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Use of Field Information to Hatch the Records in Two Files 

Consider two files of records. Within each file, each record 

corresponds to a different population unit; but the two files 

correspond to the same general population. We want to identify 

"matches,l* i.e., pairs of records (from the two files) that each 

correspond to the same population unit. 

Each record contains data in K fields which correspond to 

characteristics such as age, race, etc. We may observe patterns 

of agreement/disagreement among the fields, for each pair of 

records. Using this information, we want as best as possible to 

identify matches. The problem of how best to use the field 

information has been addressed for K=3, under assumption that the 

events "agreement in field i," i=l, . . . ) K are stochastically 

mutually independent -- for true matches and likewise for true 

nonmatches. We address the problem for K>3, and avoid reliance 

on the assumption of independence by fitting interaction terms 

which reflect stochastic positive dependences. 

Key words: record linkage, field dependence, convex programming, 

log-linear model. 
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1. Problem Definition. Suppose we have two files “A” and 

“B” containing NA records and NB records respectively. Each 

A-record corresponds to a different population unit, likewise 

each B-record. The two files correspond to the same general 

population; and our goal is to identify “linkages”: a linkage is 

a coupling of an A-record and a B-record that correspond to the 

same population unit. In other words, we want to decide which 

pairings correspond to the same population unit, and which do 

not. We refer to Fellegi and Sunter (1969) for a lengthy 

discussion of many aspects of this general, frequently arising 

situation, including their “method of moments,” which provides a 

starting point for the method of this paper. (Because of the 

directions that this paper takes, and the resulting 

coZplications, we depart from the notation of that paper. No 

disrespect is intended.) As that paper indicates, these files 

may represent samples from larger populations. We presume that, 

by whatever means available, we have “unduplicated” each file so 

that, in essence, no two records within a file correspond to the 

same population unit. Coulter (1985) suggests one scheme for 

this “unduplication.” 

As in our reference list, the Coulter paper appeared in the 

Proceedings of a May 1985 workshop on exact matching 

methodologies, co-sponsored by the Internal Revenue Service, the 

Washington Statistical Society, and the Federal Committee on 

Statistical Methodology. All our references on record linkage 

appeared in these lengthy proceedings and, in some cases, 

appeared earlier elsewhere. 

There are NANB possible pairings of A-records and B- 

records. Out of these, the maximum possible number of “true” 

matches (same population unit) is min(NA,NB). Hence we introduce 

FO = min(NA,NB)/NANB (1) 

as the maximum possible fraction of pairings that are true 

matches; we do not know how many pairings are true matches, but 
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F. gives an upper bound. Typically, however, our files, and the 

population that underlies them, will be llblocked" into disjoint 

subsets in a parallel fashion so as to guarantee that, if a 

population unit appears in both files A and B, it will with 

virtual certainty appear in the same block for both. (If not, we 

will not be able to identify the true match for this population 

unit.) Kelley (1985) and Winkler (1985) discuss strategies for 

blocking; later in this paper we discuss the subject. For now, 

suppose that the files contain NhA and NhB records in block h. 

We consider the possible pairings of A and B within each block. 

Summing over all blocks, we get 1 NhANhB and 1 min(NhA,NhB) as 

number of possible pairs and maximum possible number of true 

matches. As maximum possible fraction we now have 

I 

FO = Cc min(NhA,NhB)l/(l yhANhB) . 
h h 

(2) 

Typically, F. will be close to 0. (If e.xternal information 

permits us to determine an upper bound which is even smaller, we 

could use that in place of (2). The actual fraction may in 

practice be considerably less than Fo. For this reason one ought 

to carry out analyses of this paper using a smaller Fo, as a 

sensitivity check.) 

For each pair we compare K data fields that appear in both 

the A- and B-records; these fields typically correspond to such 

characteristics as age, race, or street name. There are 2K cells 

corresponding to patterns of field agreement/disagreement; each 

pair falls into one and only one of the cells. We will number 

the fields from 1 to K. Let S denote a subset of these fields. 

We designate "cell SW as that cell for which there is agreement 

for the fields in S, and disagreement for the other fields. Note 

the terminology: agree/disagree pertains to fields, and 

match/nonmatch to population units. Thus cell S corresponds to 

the vector outcome Y , associated with a pair, that appears in 

many papers on record linkage. As an example let K=5 and 

s = (2,3,51. The cell S consists of those pairs for which there 



is agreement in fields 2, 3 and 5, and disagreement in fields 1 

and 4. 

Let Ps denote the observed proportion of all pairs that land 

in cell S. Let F denote the fraction of all pairs that are true 

matches . Let Q,S denote the proportion of all true match pairs 

that fall into cell S, and Q,, denote the same for true non- 

matches . We have 

PS = FQIS + (l-F)Q2s l 

Although we observe Ps, we cannot observe its components F, Q,, 

and Q2s; we only know F 5 Fo. Using only the known Ps and Fo, we 

will fit values for F, Q,, and Q,,. 

Once these values .are fitted, Fellegi and Sunter (in their 

Seztion 2) use Q,, and Q2s to form a rule for deciding whether a 

pair represents a true match. The procedure corresponds to a 

hypothesis test in its formation of critical regions based on 

largest and smallest values of the likelihood ratio - here, 

QlS'Q2S - and in its consideration of Type I and Type II error 

probabilities. Hence this is one major use of Qls and Q2,. 

