S = Min Is..) and t = 

(i,j)hC lJ 
Max (-tij}, 

(i ,J‘)EC 

and setting a equal to either s or t we have 

b[aij/b]caij+ aTij<b[aij/b]+b 

for each (i,j) CC. For at least one (i,j) EC, aij+ a 7ij 

will be a multiple of b. Thus, one selects a value for a (either 

s or t) adds or subtracts a from each circuit cell as 

appropriate, and obtains a revised table having at least one more 

multiple of b than did A. If every element of the revised table, 

R, is a multiple of b, then B is a controlled rounding of A. If 

not, repeat this procedure, noting eventually it will terminate 

yielding a controlled rounding of A. Selecting 
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s with probability -& 
= 

then E 

t31). 

t with probability 5 , 

(a)=0 and the controlled rounding will be unbiased 

3.2 Unbiased Controlled Perturbation 

(Cox, 

Given a table A, by a random perturbation of A, one usually 

means a masked table each of whose entries differ from A by a 

small randomly selected value, see Newman 112). One forms a 

random perturbation of A by selecting a positive integer called 

t the perturbation base, k, and a family of probabilities, 

P={palac[-k,k]), (where [-k,k] is the set of integers between -k 

and-k, inclusive) such that: 

(1) aErik,klPa= l (2) a,y~k,klaPa= O* 

(Although a symetric interval, [-k,k], is often chosen, any 

interval satisifying (1) and (2) will suffice.) 

For each interior cell one randomly selects a value a 

according to the distribution P, and lets 

t 

a 
ij 

+ a if a 
b 
ij= o 

ij 
+ci>o 

otherwise. 

One may sum interior cells to obtain marginal values, bi o and 

b,, j for Oti<m and O<j<m to form the masked table B. Noie that B 

is'additive, but neither interior nor marginal cells of B are 

unbiased estimates of their counterparts in A, and the marginal 

values can differ from their counterparts in A by a value 

exceeding k. We use a different procedure below which achieves 

additivity and unbiasedness within a cell perturbation framework. 

We first show how random perturbation can be made unbiased. 

Start with an additive table A, a perturbation base k, and 

distribution P as before. To perturb cell (i,j) we let h = 

min[aij, k] and choose the value to be added to aij from the 

interval [-h,h]. Let the probability of selecting 

aE[-h,h] be qa(h) which satisfies: 
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aEC ; hlq V) = 1 7 a 
aqa(h) = 0. 

- , a&h,h] 

For example, one can let 

qpo = pa/B where B = 
ae[ i h]"* - , 

After selecting a , form bij = aij + a for each interior cell. 

Zero values are not perturbed and each bij is an unbiased 

estimate of the corresponding a.. (including marginals). 
1J 

Note, 

t as in the biased procedure above, revised marginals can differ 

from their counterparts by a value greater than k. 

*If the masked table B is released to the public and cell 

(i,j) is observed to be bij, different inferences can be drawn 

about the corresponding value a.. 
1J 

under these two perturbation 

strategies. Under the usual (biased) procedure one can say that: 

Max(O,b..-k)<a..tb..+k , 
1J 1J 1J 

whereas under the unbiased procedure one has that: 

Max{[(bij+l)/2], bij-kl<aijcbij+k* 

Note that for a.. 
1J 

>k the two procedures perform the same. 

Our next objective is to maintain table additivity and alter 

marginals as infrequently as feasible. To this end we introduce 

the notion of controlled perturbation. Start with a table A, a 

perturbation base k, and a distribution P={palac[-k,k)). To 

perturb aij we form a circuit containing cell (i,j) and let F 

denote the circuit flow. We select acF [-k,k] by any specified 

random process such that E(a) = 0 and add or subtract a from each 

cell in the circuit as discussed above for rounding (Greenberg, 

C91). 
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3.3 Restrictive Controlled Perturbation 

In tables of frequency counts, cells containing large values 

do not pose a direct disclosure risk. It will suffice to perturb 

cells with small values, the disclosure cells, and such cells 

will be called primary perturbation cells. It will often be 

necessary to perturb cells other than primary perturbation cells 

to ensure table additivity -- and such cells will be referred to 

as complementary perturbations. We can implement an unbiased 

restricted controlled perturbation using the framework 

established above. 

. One begins by assigning length one to all primary 

perturbation cells, length two to all other positive interior 

ccl 1,s , and length M and N to marginal cells as earlier. Given a 

table A with at least one primary perturbation cell; (1) form a 

circuit of minimal length containing that cell, (2) choose the 

value to be added or subtracted from each cell in the circuit by 

some unbiased random process, (3) form the revised table, and (4) 

update cell lengths. If no cell has length one in the revised 

table, we are done. If any cell has length one, repeat the 

process as often as necessary, noting that this process will 

terminate. 