Henceforth we let 

us denote Q,s/Q,s* 

Instead of the hypothesis test, in this paper we use Qls and Q2s 

to develop a posterior probability of true match: that is, the 

probability of a true match, given that a pair is in cell S. 

From this point one can make an assignment of file-A records to 

file-B records by solving a transportation-type linear- 

programming problem so as to maximize the posterior expected 

number of true matches, i .e ., the sum of posterior probabilities 

of match, in the assignment. But instead, we might simply 

specify a cutoff decision rule that a posterior probability 

exceeding, say, . 90, corresponds to true match (and less than .90 

does not 1. Interpretation is simplified by the fact that 

posterior probabilities largely appear to gravitate toward either 
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0 or 1. We are inclined to favor investigation of the cutoff 

decision rule, and thus will not deal here with the intricacies 

of making an assignment based on the transportation problem. 

Hence we have discussed uses of Q,s and Q,, once they are 

fitted. For the most part this paper considers how best to fit 

Q,, and Q2s, in advance of using them. We will consider fits 

which give an end result of form 

log us= constant plus 1 wi (4) 
i ES 

with wi>O; this model appears in many of the Proceedings papers 

on record linkage. A (relative) weight wi is being assigned to 

field i. By using (4) we maintain a proper hierarchy among 

likelihood ratios: if (the set of agreeing fields for) S is 

St?-ictly contained in (same for) cell T, we want US<UT. In such 

an instance, T represents a clear-cut advance beyond S with 

respect to field agreements; and we want Us < UT so that for T 

the choice “match” is favored over the choice llnon-matchll more 

than it is for S. This hierarchy must be maintained; it is not 

enough merely to fit Q,, and Q2s which are positive. 

The relationship in (4) is maintained under the 

“independencel’ model which we present at the start of the next 

section. Such a model has been used in other papers on record 

linkage. However, we do not wish to operate under this 

assumption of independence among field agreements. (This 

assumption states that, for true-match pairs, the events 

“agreement in field 1” and “agreement in field j*’ are, for i+j , 

stochastically independent, and that for true-nonmatch pairs the 

same thing holds. But typically, for match or nonmatch or both, 

there will be positive dependence between these events for at 

least some (i,j>. Rather than consider the possible robustness 

of results based on the independence assumption against positive 

dependence, we want to obtain results which take the positive 

dependence into account. > Thus we will develop a log-linear 

model which, as far as possible, accounts for positive 

dependences among field agreements - while preserving the 
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relationship in (41, and the accompanying hierarchy for Us. The 

development and use of this latter model is the primary idea of 

the paper. 

In regard to our model and method, we stress that the only 

needed inputs are the observable cell proportions Ps. We do not 

rely on a sample of pairs which are known to be true matches (or 

true nonmatches) (e.g., Tepping (1968)) for information. (With 

F. small, true matches are very scanty.) Nor do we make use of 

the transmission rates of Howe and Lindsay (1981): probabilities 

(known) that a recorded field entry is the true entry. 

We will use the following example as illustration. We 

considered files for (A) the 1980 Decennial Census, and (B) the 

Post-Enumeration Survey for that census. Each record corresponds 

to a person. We use K = 5 fields: 
* 

(1) A combination of race and ethnicity 

(2) A combination of gender and marital status 

(3) Date of birth (month and year) 

(4) Surname 

(5) A combination of street name and location within community. 

We considered only those records for which all fields were 

filled. With ffblocking" based on "Census Bureau numbering area," 

there were 49 blocks. The number of total pairs was 1321100, the 

number of possible true matches 4465, and the value of F. 

. 003380. The 32 cells, with accompanying Ps, are in 

Table 1; the 5 integers preceding Ps indicate field agreement (1) 

or field disagreement (0) for the 5 fields. That is, 11000 

Table 1. Values of PS 

00000 .334568 00010 .000724 00001 a46498 00011 .000751 
10000 .353175 10010 .001824 10001 .081199 10011 .002542 
01000 .063819 01010 .000121 01001 .010829 01011 .000172 
11000 .080692 11010 .000522 11001 .018664 11011 .000709 
00100 .000318 00110 .oooooo 00101 .oooo98 00111 .oooo16 
10100 .000372 10110 .000017 10101 .000179 10111 .000100 
01100 .000129 01110 .000005 01101 .000052 01111 .000202 
11100 .000173 11110 .000125 11101 .000142 11111 .001266 
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indicates agreement on fields 1 and 2, and disagreement for 3-4- 

5. As we see, slightly more than 2/3 of all pairs disagree on 

all of fields 2-3-4-5. 

2. Outline of Method. This section attempts an overview 

of the paper. We first address the assumption of independence: 

consider a model of form 

QIS = [i~Syi’[ i~S(l-Yi)l ’ (5) 

We express Q2s likewise with ui replacing yi. Let Ei denote the 

event “agreement in field i.” Then yi corresponds to P(Ei), 

conditional, given that there is a true match. The model (5) 

states that the events El, . . . , gK are mutually independent, 

gi’;en that there is a true match. Similar mutual independence 

holds, given that there is a true non-match, with ui 

corresponding to conditional P(Ei). Although we later seek to 

avoid this assumption of mutual independence, we use the above 

independence model to develop preliminary results. These initial 

results, in Sec. 3, will in essence extend the j-field results of 

Fellegi and Sunter (their Sec. 3.32 and Appendix 2). From (51, 

the resulting value of wi in (4) is seen to be 

W. 
1 = l”g(Y~(l-u~>/U~(l-yi>) (6) 

under this independence model. We will fit ui < yi , so that 

Wi > 0. 

Let pi denote the fraction of all pairs for which there is 

agreement in field I, pij denote the fraction for which there is 

agreement in fields I and j, and so forth. As a needed step in 

developing our method, we’ must consider 

R. 
lj = Pij - PiPj, for i*j. (7) 

Incidentally, in our example the values of pi are 
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. 5417, .1776, .00319, -0091, -1634 . (8) 

For the smallest values Of pi, agreement (for field i> is the 

rarest - and, plausibly, the corresponding fields i discriminate 

the most usefully between matches and non-matches. 

In practice we will typically have all Rij > 0; if not, we 

cannot proceed further . With 

pi = FYi + (l-F)Ui 

pij = FYiYj + Cl-FJuiuj 

(9) 

(10) 

under independence as in (5) and with yi > Ui presumed, the 

measured positivity of Rij is due to a combination of three 

pozsible sources: 

(a) Departure of F from 0. 

(b) Excess of yi over ui and of yj over uJ. 

(c) Positive dependence between Ei and Ej that the 

independence model does not reflect (that is, (10) 

understates the value of pij). 

(To see how (a) and (b) contribute to the positivity of Rij, one 

substitutes (9) and (10) into (7) and simplifies: 

R ij 
= F(l-F)(yi-ui)(yj-“j’*’ 

In Sec. 3 we will fit a value for F, which we denote by F*, 

under the assumption of independence. Accompanying this value 

for F will be a fit of values for yi and Ui, which we denote 

by yY and u* , for i=l 

021t 
I ,*-0, K. As the Sec. 3 formulas (I 11, 

and (18) will indicate, these fitted values depend heavily 

on the values Rij. In effect, we will partition the positivity 

Of the Rij’s into the above three sources (a), (b) and (cl, in 

doing this fit. 

The fitted value F* will typically exceed Fo, the (logical) 

maximum possible F. It would be wrong to assign this excess to 
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effect (a>: departure of F from 0. Thus we will presume that 

any excess of fitted F* over maximal F. is, instead, attributable 

to effect (cl: positive dependence, Accordingly, in preparation 

for Sec. 4 where (corresponding to the value of Fo> we measure 

positive dependence, at the end of Sec. 3 we replace 

y? and UT by a pair of values y; and u; which correspond to 

FO’ We choose yi and u; so as to hold effect (b) (excess of y 

over u) constant: we maintain the spacing between yr and uy in 

the sense that the value of Wi in (6) is preserved. 

Then, in Sec. 4 we use Fo, y; and u; , and a log-linear 

model, to fit a set of interaction terms that measure the 

positive dependence of (cl. Having fitted these terms, we adjust 
w 

the table proportions Ps to compensate for interaction effects. 

We obtain a new ffde-interactionizedff table for which, with F = 

F;, the assumption of independence could more nearly plausibly 

hold. Accordingly, as in Sec. 5,. we fit a new set of 

values y; and u[ , and fit additional interaction effects. As 

explained there, we continue to repeat these steps alternately as 

long as we continue to obtain an improved fit. (We always 

have yI> u: 
* 

and ypl~. But if either ui50 or y.21 is 
1 

obtained, we cannot proceed further, in these iterations.) 

Thus in summary, we fit results under the independence 

assumption (Sec. 31, fit interaction terms and de-interactionize 

(Sec. 41, and repeat these two steps (Sec. 5) as long as forward 

progress is obtained. Then, in Sec. 6, we discuss final results 

and their interpretation; we also consider different possible 

values for the true F. Sec. 7 discusses how best to form fields 

from a given data base, and Sec. 8 discusses computation issues. 

3. Results under Independence. This section fits Q,s and 

Q2s for K fields under the independence assumption - and then 

makes the adjustment needed for Sec. 4. As a start, consider 

three fields i, j and k. For 3 fields under the independence 

assumption Fellegi and Sunter solve 7 equations (corresponding to 

23-1 cell probabilities Ps) in 7 unknowns (F,yi ,Ui) to obtain 

fitted F* given by: 
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'ijk = (RijRikRjk) 
112; (II 1 

Dijk = Pijk - PiPjPk - PiRjk - PjRik - PkRij; (12) 

X the positive root of the equation 

C ijk(x2 - I> - DijkX = 0; (13) 

F* = 1/(X2 + I). (14) 

However, we have K>3 fields to consider. There are (:I choices 

of 3 fields each yielding X in (13). Accordingly,as a composite 

value for X we use the positive root of 

* 

(CC ijk)(X2-l) - (lDijk)X = 0, (15) 

with summation over the cK) choices, 

yields F*. Notice that F 
3 

instead of (13). This step 

(I .e .,X> is expressible in terms of 

the ratio D/C in (131, and the ratio (CD 
* 

ijk)/(zc. ijk > in (15). 