4. SUPPRESSION METHODS 

4.1 Introduction 

A primary suppression set for a table, A, is a set of cells, 

P, whose values will be suppressed when A is released. Because 

of linear relations along rows and columns of a table, one can 

always find the range of a suppressed cell (see Cox, [2]). To 

prevent disclosure of sensitive information, data releasing 

agencies must ensure that a suppressed cell cannot be estimated 

too closely. For any suppressed cell its level of protection is 

related to the circuits consisting of suppresssed cells to which 

it belongs. In fact, a suppressed cell can be estimated exactly 
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if and only if it exists in no circuit consisting of suppressed 

cells. 

72 16 11 15 30 72 16 11 15 30 

20 5* 6* 0 9* 20 5* 6* 0 9* 

13 2* 3* 2 6 13 2* 3* 2 6* 

15 3 0 4* 8* 15 3 0 4 8* 

24 6 2 9* 7* 24 6 2 9* 7* 

Table 5 Table 6 

If Table 5 were released with starred cells suppressed, one 

* could determine that the value in cell (1,4) must be 9. Note 

that cell (1,4) is contained in no circuit consisting of 

suppressed cells. 

On the other hand, consider Table 6 in which starred cells 

are to be suppressed. Forming the circuit (1,4), (2,4), (2,1), 

(1,l) we can add 5 units to cell (1,4) obtaining the Table 7 and 

subtract 2 units from cell (1,4) obtaining Table 8. 

72 16 11 15 30 72 16 11 15 30 

20 0 6 0 14 20 7 6 0 7 

13 7 3 2 1 13 0 3 2 8 

15 3 0 4 8 15 3 0 4 8 

24 6 2 9 7 24 6 2 9 7 

Table 7 Table 8 

Forming the circuit (1,4), (2,4) (2,2), (1,2) we can add 1 unit 

to cell (1,4) in Table 7 and subtract 3 units from cell (1,4) in 

Table 8 yielding, respectively, Tables 9a and 9b. 

72 16 11 15 3fI 72 16 11 15 30 

20 0 5 0 15 20 7 9 0 4 

13 9 4 2 0 13 0 0 2 11 

15 3 0 4 8 15 3 0 4 8 

24 6 2 9 7 24 6 2 9 7 

Table 9a Table 9b 
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We can no longer form circuits of suppressed cells to either add 

or subtract from cell (1,4). Thus if table 9c were released, one 

can only say that cell (1,4) lies in the interval [4,15]. 

. 

72 16 11 15 30 67 15 16 24 12 

20 D D 0 D 9 1* 2* 2 4 

13 D D 2 D 31 5* 6 17” 3* 

15 3 0 D D 27 9 8* 5* 5* 

24 6 2 D D 

Table 9c Table 10 

4.2 Auditing Protection Using Flows In A Network 
I 

Based on the pattern of suppressions and released cell 

values, one can find the interval [mpq, Mpq] containing the true 

value of suppressed cell (p,q) by solving a family of linear 

equations, Cox, [2]. In this section we show how an agency 

releasing data can derive this interval, and thereby audit 

protection, by employing the concept of a capacitated network 

flow. Afterwards we couch the process in terms of circuits in a 

table thus coming full cycle in our analysis of this problem in 

terms of circuits. 

Given a table A and primary suppression set, one constructs 

the following capacitated network. The underlying graph has the 

same bipartite structure as G defined earlier, however arcs 

correspond to suppressed cells. For each suppressed cell, (i,j), 

there are two directed arcs; (ri,Cj) and (Cj,ri). Thus, for 

Table 10 whose starred cells correspond to suppressed positions, 

the associated network is shown in Figure 2. To find the amount 

by which we can increase the value in an arbitrary suppressed 

cell (p,q) we form the capacitated network where: (1) the 

capacity in arc (ri,Cj) equals aij, (2) the capacity in arc 

tcjS ri) is infinite, (3) the arcs (rp,cq) and (cq,rp) are deleted 

and (4) a source, s, is added along with arc (s,rp) of infinite 

capacity and a sink, t, and arc (c 
9 
,t) with infinite capacity. 

The value Mpq equals apq plus the maximum flow from rto t, i.e., 
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the maximum we can increase a 
Pq 

without disturbing the 

relationship between the sum of interior cells and marginals. To 

find M2 3 for Table 10, we use the capacitated network in Figure 

2, wheri finite capacities are shown on each arc. The maximum 

flow is equal to 5 units, and the flow along each arc is 

indicated alongside the arcs in Figure 3. ThUS M2,3 = 22. 

Figure 2. Capacities are alongside arcs. Each arc has a counterpart 

In the reverse direction with infinite capacity (not drawn). 

Figure 3. The flow is shown along each arc. 
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To find the value mpq, we alter the network above so that (1) 

arcs (s,rp) and (cq t) have capacity a 

infinite capacity a;d arc (Cj, 
P9' 

and (2) arc (ri,Cj) has 

ri) has capacity aij. As before we 

compute the maximum flow from s to t. The value mpq equals apq 

minus the maximal flow on the revised network. The maximum flow 

along this revised network is 6 units, so m 
Pq 

= 17-6 = 11. 