We also define Fh based on (15) with summation restricted to 

triplets (i,j,k) for which h = I, j or k. In other words, Fy is 

a composite F corresponding to field i specifically. In our 

example we have F 
* 

= .0503, and values of FT equal to 

. 1620, .0615, .0099, .0230, .0796 . (16) 

With F. = only .00338 we regard these values as evidence of 

positive field dependence. 

Given the value of F, under independence we may show 

with 

R ij = F(l-F)XiXj . 

Yi = Pi + (l-F)xi and ui = Pi - Fq. 

(17) 

(18) 
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Hence we now want to fit the values xi and xj; In (18) there 

are (:) equations in K unknowns; for K = 3 Fellegi and Sunter in 

effect solve the system of 3 equations in 3 unknowns. For K>3, 

from (17) we may form the following composite equation: 

log Xi = Zi/ (K-2) - Z/(K-l)(K-2) - .5 log $1-F;) (19) 

with Zi the sum Of log RJk over the K - 1 pairs (j,k) for which 

j = i or k = i, and Z the sum of log Rjk over all (:I pairs, and 

with Fy substituted for F specifically for field i. 

Thus we use composite Xi (>O) based on (19). Then we get, 

from (181, 

I 

y;_” = pi+ (1-Fy)xi and ur = pi-Frxi. (20) 

These yy 
* * 

and u., like F., 
1 1 

are in essence just averages of 

Fellegi-Sunter j-field results for the ( K;1) triplets which 

include i. In our example we get 

i 1 2 3 4 5 (21) 
Y* 7134 

:5085 
.3760 2029 .2829 l 5033 

U* .1646 :001195 .002646 .1340 . 

Along with F* and F; too large, we obtain y; too small (it should 

be much closer to 1 > under the assumption of independence. (Yet 

it would be especially difficult to get the true value of yr by 

an external sample of the true matches, because with true 

FSFO, i.e., F less than .00338, these true matches are so 

scanty.) 

We have based the development of (20) on the largest 

aggregates of agreement fractions: PiSPij PPijk* This fact is 

important because for many fields even pi is much closer to 0 

than to 1, as our example indicated in (7); an aggregate such as 

Pijkmnh may be so close to 0 as to be quite uninformative. In 

our example, Table 1 shows that pi2345 is only •00~~~6. 

Thus we have fitted results for K fields under the assumption 

of independence. We now adjust yz and UT in preparation for the 
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next section: there we will be using the fraction Fo, as a 

device which permits us to fit interaction terms that reflect 

positive dependence. Let y; and u; be given by the 2x2 system of 

equations 

Yj(l-ul)/uj(l-Y;) = yp(l-uq)/ug(l-yp 

Fey; + (l-Fo)u; = pi . 

(22) 

(23) 

The requirement (22) preserves, up to a constant factor, the 

values of all the likelihood ratios Us: that is, for two 

different cells S and T the ratio Us/UT is unchanged. (The 

hierarchical relationship among likelihood ratios is thus 

maintained. > We thus preserve the values of the weights wi that 

ap’pear in the constant-plus-sum relationship of (4) (although the 

value of the constant is altered). In this sense we maintain the 

spacing between y and u that was obtained from (16): that is, in 

this sense we hold effect (b) of Sec. 3 constant. We also ensure 

O<uj<yj<l. The requirement (23) ensures that, in Sec. 4, the 

fitted overall proportion of agreement for field i equals the 

observed pi. 

One easily sets up and solves a quadratic equation to 

obtain y; and u; based on (22) and (23). In our example we get 

I 1 4 5 (24) 
Y' 07393 .39265 .3:33 .5241 .5587 
U’ .5410 .I769 .002141 .007349 1621 
W .8781 1.1177 5.3597 5.0021 1:8789 . 

4. Interactions. This section fits parameters to reflect 

positive dependence among field agreements, while preserving the 

values of Us obtained in Sec. 3. Consider the fitted probability 

I[: Tf u’ ieS I 

With Pi as starting point, consider GS and 

“i{S (l-up. (25) 

p&k 
given by 
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log Gs =logP;+ lb. B.. 
i<j Slj ‘J 

p; 
= GS/G with G = 1 Gs. 

For P; = 0 we set Pi = 0. Here, P; is an update of PA (equal to 

pB 
if all Bij are 0). The quantities Bij are interaction 

parameters, to be fitted to each cell as a whole. (Here we are 

thinking of y; and u; as fitted “main effects,” which in this 

section are fixed.) For i<j, the constant bSij equals 1 for 

either (a) ieS and jeS or (b) i#S and j+S; it equals -1 for 

either (a) IeS and j#S or (b) 14s and jeS. 

(Along with Pi we also are fitting Qys and Qss according to (26) 

and (27), based on replacement of PA, in (26) by QiS and Q1 
2s 

respectively. 

to* 1 over S. 

The scaling in (27) forces Q;s and Q;s, like P;, to sum 

Because we fit interac.tion parameters for cells as 

wholes rather than for matched and unmatched pairs separately, 

the values of all ratios Us are preserved.) 

Values Bij = 0 correspond to independence of events Ei and 

Ej 9 values B ij>(<) 0 to positive (negative) dependence. To 

correspond to the typical pattern of nonnegative dependence, we 

impose the restrictions B.. L 0. 
1J 

Subject to these restrictions, 

we fit Bij so as to maximize the likelihood function 

1 ps 
log Pi, i.e., to 

minimize f = - 
1 ps 

log P; (28) 

as a function of the variables B. . . 
1J 

As a measure of closeness of 

fit of (the minimizing) P; to the original Ps, we use 

ff = -1 Ps log P; + 1 Ps log Ps, (29) 

which is always nonnegative. (Here 0 log 0 is 0.) We would 

obtain f 
* 

= 0 only for a perfect fit: 
pz = 

PS for all S. (We 

thus use the maximum likelihood criterion to measure closeness of 

fitted table proportions to given proportions. We could just as 

well use minimum Pearson chi-square, with results not greatly 
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different, with somewhat more complexity in the required 

computations.) 

It is straightforward to show (Fiacco and McCormick 1968) 

that in (28) we have a convex programming problem. Suppose that 

we find a set of values B ij (LO) such that we have for i<J, 

always, either (a) df/dBij = 0 or (b) Bij = 0 and df/dBij>O. 

Then for this set of values, we have obtained a solution to the 

minimization problem in (28); and this solution is unique. A 

stopping rule may be based on these conditions (a) and (b); other 

computation issues are discussed in Sec. 8. 

For us, a unique solution will routinely exist if the number 

of cells with Ps>O comfortably exceeds the number of parameters 

(in all, 2K + K(K-1)/2) to be fitted. This requirement needs to 

be met, furthermore, for proper identifiability of parameters. 

We*will not single out cases where there is no solution: but we 

would at least require K=5. Sec.. 7 further discusses the choice 

of (fields and a value for) K. 

In our example the difference f* in (29) was .007143. 

Positive interactions were: 

B23= 
.0073, B34= .1028, B15= .0647, B25= -0004, B45' l o27o* (30) 

With Bij applied to each cell as a whole in (26) and (27) we 

can preserve the value of Us and wi, and thus maintain the 

relationship in (4) and the hierarchical relationship discussed 

in Sec. 1. We use only y; and UT as determined in Sec. 3 to 

determine the likelihood ratio Us mainly because, in trying to 

minimize f, we would no longer have a convex problem with its 

corresponding unique global minimum, if we tried to take into 

account variation in Us. Accordingly, we use the scheme of Sec. 

3 to fit Us. 

However, we want to be able to apply this scheme of Sec. 3 

realistically, under the assumption of mutual independence. Thus 

having fitted Bij, our next step is, in effect, to remove 

interaction effects from our original table frequencies Ps - 

before going back to Sec. 3. Our new set of frequencies will 
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provide an analogue to a deseasonalized time series from which 

one has removed seasonal effects. For values Bij LO obtained from 

the solution to the convex problem, we consider GS and P* 
S 

given 

by 

log Gs = log Ps - 1 b 
i<j SijBij 

pl 
= GS/G with G = 1 GS, 

(31) 

(32) 

in analogy with (26) and (27). For Ps = 0 we set Pl = 0. 

Then, P; is our de-interactionized set of cell frequencies and 

hopefully tends to fit the model for P; in (25) (without any 

interaction terms). 

5. Recomputation. This section considers iterative 

alTernation between the procedures in Sec. 3 and Sec. 4. The 

just-obtained .table PE might behave as though (with F = Fo> the 

assumption of mutual independence in fact held. Using PE (rather 

than PSI, we go back and recompute y; and u; in (221, at the end 

of Sec. 3. We also recompute F* as in (15); if the new F * (while 

> FO) is not less than the previous F*, we would regard the 

latest attempt to fit interaction terms, and remove additional 

positive dependence, as unsuccessful. We also view it as 

unsuccessful if we should obtain y! or UT outside the range 

<O,l>, or R..40 
iJ 

(in which case we can do little but stop). 

If we are successful thus far, we fit a new set of 

interaction terms as follows. From the new y; and ui we form a 

new Pf s as in (251, except that to provide correspondence to Ps we 

add back the already obtained interaction terms - in the manner 

of (26) and (27), where P; was formed. We then have a new 

starting point Pi , from which to try to remove additional 

positive dependence. In other words, we are now at (251, at the 

start of Sec. 4. 

New, additional interaction terms, and new Pw 
s ’ 

are then 

fitted using (26) and (27). We get a new minimal value of f as 

in (281, and a difference as in (291, measuring discrepancy 

between P; and .Ps. If the value of (29) is greater than the 
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previous value, however, we regard the whole attempt to re- 

fit Y;, u; and Pn 
S 

as unsuccessful. At this point, if we have 

been unsuccessful in any sense, we go back to the previous set 

of Y; and uf I’ 
and use the accompanying wi and P; as final 

values. 

However, if we are successful, we give it another try. Based 

on the accumulated sums of interaction terms fitted thus far, we 

de-interactionize, re-fit Pi, re-compute f (and an additional 

set of interaction terms), etc. We can keep going until we are 

unsuccessful, and then revert to results for the previous fit. 