Using networks to obtain Mpq one finds a flow from s to t. 

When one unit moves from s to t it determines a path from rp to 

%' 
and (along with the arc (r p,cq)) a circuit containing the arc 

(rp,cq). That is, finding Mpq as outlined has a direct 

counterpart when viewing the problem in terms of circuits in a 

* table. Consider Table lla with circuit as noted which was 

obtained by moving one unit along path (s,r2), (r2,c4), (c4,r3), 

(r343)* (cpt)* Add or subtract the value 3 as appropriate 

yielding Table llb. 

*<; -n 

Table lla Table llb 

Adding and subtracting 2 units from the circuit in Table lib 

obtained by moving one unit along path (s,r2), (r2,c1), (cl,rl), 

(r1,c2), (c2,r3), (r3,c3), (c3d), yields Table 12. 

67 15 16 24 12 67 15 16 24 12 

9 3 0 2 4 

! 

9 03 24 

31 3 6 22 0 31 6 6 11 8 

27 910 0 8 27 9 7110 

Table 12 Table 13 

By circuiting only on suppressed cells in Table 12, one cannot 

add any more to cell (2,3), and as above, we see that M2 3 = 

22. Similar considerations show m2 3 = 11 if each circuit 
, 

containing cell (2,3) in the revised network is used to subtract 
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from the (2,3) position. The final table one would obtain is 

shown in Table 13. 

4.3 Complementary Suppressions 

If cell (p,q) is a primary suppression, and the interval 

Crnpq* 
Mpq] is not sufficiently large to provide adequate 

protection, other table cells must be suppressed; called 

complementary suppressions. Complementary perturbation cells for 

restricted controlled perturbation and complementary suppression 

cells play a similar role. A complementary perturbation is 

. introduced in order to complete a circuit containing a primary 

perturbation cell. One introduces complementary suppressions 

whe%the flow through a primary suppression cell is too little to 

offer adequate protection. In essence, new circuits are created 

through the introduction of complementary suppression cells, and 

these new circuits allow a greater flow through the primary 

suppressions. This is related to the network flow analysis by 

observing that each complementary suppression introduces a new 

pair of arcs in the underlying network, allowing for a greater 

flow from source to sink. 

Methods for introducing complementary cells differ for 

controlled perturbation and cell suppression. Under controlled 

perturbation, the process is local to the extent that for each 

primary perturbation, complementary perturbations are introduced 

as needed. Their number is controlled by forcing a minimal 

length circuit. In contrast, when finding complementary 

suppression cells the process is global to the extent that 

generally one seeks a minimal set of complementary suppressions 

to protect all primary cells. 

It is beyond the scope of this paper to present techniques 

for finding complementary suppressions. Techniques using a 

combination of linear analysis and branch-and-bound techniques 

have been developed by Cox [2] and have been successfully 

employed at the Census Bureau for the 1977 and 1982 Economic 

Censuses. Recent, promising results of Gusfield [lo] couch the 
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search for complementary suppressions as a graph augmentation 

problem. Gusfield's results extend some of Cox's methods in that 

a comprehensive approach is offered to problems such as that 

illustrated in Table 5. 

5. TABLES IN THREE DIMENSIONS 

The procedures for forming and analizing masked two- 

dimensional tables fail in three-dimensions basically because 

three-dimensional tables lack the underlying graph and associated 

network structure (Cox, [4]). We can define circuits in a three- 

-dimensional table traversing only positive cells, and in fact 

show that each positive cell is contained in such a circuit. To 

that*extent, (restricted) controlled perturbations do exist and 

can be found. However, in the absence of the underlying graph 

one does not have an efficient procedure for finding requisite 

minimal length circuits for perturbing non-zero cells. For 

controlled rounding, the situation is worse. The crucial result 

for two-dimensional tables is that every unrounded cell is 

contained in a circuit consisting of unrounded cells. This 

result is not true in three-dimensional tables, and indeed an 

unbiased, controlled rounding of an arbitrary three-dimensional 

table does not always exist (Causey, Cox, Ernst, Cl]). 

A common thread running through this paper focuses on the 

role of circuits in creating masked tables. In two dimensions, 

circuits, along with the underlying graph and network structures 

are available and are used to full advantage. In three 

dimensions, required circuits do not exist for unbiased 

controlled rounding nor are they readily accessible for 

controlled perturbation due to the absence of the underlying 

graph structure. 

An optimal strategy for masking three-dimensional tables may 

be to (I) design efficient and effective three-dimension 

heuristic counterparts to the two-dimension exact procedures, or 

(2) resolve each two-dimension cross-section and integrate the 

masked two-dimension faces to form a three-dimensional masked 
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table. The Census Bureau Confidentiality Staff is actively 

pursuing research into rigorous techniques for masking three- 

dimensional tables and also into the area of intertable 

consistency. 
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