Thus we consider results based on the best available fit for our 

2nd-order model: y; , ui and cumulative Bij based on them. 

(Quite possibly, straightforward variants of some of the 

above-discussed computational steps will be helpful for 

p&ticular sets of data, in getting f* as small as possible, 

subject to the model in (26) and (27). The exact computational 

steps are thus somewhat open to investigation. However, we have 

found that some of the more obvious variants do not seem 

helpful. In any event we would preserve the essential, 

alternating calculations: in Sec. 3 extend the Fellegi-Sunter 

method of moments, and in Sec. 4 fit second-order nonnegative 

interaction terms based on a convex programming problem, so as to 

maintain the likelihood-ratio relationship in (4). > 

In our example we were successful until on the 14th set of 

computations for yi and ur we obtained an R. .40. Hence we 
iJ 

consider the results from the 13th set of calculations. We got 

13th F* = .0147, vs. initial F* = . 0503, and vs. F. = .00338; 

hence most of the discrepancy from F. has been removed, and most 

of the positive dependence between fields may have been 

removed. Values of F; also decreased similarly. The value of 

the difference f* in (29) was reduced to only .002440, vs. 

. 007143 after the 1st cycle; hence in a sense our iterations have 

removed most of the initial discrepancy between observed and 

fitted cell proportions. Accumulated interactions after the 13th 

cycle were (cf. initial values in (30)) 
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B12' -0351 s 823' *IIll, B14= .0644, B34= .2556, 

B 15~ .1172, B25’ .OO82, B45= l 2589 l 

(33) 

For the 13th cycle we also obtain (compare to initial values in 

(24) which correspond to the assumption of independence) 

i 1 2 3 4 5 (34) 
Y’ .6372 .4192 .5476 .9626 .4203 

U’ .6199 .2104 .0025 .0120 .2344 
W . 0740 .9966 6.1913 7.6619 .8623 . 

In (341, field 1 (especially) and fields 2 and 5 are 

de-emphasized, while fields 3 and (especially) 4 are given more 

emphasis, than in (24). Moreover, we now have w4>w3 in spite of 

the facts (a> p3<p4 in (81, indicating that field 3 might be a 

maze useful discriminator than field 4, and (b) initially w3>w4. 

We would use these results for the data of Table 1. In this 

example a better fit was prevented only by Rij becoming 

nonpositive. 

Iteration in this example was beneficial, with 13 productive 

cycles. In other examples there will be fewer (or more) such 

cycles, perhaps only 1; but even a single productive cycle with 

fitted interactions is an advance from the independence model of 

Sec. 3. 

6. Final Results. At this point we have a clear choice 

for wi and Us: the last set of values for these, for which 

success was achieved. However, we want also to fit the best 

legitimately constructed final values for Qls and Q2s. In this 

section we obtain these values, and then consider posterior 

probabilities based on them: for each cell S, a conditional 

probability that (a pair belonging to) the cell represents a true 

match. 

We consider a 2-dimensional table. There will be 2 rows, 

corresponding to match and non-match, and 2K columns, 

corresponding to the 2K cells S. As in Sec. 4 we form Q;, in 

the manner of P; except that instead of log PA in (26) we use 

log Qis; we form Qss similarly. Then we put FoQys in row 1, 

column S and (I-FO)Q2S in row 2, column S. But we want, along 
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with row sums equal to F. and 1-Fo, to have column sums equal to 

the observed Ps: having completed the fit of interactions, we 

now make full use of the observed proportions, Ps. We use 

iterative proportional fitting (Ireland and Kullback 1968) or 

ffrakinglf to produce a new table which is minimally distorted from 

the original 2~2~ table, subject to: (a) row and column sums 

having the above totals; and (b) in the manner of (22) toward the 

end of Sec. 3, preservation of the constant-plus-sum relationship 

in (4) and the values of wi in this relationship. When the 

raking is completed, we have table entries of form (row 

1 > FoQys and (row 2) (I-Fo)Q$, with Qrs and Q&, each summing to 

1 over S, representing final fitted probabilities. 

Let M denote the event “match” and U; = Q;s/Q”2s . Given 

that prior P(M) is Fo, and P(SIMI) is QTs, with P(S) = Ps, we have 

th: posterior probability 

P(M1.S) = FOQtS/PS = FOU;/(FOU; + I-Fo). (35) 

(Note that Ps equals FoQts + (l-F01 Q:,, in this development.) 

Thus we merely divide the fitted cell entry in row 1 and column 

S, by the column total Ps, to obtain P(M1.S). As indicated in 

Sec. 1, we would make use of these posterior probabilities 

P(M/S). Note that if Ps is 0 we do not have a meaningful 

PO+% but that an empty cell does not matter anyway. Table 2 

gives values of P(M/S), in the fashion of Table 1, for our 

example. Wherever there is agreement for fields 3 and 4, we have 

P(MISD.98; otherwise it is <.5. Using a cutoff value of .90 or 

.95, we would for this example be inclined to view agreement in 

these two fields as evidence of true match, and disagreement in 

either of them as lack of evidence of it. 

00000 .000050 
10000 .000054 
01000 .000136 
11000 .000147 
00100 .023975 
10100 .025770 
01100 .062396 
11100 .066869 

Table 2. Values of 
00010 .096580 00001 
10010 .I03233 10001 
01010 .224579 01001 
11010 0237729 11001 
00110 empty 00101 
10110 .982527 10101 
01110 .992981 01101 
11110 .993'+78 11101 

P(qs) 
:000128 000119 00011 10011 .214242 .202047 

.000323 01011 .406871 

.000347 11011 .424847 

.054982 00111 .991980 

.058957 10111 .992547 

. 136160 01111 .997024 

. 145101 11111 .997236 
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The purpose of this paper, however, is more than to reach 

such a conclusion for our example. As we indicated in Sec. 1, 

our chief goal is to provide the best possible values for Qls and 

Q2s These values may then be put to use in a hypothesis-test 

framework, for the cost-utility approach of Tepping (19681, or in 

other ways. Or one could solve a transportation problem based on 

P(MIS) as in Sec. 1. 

As indicated in Sec. 1, the value of F. in (2) represents an 

upper bound on the true value of F rather than the true value 

itself; we would carry out our calculations for smaller values of 

F, to see how the results change. We have done this for P(MIS); 

but one can, of course, do similar investigations for the 

hypothesis-test framework. One can surmise from (351, that use 

of a smaller value for F. and thus a smaller prior P(M) should 

yYeld smaller values for P(MIS); and in our investigation this 

was the case. 

For this investigation we replaced F. in (2) by p34, the 

proportion of all pairs with agreement in fields 3 and 4, in view 

of the Table 2 results which suggested the decision ffmatchff if 

and only if there is agreement for both these fields. The value 

of p34 is .001731, based on numerator 2287 (vs. 4465 for Fo). In 

the sense of Sec. 5 we were unsuccessful (F* failed to decrease) 

on the 7th cycle, so we used 6th-cycle results as given in Table 

3. There is still a marked dichotomy between cells S for which 

fields 3 and 4 agree, and all other cells; but Table 3 provides a 

reminder that P(M1.S) in Table 2 is overstated and that agreement 

in fields 3 and 4 does not guarantee that we have a true match. 

Table 3. Values of P(HjS) 

00000 
10000 
01000 
11000 
00100 
10100 
01100 
11100 

.000016 00010 003472 

:000051 000022 01010 10010 :004787 .011011 

:003115 000071 11010 00110 .015137 empty 
. 004295 10110 484505 
.009884 01110 :685084 
. 013594 11110 .750199 

00001 .000068 00011 014637 
10001 .000094 10011 : 020095 
01001 .000218 01011 045314 
11001 .000301 11011 :061495 
00101 .013145 00111 743760 
10101 018056 10111 : 800279 
01101 :040823 01111 .902673 
11101 .055494 11111 .927555 
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One might wonder how to choose a “bestn value for F that 

is 5 F 
0’ 

One could consider the final value of F* in (29): 

choose the F that minimizes this objective function. But because 

our model does not fully permit us to account for all positive 

dependence (source (c> of Sec. 2), it seems that we will fit a 

value of F which tends to be too large (source (a> of Sec. 2) and 

are apt to overstate the value of F. Moreover, just as for 

fitting best values for ratios Us, we encounter difficulty 

because we no longer have a convex programming problem. (Whereas 

for F = F. we obtained, as in Sec. 5, a final f* = .002440, we 

get f* = . 004220 for F = p34. That is, F. corresponds to a 

better fit than does p34.) 

A final’note: with Ei denoting the event “agreement for 

field i,” we may sum over QTs for ieS, to get final fitted values 

Of*P(Ei IM) for i=l, . . . , K. In our example these are 

. 8168, .6491, .5342, .9474, .8037. (36) 

These are not as close to 1 as they realistically ought to be - 

at least partially because the maximal F. exceeds the true 

fraction of matches. When we replace F. by p34 as above the 

fitted values of P(EilM) increase to 

. 8719, .8928, . 9098, 9752, 9217. (36aI 

7. Choice of Fields. In this section we consider how best 

to form fields. From Sec. 1, recall that field 1 in our example 

is based on 2 data items (race and ethnicity). Likewise fields 

2, 3 and 4 are each based on 2 items, while field 5 is based on 3 

items. In all, we have 11 ffitems” although we have been only 

using 5 fields. One might ask, why not form and use 11 fields? 

(Moreover, by using binary digits for each item, we could form 

many more than 11 fields.) 

Accordingly, we now consider the general issue of how best to 

form fields from a given set of data items. As a first 

principle, we would include every item in one (and only one) data 
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field I in order to make full use of available information 

concerning agreement/disagreement patterns. But for the 

following reasons we would not necessarily form a field from each 

single item. (That is, we would not necessarily form 11’ fields 

in our example.) 

(a) Aa the number of fields (K) inc’reases, there is 

increasing room for complicated interactions among the fields. 

Departures from our second-order model in Sec. 4 may be 

exacerbated. 

(b) By increasing K, we do increase the ,number of fitted 

parameters wi, and Bij. However, we do not nec’eaaarily get more 

information. For example, if in our illustration we split race- 

ethnicity into two separate fields, we get two separate weights 

“I’ and a suggestion of more information. However, we do not get 

a’single weight for the combination race-ethnicity, that reflects 

the joint behavior of the two items. Nor do we get a pairwiae 

interaction, Bij, which corresponds to this combination, as a’ 

single field, in conjunction with a second field such as 

birthdate. 

(cl (leas vital 1 As in the next section, the required order 

of computations blows up as K increases. 

We would prefer K-5, provided that Ps>O for all or nearly all 

of the 32 cells S, in order to permit comfortab’le fitting of 20 

parameters as in Sec. 4. There are, however, two further 

possible objections to small K. We state and deal with these as 

follows. 

(a) For K (and 2K, the number of cells) small, there can be 

awkwardness, because of discreteness, in constructing a decision 

rule analogous to the classical hypothesis test (Sec. 1). Cells 

are few in number with large probabilities Q,, and Q2S associated 

with them; as a result one typically cannot come close to 

attaining the desired Type I and Type II error probabilities. 

But as Fellegi and Sunter indicate, one can introduce an 

artifical randomizing device to attain these. Moreover, in Sec. 

1 we indicated how to use posterior probabilities either to solve 
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a transportation problem or to construct decision rules based on 

cutoffs inatead of the hypothesis-test framework. Hence this 

objection can be overcome. 

(b) The proportions of agreement, pi (as in (8));areA 

smallest for the smallest K and the most aggregation of items. 
- . 

Small values of pi can lead to difficulties when the denominator 

CnDn) of pi is small: that is, when lNhAyhB in Sec. 1 is small. 

For this reason one might thus anticipate difficult‘y for small 

K. However, the rest of this section indioates that such 

difficulty can be avoided for K as small as 5. V 

For D - 10 million and pi - .0002 we have’ a’numerator 2000. 

If numerators of pi are, in this fashion, in the thousands, then 

we have relatively small sampling error and may usefully compare 

pi to each other - and likewise utilize pij and pijk as we have 

ddne for our example. On the other hand, suppose D is 10,000; 

for pi - . 0002 we are dealing with a numerator 2. Sampling 

error, extreme discreteness, etc.. , creates an intractable 

situation. For sufficiently large D, with numerators large 

enough, there should be no objection to having a small K and 

small values of pi. (For given files A and B, the numerators 

will increase as D increases, although they will not 

proportionately keep pace - because the overall number of true 

matches , which relatively account for more agreements than 

nonmatches, stays the same while the overall number of nonmatches 

increases. In any event, it seems best to choose fields so ‘that 

the pita are equalized as nearly as possible, as a nmaximinlt 

strategy.) 

Thus we next must consider how big a D we want to deal with, 

and thus how many blocks we want to form: the fewer the blocks, 

the bigger D will be, for given files A and 8. For K fields we need . 

to make DK field comparisons as to field agreement/disagreement, 

in order to obtain the quantities Ps. These comparisons can be 

streamlined, and based on just integers. Thus computationally it 

becomes quite feasible to consider D equal to, say, 10 million 

(at least) in conjunction with K-5, in striving to make the 

numerators for pi, pij, pijk acceptably large. 
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Another reason for forming a few large blocks, as opposed to 

many small blocks; is that likelihood of error is reduced, in the 

following sense. Recall from Sec. 1 that blocking is to be done 

so that: lf a pair of records from A and B constitute a true 

match, they belong to the same block. Blocking leads to “error” 
- ,, 

if it assigns two such records to different blocks. By having 

blocks as few in number and as large as possible, we reduce the 

possibilitiea for such error. 

8. Computation. This section pertains strictl’y to 

computational issues for the convex programming problem of Sec. 

4. For this general problem, of course, numerous”algorithms have 

been developed; but we would like to add the following. 
w 

We start each (convex programming) problem with Bij, 

corresponding to additional positive interaction, set to 0. To 

com*pute Vi, the vector of 1st derivatives, and V2f, the matrix 

of 2nd derivatives, for f in (28) with respect to Bij, we need, 

in the notation for (261, the sums Is bSijCs . We also need, 

for isj zk*i, analogous sums Is cSijkGs which correspond to 

3rd-order interaction; likewise we need sums which correspond to 

4th-order interaction. In all, the number of required additions 

involving Cs is seen to be of order 

2K-1 ; (jK) 
j-2 a (37) 

whicn increases dramatically as K increases: important because 

of the need to compute these derivatives repeatedly. Thus, as 

indicated in Sec. 7, there can be computational problems for 

large K. 

A final computational aid for persons familiar with convex 

programming algorithms: suppose that the direction vector, 

(38) 

has a positive component corresponding to a Bij which is 0. 

Minimizing f along this direction vector, we would be led to make 

Bij negative,’ contrary to the constraints B ijto* Under these 
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conditions we have recomputed the direction vector with such BIJ 

excluded (temporarily) from the set of variables. If necessary, 

we repeat to make further exclusions. This approach permits ua 

neatly to bound BiJ LO without the uae of penalty functions; ‘and 

we find that we quickly get to the solution. For a similar 

reason, when there are positive component-i for Bij>O, we 

multiply by a positive scalar small enough to keep all B ijLO’ 
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